ACCELERATED DIMENSIONAL STABILITY TEST
METHOD DESIGNED FOR 100% COTTON SINGLE
JERSEY WEFT KNIT FABRIC IN URGENT SITUATIONS

Dunstan Weragala

148335G

Degree of Master of Science /Master of Textile and Clothing Management

Department of Textile and Clothing Technology

University of Moratuwa
Sri Lanka

May 2017
ACCELERATED DIMENSIONAL STABILITY TEST
METHOD DESIGNED FOR 100% COTTON SINGLE
JERSEY WEFT KNIT FABRIC IN URGENT SITUATIONS

Dunstan Weragala

148335G

Dissertation submitted in partial fulfillment of the requirements for the
degree Master of Science/ Master of Textile and Clothing Management

Department of Textile and Clothing Technology

University of Moratuwa

Sri Lanka

May 2017
DECLARATION

“I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Name of Student : Dunstan Weragala
Registration No. : 148335G

Signature : Date:

The above candidate has carried out research for the Masters Dissertation under my supervision.

Name of the Supervisor: Eng. S.N. Niles.

Signature of the supervisor: Date:
ABSTRACT

Standard dimensional stability test methods have higher lead times. In a manufacturing environment a dimensional stability test method with shorter lead time is an option provided under some international standards. Such test methods have been developed based on one specific machine designed exclusively for this purpose. As a solution, an alternative test procedure was developed in an existing washing machine for industrial use.

The Miele automatic front loading washing machine was selected for this research. A washing and drying procedure developed with 30-minute washing procedure and 30-minute tumble drying procedure. This research related only to 100% cotton single jersey products. The key features of the BS EN ISO 6330:2012 washing and drying procedure was compared with those of the proposed washing and drying procedure.

A pilot run with five samples was done with three different weights against proposed washing and drying procedure for conditioned, unconditioned states and BS EN ISO 6330:2012 washing and drying procedure. Thirty samples were tested in one material to confirm the consistency of the new washing and drying procedure. Twelve samples representing four different GSM values were tested according to BS EN ISO 6330:2012 and proposed washing and drying procedure and a satisfactory correlation was obtained.
DEDICATION

I lovingly dedicate this dissertation to my parents, wife and two sons, who supported and encouraged me in every way during my studies.
ACKNOWLEDGEMENT

I would like to express my deepest appreciation to all those who provided me with the guidance and assistance to complete this project successfully.

My special gratitude goes to my project supervisor Eng. S. N. Niles for his exemplary guidance, monitoring, encouragement and instruction for the project. I would also like to extend my gratitude to our project coordinator Dr. Sanath Jayawardena for his support and coordination and to the panel of lecturers for their mid reviews of the project which help me to follow the correct direction.

I appreciate the support rendered by the managing director of Hayleys Fabric PLC, Mr Rohan Goonetilleke by permitting me to carry out this project at Hayleys Fabric PLC. My special thanks also go to Mr Ajith Senarathna for his technical advice and for sharing his knowledge and experience throughout my project. I would like to extend my sincere thanks to my physical testing lab team for their generous support. Special thanks to Milinda Tennakoon, Saliya Bandara, Manoj Mahanama, Chandana Yapa, Priyantha Sanjeewa and Asantha Basnagoda who supported me whenever I needed the assistance.

Finally, I would like to take this opportunity to thank our lecturers, non-academic staff and those not mentioned above for their help. And also thanks to the University of Moratuwa administration for providing us with valuable opportunities to enhance our knowledge, skills and attitudes.
TABLE OF CONTENTS

DECLARATION ... i
ABSTRACT ... ii
DEDICATION ... iii
ACKNOWLEDGEMENT ... iv
LIST OF FIGURES AND TABLES ... vi
 Figures .. vi
 Tables ... vi
LIST OF ABBREVIATIONS AND ANNEXURE ... vii
 Abbreviations ... vii
 Annexure ... vii
1 INTRODUCTION ... 1
 1.1 Objectives .. 3
 1.2 Significance of the study ... 3
 1.3 Scope of the study ... 3
2 LITERATURE REVIEW ... 4
3 METHODOLOGY ... 8
 3.1 Research plan .. 8
 3.2 Materials used ... 10
 3.3 Equipment used ... 10
 3.4 Wash and drying program ... 12
 3.5 Sample preparation ... 13
 3.6 Testing and data analyzing procedures .. 14
4 RESULTS AND ANALYSIS .. 16
 4.1 Study 1: Proposed wash program-A trial run ... 16
 4.2 Study 2: Hydro extraction RPM ... 19
 4.3 Study 3: Performance of the new procedure ... 22
 4.4 Study 4: Five washes trial .. 25
 4.5 Study 5: Relationship between two procedures .. 27
 4.6 Test procedure .. 28
5 CONCLUSION .. 29
6 REFERENCES .. 32
LIST OF FIGURES AND TABLES

Figures

Figure 1: FOM 71 CLS ... 11
Figure 2: Miele professional PW 6055 Vario ... 11
Figure 3: Precision tumble dryer (M 223/2) SDL Atlas ... 12
Figure 4: Test specimen size and drawing method ... 14
Figure 5: Length shrinkage test results: Rapid Wash 60°C vs. BS EN ISO 6330:2012 17
Figure 6: Width shrinkage test results: Rapid Wash 60°C vs. BS EN ISO 6330:2012 18
Figure 7: 120 GSM-hydro extraction RPM versus shrinkage % performances 19
Figure 8: 145 GSM-hydro extraction RPM versus shrinkage % performances 20
Figure 9: 160 GSM-hydro extraction RPM versus shrinkage % performances 21
Figure 10: Rapid Wash 60°C vs. BS EN ISO 6330:2012 performance 24
Figure 11: Five washes length shrinkage .. 26
Figure 12: Five washes width shrinkage ... 26

Tables

Table 1: Proposed test procedure performance table .. 9
Table 2: Fabric material details of study1 to study5 ... 10
Table 3: Washing & drying parameter comparison ... 12
Table 4: Additional information for washing & drying parameter comparison 13
Table 5: Determination of Rapid Wash 60°C tumble dry cycle ... 16
Table 6: Initial washing trial length shrinkage test results .. 17
Table 7: Initial washing trial width shrinkage test results .. 18
Table 8: 120 GSM fabric hydro extraction RPM and shrinkage % 19
Table 9: 145 GSM fabric hydro extraction RPM and shrinkage % 20
Table 10: 160 GSM fabric hydro extraction RPM and shrinkage % 21
Table 11: Washing & drying parameter comparison .. 22
Table 12: Additional information for washing & drying parameter comparison 22
Table 13: Rapid Wash 60°C vs. BS EN ISO 6330:2012 test results 23
Table 14: Rapid Wash 60°C vs. BS EN ISO 6330:2012 statistical data summary 24
Table 15: Five washes performance of Rapid Wash 60°C Vs BS EN ISO 6330:2012 25
Table 16: Test results for different fabric GSM's ... 27
Table 17: ANOVA table for length shrinkages without conditioning 28
Table 18: ANOVA table for width shrinkages without conditioning 28
LIST OF ABBREVIATIONS AND ANNEXURE

Abbreviations

AATCC American Association of Textile Chemists and Colorists.
BS British Standard
CV% Coefficient of variation
EN European Norm
ISO International Organization for Standardization
M&S Marks & Spencer
RPM Revolutions per minute
5N(h) 50 °C Normal washing procedure in BS EN ISO 6330:2012
GSM Grams per square meter
CPI Courses per inch
WPI Wales per inch
TPI Twist per inch
μ Mean
σ Standard deviation

Annexure

<table>
<thead>
<tr>
<th>Annexure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annexure-i</td>
<td>Accelerated dimensional stability test procedure</td>
<td>34</td>
</tr>
</tbody>
</table>