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ABSTRACT 

In our day to day life, predictability of gold prices is significant in many domains such as 

economic, financial and political environment. The objectives of this research are to study the 

behavior of the gold price in Sri Lanka, to forecast the daily gold prices making use of four 

Stochastic Differential Equation (SDE) models, Brownian motion, Geometric Brownian motion, 

Cox-Ingersoll-Ross (CIR) model and Vasicek model and compare the results with an ARIMA 

(2,1,2) model which is used to forecast the Sri Lankan gold prices in a previous research. The 

daily gold prices per troy ounce in Sri Lanka are obtained from 01
st
 of October 2015 to 14

th
 of 

October 2016 from the website http://www.cbsl.gov.lk/htm/english/_cei/er/g_1.asp on 1st of 

November, 2016. The gold prices from 01
st
 of October 2015 to 07

th
 of October 2016 are used to 

estimate the parameters of the four models and the parameter estimation is done using maximum 

likelihood estimation method. The gold prices from 10
th
 of October 2016 to 14

th
 of October 2016 

are used to forecast the gold price. By taking the gold price on 10
th
 of October 2016 as the initial 

value, daily gold prices from 11
th
 of October 2016 to 14

th
 of October 2016 are forecasted. 

Numerical approximations are carried out using Euler-Maruyama approximation method and the 

Monte Carlo simulation technique is used to simulate the daily gold prices. After evaluating 

forecasting accuracy of estimated models and existing ARIMA (2,1,2) model by root mean 

square error (RMSE) and mean absolute percentage error (MAPE), it turns out that the Vasicek 

model has the minimum RMSE and MAPE values for the given data set. The price of the gold 

may change rapidly because of some economic factors such as inflation, currency exchange rates 

etc. In these situations the best SDE model to forecast the daily gold price in Sri Lanka may be 

changed to another model. Hence this method is suitable for short runs only.  

 

 

Keywords: Gold Price, Stochastic differential equations, Maximum likelihood estimation, 

Monte Carlo method, Euler-Maruyama method 
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CHAPTER 01 

INTRODUCTION 

In this chapter, a brief description about the research is provided. This chapter describes 

the background of the study in section 1.1, objectives in section 1.2 and the significance 

of the study in section 1.3. Organization of the dissertation is given in the section 1.4. 

1.1 Background of the Study 

The Gold has a long history as a valuable metal and its history is far from over. From the 

ancient Egyptians to the modern Treasury, there are few metals that have such an 

influential role in human history as gold. 

 

Human fascination with gold is as old as recorded history. However, flakes of gold have 

been found in Paleolithic caves dating back as far as 40,000 B.C. Most archaeological 

evidence shows that human who came into contact with gold were impressed by the 

metal. Since gold is found all over the world, it has been mentioned numerous times 

throughout ancient historical texts. 

The Egyptians produced the first known currency exchange ratio which mandated the 

correct ratio of gold to silver: one piece of gold is equal to two and a half parts of silver. 

This is also the first recorded measurement of the lower value of silver in comparison to 

gold. They also produced gold maps, some of which survive to this day. These gold 

maps described where to find gold mines and various gold deposits around the Egyptian 

kingdom. As much as the Egyptians loved gold, they never used it as a bartering tool. 

Instead, most Egyptians used agricultural products like barley as a de-facto form of 

money. The first known civilization to use gold as a form of currency was the Kingdom 

of Lydia, an ancient civilization centered in western Turkey. 
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In 1792, the United States Congress made a decision that would change the modern 

history of gold. Congress passed the Mint and Coinage Act. This Act established a fixed 

price of gold in terms of U.S. dollars. At the time, gold was worth approximately 15 

times more than silver. That ratio would change after the Civil War. In 1862, paper 

money was declared to be legal tender, marking the first time a fiat currency (not 

convertible on demand at a fixed rate) was used as an official currency. 

After decades of war and conflict, world leaders came together under the Bretton 

Wood’s Agreements. This system created a gold exchange standard where the price of 

gold was fixed to the U.S. dollar. The day the price of gold was pegged to the U.S. dollar 

is one of the most important points of U.S. history because it helped make the United 

States the global superpower it is today. In 1944, gold was fixed at $35 per ounce for the 

foreseeable future. In the early 1970s, the Vietnam War caused the gold exchange 

standard to collapse. America’s budget was in ruin and in 1971, President Nixon 

suddenly decided to end the Bretton Woods system with a moment known in history as 

the Nixon Shock. 

Today, no countries in the world use a gold standard. In other words, no currency in the 

world is backed by gold. The last major currency to use a gold standard was the Swiss 

Franc, which used a 40% gold reserve until the year 2000. 

In present, gold has been seen as a smart investment. However, the use of gold as an 

investment became hugely popular after the end of the Bretton Woods system in 1971. 

Since the 1970s, the price of gold has steadily increased. In 1970, gold was pegged at 

$35 per ounce. However, the years in between were not a smooth upward slope and gold 

– like any other investment – has gone through a number of ups and downs over the past 

few decades.  

Karat is the term used to measure the gold content or purity. The higher the karatage, the 

purer the gold. 24k gold is also called pure gold or 100 per cent gold. This means that all 
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24 parts in the gold are all pure gold without traces of any other metals. It is known to be 

99.9 per cent pure and takes on a distinct bright yellow color. There is no higher form of 

gold than 24K. Since this is the purest form of gold, it is naturally more expensive than 

22K or 18K gold.  22K gold implies that 22 parts of the jewelry amounts to gold and the 

balance 2 parts are some other metals. This kind of gold is commonly used in jewelry 

making. In 22K gold, of the 100 per cent, only 91.67 per cent is pure gold. The other 

8.33 per cent comprises metals like silver, zinc, nickel and other alloys. 18K gold is 75 

per cent gold mixed with 25 per cent of other metals like copper /6or silver etc. This 

kind of gold is less expensive compared to 24K and 22K. This one has a slightly dull 

gold color. Troy ounce is another measure for gold. It is a unit of measure for weight 

that dates backs to the middle age. One troy ounce is equal to 31.1034768 grams. 

By carefully weighing all of this information and current trends, we can build an 

accurate view of the present value and future value of gold. The high value of gold is 

generally accepted to be the result of a combination of factors such as scarcity, physical 

characteristics, aesthetic attributes and wealth storage. 

The gold market is deep and liquid and there are many ways for investors to buy 

physical gold or gain an exposure to movements in the gold. Some of them are gold 

coins, gold bars, gold exchange traded funds, gold mining equities, gold accounts, gold 

futures and options and the over-the-counter market.  

Because of the gold has a higher demand, lots of people are interested in dealing with 

gold. Some of them are government, banks and jewelry makers. In present, each bank 

has the pawning facility. To attract people to the bank, the bank try to give the maximum 

credit for the gold. Because of that, there is a competition between banks. Hence all the 

banks try to find the future price of the gold. 

By observing historical daily gold prices in Sri Lanka, it can be assumed that there will 

be a higher demand for the gold in near future. Because of that many investors will try to 
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invest their money in gold market and they will be very interested to get some idea about 

the future gold prices. 

Just like any commodity, it’s impossible to accurately predict the price of gold. There 

are many factors affecting for the price of gold. Demand for consumer goods, 

investment, inflation prospects, value of the dollar, gold reserves, lack of the safe 

havens, stock market and speculation are some factors among them.  

Every day, thousands of investors around the world study all of the metrics involved in 

the price of gold. Some of these experts will take all of this information and accurately 

predict the future price of gold, while other experts will see the same information and 

guess wrong.  

By reviewing the literature of the gold price forecasting, it can be observed that 

researchers used time series models very frequently and few researchers used methods 

such as wavelet schemes, dynamic models and Bayesian models. In literature it could 

not be found any research which used stochastic differential equation (SDE) models to 

forecast the gold price. In this research, the daily gold price of Sri Lanka is forecasted 

using four SDE models named Brownian motion, Geometric Brownian motion, Cox-

Ingersoll-Ross model and Vasicek model. Model parameters are estimated using 

maximum likelihood estimation method. MATLAB software is used for computation 

and graphical plotting of data. To approximate the solution of an SDE, Euler- Maruyama 

method or Milstein method can be used. In this study Euler-Maruyama approximation 

method is used to approximate the SDE. To simulate the predicted gold prices, Monte-

Carlo technique is used. There are several measures for evaluating forecasts. For this 

study, the root mean square error (RMSE) and the mean absolute percentage error 

(MAPE) are used. When comparing performance of models, smaller values of RMSE 

and MAPE indicate the better model. In literature, a model to predict daily gold prices in 

Sri Lanka cannot be found. Because of that, forecasting accuracy measures of four SDE 
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models were compared with the forecasting accuracy measures of an ARIMA (2, 1, 2 ) 

model which is used to predict the monthly gold price in Sri Lanka [14]. 

1.2 Data Collection 

To test the accuracy of the model, daily gold prices per troy ounce from 01/10/2015 to 

14/10/2016 were obtained from http://www.cbsl.gov.lk/htm/english/_cei/er/g_1.asp on 

01/11/2016. Among these data, daily gold prices from 01
st
 of October 2015 to 07

th
 of 

October 2016 were used to estimate the model parameters and by taking the initial value 

as the daily gold price on 10
th

 of October, daily gold prices from 11
th

 of October, 2016 to 

14
th

 of October, 2016 are predicted.  

 

1.3 Objectives of the Study 

The objectives of this research are: 

1. Study the behavior of the gold price in Sri Lanka. 

2. Find the suitable SDE model among four SDE models, Brownian motion, 

Geometric Brownian motion, Cox-Ingersoll- Ross model and Vasicek model for 

Sri Lankan gold price. 

3. Forecast the daily gold price using the most suitable model among four SDE 

models. 

4. Compare the results with previously used ARIMA model to forecast the gold 

price in Sri Lanka. 

 

1.4 Significance of the Study 

If we refer previous research studies on forecasting Gold prices, many researchers used 

time series models to forecast the gold price. It should be noted that any researcher did 

not use SDE models to forecast the gold price. But SDE models are used in finance for 

various purposes such as stock pricing. Therefore SDEs may be suitable to forecast daily 

gold prices.  

http://www.cbsl.gov.lk/htm/english/_cei/er/g_1.asp
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By examining the past data of the price of gold, it can be concluded that the demand for 

the gold in Sri Lanka will be increased in future. Because of this reason, many investors 

will be invested their money in gold market than other financial markets. Hence the 

investors will be very interested to get most accurate predicted daily gold prices in Sri 

Lanka. Because they can invest their money with law risk if they have an idea about the 

future gold prices in Sri Lanka. If the models discussed in this research will predict the 

daily gold prices accurately, investors can be used these models to get some idea about 

the future daily gold prices in Sri Lanka. 

1.5 Outline of the Thesis 

The rest of the chapters were organized as follows. 

 

In chapter 2, a brief synoptic review of the empirical literature will be provided and that 

chapter included various time series models, dynamic model averaging and dynamic 

model selection methods which are used to predict the gold price. 

 

Next, chapter 3 discussed the empirical methodology employed in the study. It included 

mathematical preliminaries, stochastic processes, stochastic differential equation, 

estimation methods, approximation methods and forecasting accuracy measures which 

are used in this study. 

 

The research was followed by the result interpretations based on the estimation outputs 

in chapter 4. In this chapter, parameter estimations, forecasted daily gold prices, 

forecasting accuracy measures of four SDEs and ARIMA (2, 1, 2) model are included.  

 

Lastly, chapter 5 had concluded our research by summarize the major findings, 

contributions of study, limitations of study and some of the recommendations for future 

research. 
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CHAPTER 02 

LITERATURE REVIEW 

The comprehensive review of research from the existing researchers related to 

forecasting gold price had been documented in this chapter. 

 

2.1 Review of the Literature   

Alessio Azzutti (2016) evaluated the use of 6 different parametric and nonparametric 

time series analysis and forecasting techniques using monthly gold price data. The six 

models are Auto Regressive Integrated Moving Average (ARIMA), Random walk 

(RW), Auto Regressive Fractionalized Integrated Moving Average (ARFIMA), 

Exponential Smoothing (ETS), Exponential smoothing state space model with Box-Cox 

transformation, ARMA errors, Trend and Seasonal components (TBATS) and Multiple 

Linear Regression (MLR). This research concluded that, among these six models 

ARIMA model is better. 

 

Banhi Guha and Gautam Bandyopadhyay (2016) forecasted Indian gold price using 

ARIMA models. The research suggested that ARIMA (1, 1, 1) is the best model among 

six different models. 

  

Asad Ali, Muhammad Iqbal Ch., Sadia Qamar, Noureen Akhtar, Tahir Mahmoods, 

Mehvish Hyder (2016) proposed a time series model for forecasting the daily Gold price 

and used the data set of United State Dollars per ounce from Jan 02, 2014 to Jul 03, 

2015 for the said purpose. By using the Box-Jenkins methodology, Autoregressive 

Integrated Moving Average (ARIMA) model is selected and the model selection 

criterion (AIC and BIC) shows that ARIMA (1,1,0) and (0,1,1) are close to each other 

for forecasting the daily Gold price. The forecasted values reveal that ARIMA (0,1,1) is 

more efficient than ARIMA (1,1,0) on the base of model selection  criteria’s, Mean 
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Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and Root Mean 

Square Error (RMSE) . 

 

Pitigalaarachchi P. A. A. C., Jayasundara D. D. M., Chandrasekara N. V. (2016) 

developed two models  Auto Regressive Integrated Moving Average (ARIMA) model 

and Vector Auto Regressive (VAR) model for forecasting monthly gold prices per troy 

ounce in Sri Lanka. The research concluded that ARIMA(2,1,2) is the best model to 

forecast the gold price in Sri Lanka. 

 

M. Khalid, Mariam Sultana, Faheem Zaidi (2014) forecasted the price of Gold in 

Pakistan market using ARIMA and two distinct versions of wavelet scheme. After 

evaluating the accuracy of those models by mean absolute error and mean square error, 

it turned out that wavelet neural transformation has better prediction accuracy than rest 

of the models.  

 

Goodness Aye, Rangan Gupta, Shawkat Hammoudeh, Won Joong Kim (2014) 

developed models for examining possible predictors of the return on gold that embrace 

six global factors (business cycle, nominal, interest rate, commodity, exchange rate and 

stock price factors) and two uncertainty indices (the Kansas City Fed’s financial stress 

index and the U.S. Economic uncertainty index). Specifically, by comparing with other 

alternative models, the research showed that the dynamic model averaging (DMA) and 

dynamic model selection (DMS) models outperform not only a linear model (such as 

random walk) but also the Bayesian model averaging (BMA) model for examining 

possible predictors of the return of gold. The DMS is the best overall across all forecast 

horizons.   

 

Dirk G. Baur, Joscha Beckmann, Robert Czudaj (2014) showed that Dynamic Model 

Averaging (DMA) improves forecasts compared to other frameworks and provided a 

clear evidence for time variation of gold price predictors.   
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Rebecca Davis, Vincent Kofi Dedu, Freda Bonye (2014) forecasted the price of gold 

using an ARMA model. 

 

Abdullah Lazim (2012) in his paper has addressed the forecasting of gold bullion coin 

prices through ARIMA model and had concluded by suggesting that the gold bullion 

coin selling prices are in upward trends and could be considered as a worthy investment.  

 

Deepika M G, Gautam Nambiar & Rajkumar M (2012) has tried to study the forecasting 

of gold price through ARIMA model & Regression but their finding suggests that 

suitable model was not identified to forecast Gold price through ARIMA Model hence 

Regression analysis was carried out in the later part of their study.  

 

Shahriar Shafie and Erkan Topal (2010) have forecasted the gold price by applying a 

modified econometric version of the long term trend reverting jump and dip diffusion 

model. 

 

Z. Ismail, A. Yahya and A. Shabri (2009) developed a Multiple Linear Regression 

(MLR) model for predicting gold prices based on economic factors such as inflation, 

currency price movements and others. Two models were considered. The first model 

considered all possible independent variables. The second model considered only four 

independent variables the Commodity Research Bureau future index (CRB lagged one), 

USD/Euro Foreign Exchange Rate (EUROUSD lagged one), Inflation rate (INF lagged 

two) and Money Supply (M1 lagged two) to be significant. In terms of prediction, the 

second model achieved high level of predictive accuracy.  

 

M.M. Ali Khan (2008) used Box-Jenkins, Auto Regressive Integrated Moving Average 

(ARIMA) methodology for building forecasting model. Results suggested that 

ARIMA(0,1,1) is the most suitable model to be used for predicting the gold price. 



10 
 

Pravit Khaemasunun (2006) applied two forecasting models, Multiple-Regression, and 

Auto-Regressive Integrated Moving Average (ARIMA), are applied to forecast the Thai 

gold price. The research result suggested that ARIMA (1, 1, 1) is the most suitable 

model to be used for forecasting gold price in the short term. The second method, 

multiple-regression, showed that Australian Dollars, Japanese Yen, US dollars, 

Canadian Dollars, EU Ponds, Oil prices and Gold Future prices have effect on the 

change of Thai gold price.  

 

Selvanathan (1991) has analyzed the accuracy of the gold price forecasts gathered from 

a panel of gold experts and concluded that forecasts from a simple random walk model 

are superior to the ERC panel forecasts and simple random walk model forecasts are 

cheap as compared to the efforts of the panel of experts. 

 

2.2 Chapter Summary 

 

According to the literature review, it can be observed that the most researchers used time 

series models such as ARMA, ARIMA, ARFIMA and MLR to forecast the price of 

gold. Some researchers used dynamic model averaging (DMA) and dynamic model 

selection (DMS) models for gold price forecasting. And also there exists one random 

walk model to forecast the gold price. But, the mathematical models such as stochastic 

differential equations were not used by any researcher to forecast the gold price. Hence 

this research is a new approach to forecast the gold price.  

 

To forecast the gold prices in Sri Lanka, time series models were used and that model is 

used to forecast the monthly gold prices in Sri Lanka. Since the price of gold can be 

changed more rapidly, forecasting daily gold prices is most preferable than forecasting 

monthly gold prices. 
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CHAPTER 03 

METHODOLOGY 

This chapter introduces the research methodologies used for this research and how it has 

guided data collection, analysis and development of theory. Section 3.1 describes the 

mathematical preliminaries used in this study. Stochastic processes, stochastic integrals 

and stochastic differential equations are explained in sections 3.2, 3.3 and 3.4 

respectively. Maximum error of the estimates and forecasting accuracy measures are 

described in sections 3.5 and 3.6.  

3.1 Mathematical Preliminaries   

The Law of Large Numbers is an important limit theorem that is used in a variety of 

fields including statistics, probability theory and areas of economics and finance. It can 

be used to optimize sample sizes as well as approximate calculations that could 

otherwise be troublesome.  

Theorem 3.1: Law of large numbers 

Let         be independent and identically distributed random variables. Let   

 (  ) and       (  ). Define    ∑   
 
    . Then, 

       (|
  
 ⁄   |

 

)    and       
  
 ⁄    with probability 1. 

Another important theorem is the central limit theorem. This theorem gives the ability to 

measure how much the means of various samples will vary, without having to take any 

other sample means to compare it with. 

Theorem 3.2: Central Limit Theorem 

Define    ∑   
 
    .Let    

(     )
 √ 
⁄   . Then    converges in distribution to 

   (   )  
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3.1.1 Monte Carlo method 

Monte Carlo method means using random numbers in scientific computing. More 

precisely, it means using random numbers as a tool to compute something that is not 

random.  

In principle, Monte Carlo methods can be used to solve any problem having a 

probabilistic interpretation. By the law of large numbers. Integrals described by the 

expected value of some random variable can be approximated by taking the empirical 

mean of independent samples of the variable. 

As an example, let   be a random variable and write its expected value as    ( ). If 

we can generate            ,   independent random variables with the same 

distribution, then we can make the approximation, 

  ̂  
 

 
∑  

 

   

  

By law of large numbers,   ̂    as    . The    and   ̂ are random and could be 

different each time we run the program. Still, the target number   is not random. 

Hence a Monte Carlo method is a technique that can be used to solve a mathematical or 

statistical problem, and a Monte Carlo simulation uses repeated sampling to determine 

the properties of some phenomenon. 

 

3.2 Stochastic Processes 

A stochastic process is a family of random variables * ( )    + defined on a 

probability space and indexed by a parameter   where   varies over a set  . The mapping 

   (   ) for each     is known as a sample path. One of the main characteristics 

of stochastic processes is that if multiple experiments were run, different paths would be 

observed. If the set   is discrete, then the stochastic process is discrete. If the set    is 

continuous, stochastic process is continuous. 
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3.2.1 Discrete stochastic processes 

If the set   *       + is a set of discrete times, stochastic process is discrete. Let the 

sequence of random variables  (  )  (  )   be defined on the sample space Ω. 

If only the present value   (  )     is needed to determine the future value of     , 

then the sequence *  + is said to be a Markov Process. A discrete valued Markov 

Process is called a Markov Chain. 

Let   (               )   be the one-step transition probability of a Markov 

chain. That is,  (               )    (               ) (     ). 

If the transition probabilities are independent of time   , Markov chain is homogeneous. 

Homogeneous markov chains 

Let *      + be a homogeneous markov chain defined at discrete times   

*       +. Let    be non negative and integer valued for each             . 

Let       (           )                 be the transition probabilities. 

Transition probability matrix is defined as   [   ]    and  ∑    
 
      for   

       . 

Define    ,   
( )-. 

Since         ,              

   
(   )  ∑    

( )   
( )

 

   

               

where     . 

This relation is called the Chapman Kolmogorov formula for a homogeneous Markov 

chain. 
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Let   (  )   ( (  )   ) for          be the probability distribution of   . Let  

 (  )  ,  (  )   (  )   (  )  -
 , 

where( (  ))   ( (  )   )is the initial probability distribution of  (  ). 

Then, 

( (  ))
  ( (    ))

 
  ( (  ))

 
    

Thus,    (  )  ∑   (    )
 
       ∑   (  )   

( ) 
   . 

3.2.2 Continuous stochastic processes 

If * ( )    + is a stochastic process such that   ,   - is an interval in time and the 

process is defined at all instant  , then the process is a continuous stochastic process. 

A continuous time stochastic process is a function such that  

          

 ( )   (   )is a random variable for each value of    .  ( )   (   ) maps the 

interval   into    and is called a sample path or trajectory. 

The stochastic process X is a Markov Process if the state of the process at any time 

     determines the future state of the process. 

Transition probability density function from   at time   to   at time   for a 

continuous Markov process is given by 

 , ( )     ( )   -   (       )  ∫ (       ) (       )    

If      (           )   (       ) ,  ( ) is homogeneous. 
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3.2.3 Wiener process 

Robert Brown was a 18
th

 century Botanist and was the first scientist who would observe 

and document the seemingly random motion of certain particles moving of the surface of 

water. Brown was initially observing pollen particles under a microscope, and his first 

thought was that the motion was caused by the particles being alive. He abandoned this 

theory after observing with dust particles. After this scientist, the mathematician Norbert 

Wiener defined it in mathematical terms. It is the Wiener process or Brownian motion. 

A Wiener process * ( )   ,   -+ is a continuous stochastic process which satisfies 

following conditions. 

a)  ( )       

b) For          , the increment  ( )   ( ) is normally distributed with 

mean 0 and variance      . 

c) For             ,  ( )   ( ) and  ( )   ( ) are independent 

increments. 

Also Wiener process is a homogeneous Markov process. 

Generating a Sample Path of a Wiener Process 

Suppose that a wiener process trajectory is desired on the interval ,     - at the points 

*            +where      . Then  (  )    and the values of a Wiener process 

trajectory at the points               is given by 

 (  )   (    )      √           

where       (   )   for          . 

Using these     values, the wiener process sample path can be approximated 

everywhere on,     -. 
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Probability density of normally distributed random variables with mean   and variance 

    is given by 

 (     )  
 

(     )
 
 ⁄
   (
 (   ) 

    
)  

Let  ( ) be a Wiener process on ,   -. 

For    ,   - and      , 

 [ ( (  ))]  ∫  (  ) (       )   

 

  

  

 ( (  )    )  ∫  (       ) 
  

  

    

Let  (       ) is the transition probability density for the Wiener process from x at 

time s to y at time t. Then, 

 (       )  
 

(       )
 
 ⁄
 
(
 (   ) 

      
*
  

Since Wiener process is a continuous homogeneous Markov process, 

 (       )   (         )  

Chapman Kolmogorov equation for this transition probability is,  

 (       )  ∫  (       )
 

  
 (       )                          . 

An approximation to the Wiener Process 

Consider the interval      . Let       where   
 

 
                   .  

Let  ( )  (   )  be a Wiener process. 
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Define the continuous linear stochastic process   ( ) on this partition of [0,T] by , 

  ( )   (  )
(      )

 
   (    )

(    )

 
 for            and                

Then,   (  )   (  )                   and     ( ) is continuous on [0, T]. 

Also  (    )
  ∑ ∫  , (  )

      

 
   (    )

    

 
  ( )-   

    
  

   
    

=∑ ∫  ,( (  )   ( ))
      

 
 (  (    )  

    
  

   
   

 ( ))
    

 
-    

=∑ ∫
 (    )(      )

 
  

    
  

   
    

    =∑
  

 

   
     

  

    
 

Thus,  (    )
    as    . 

That is                

Therefore the graph of a Wiener process trajectory is represented by plotting   ( ) for a 

large value of  . 

Consider the Wiener process  ( ) on [0,T].  

Let  (    )   (  )                            
 

 
                

 (  )               (   ) 

Since  (  )   (  )                 each sample path of  ( ) is computed at the 

discrete times            .To estimate  ( ) at      for any  , a linear interpolation is 

used. In particular, 
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 ( )   (  )
      

 
   (    )

    

 
 for            . 

 

 

Figure 3.1: A Sample of Brownian path generated by MATLAB 

3.3 Stochastic Integral  

Consider integral of the form∫  ( )  ( )
 

 
, where   is a stochastic process on   . Then 

it can be approximated by  

∑  (  ), (    )   (  )-
   
     

where     .
 

 
/    is the number of steps. 

This is the Ito integral. 

If we approximate ∫  (   )  (   )
 

 
  by 

∑ (
       

 
* , (    )   (  )-
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It is called the Stratonovich Integral. 

An Ito integral has following properties. 

a) ∫    ( )  ∫    ( )  ∫    ( ) 
 

 

 

 

 

 
for         . 

b) ∫ (   
 

 
 )  ( )    ∫    ( )

 

 
 ∫    ( )
 

 
 

c)  0∫    ( )
 

 
1    

d)  [|∫    ( )
 

 
|
 

]  ∫    ( )    
 

 
 

An Ito Process is a stochastic process    on (     )of the form 

      ∫  (   )   ∫  (   )  ( )
 

 

 

 

  

Sometimes it can be written as differential form 

           ( )  

Let    be an Ito process given by, 

           ( )  

Let  (   ) be a twice continuously differentiable function.  

Then, 

    (    ) 

is again an Ito process and   

    
  

  
(    )   

  

  
(    )   

 

 

   

   
(    )  

where(   )
           is computed according to the rules 

           ( )    ( )             ( )   ( )      
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3.4 Stochastic Differential Equations 

An Ito stochastic differential equation on [0, T] has the form 

                   ( )   (   ( ))    (   ( ))  ( ) for         

Function   is called the drift coefficient and function   is called the diffusion coefficient 

of the stochastic differential equation.  ( ) is an independent Wiener process. It is 

assumed that the functions   and   are none anticipating and satisfy following 

conditions for some constant    . 

a)   (   )   (   )    (            )    for          and      . 

b)   (   )    (      )     for        and      . 

Integral form of the Ito stochastic differential equation is, 

 ( )   ( )  ∫  ( ( ))   ∫  ( ( ))  ( )
 

 

 

 

  

The exact solution of a stochastic differential equation is generally difficult to obtain. 

But can be approximated using numerical methods.  

a) Euler-Maruyama Method 

Consider the stochastic differential equation  

                   ( )   (   ( ))    (   ( ))  ( ) for        

Let     
 

 
   for some integer   and        for          . 

Then, 

 (  )   ( )  ∫  ( ( ))  
  
 

 ∫  ( ( ))  ( )
  
 

    

 (    )   ( )  ∫  ( ( ))  
    
 

 ∫  ( ( ))  ( )
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Subtracting above two equations, we obtain 

 (  )   (    )  ∫  ( ( ))  
  
    

 ∫  ( ( ))  ( ) 
  
    

  3.4.1 

For the first integral 

∫  ( ( ))  
  
    

  ( ( ))(       )   ( ( ))      3.4.2 

For the second integral 

∫  ( ( ))  ( )
  
    

  ( ( )) . (  )   (    )/    3.4.3 

By substituting       and       to      , we can obtain 

         (    )    (    )( (  )   (    )) for          . 

where,     (  ),   
 

 
       and ( (  )   (    ))  (    ). 

b) Milstein’s Method 

Milstein method is a popular second order method. It has mean square error 

proportional to (  )  rather than   . Milstein method has the form 

         (    )    (    )    
 

 
 (    )

  (    )

  
0(   )

 
   1 

3.4.1 SDE models in finance 

We now explore the solution of four SDE models used in this research. Let  ( ) be 

the gold price of Sri Lanka at time  .  

a) Brownian Motion 

A Brownian motion  ( ) is the solution of an SDE with constant drift and 

diffusion coefficients 

  ( )         ( ) 

where   and   are parameters to be determined with initial value  ( )      
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b) Geometric Brownian Motion 

A geometric Brownian motion  ( ) is the solution of an SDE with linear drift 

and diffusion coefficients. 

  ( )    ( )     ( )  ( ) 

where   and   are parameters to be determined with initial value  ( )    . 

 

c) Cox- Ingersol- Ross Model 

In the Cox–Ingersoll–Ross model, briefly CIR model,  ( ) is assumed to satisfy the 

stochastic differential equation 

  ( )  (    ( ))    √ ( )  ( ) 

where     and   are parameters to be determined with initial value  ( )    . 

 

d) Vasicek  Model 

In the Vasicek model  ( ) is assumed to satisfy the stochastic differential 

equation 

  ( )  (    ( ))      ( ) 

where     and   are parameters to be determined with initial value  ( )    . 

 

3.4.2 Parameter estimation of SDEs 

In this section, a stochastic differential equation of the form 

  ( )     (   ( )   )       (   ( )   )   ( )   

is considered where       is a vector of parameters that are unknown. It is assumed 

that 

                

are observed values of  ( ) at the respective uniformly distributed times         for 

               where         . The problem is to find an estimate of the vector θ 

given these       data points. In this research, maximum likelihood estimation 

method is considered. 
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Let  (                  ) be the transition probability density of (     ) starting from 

(         ) given the vector  . Suppose that the density of the initial state is   (    ). 

 

In maximum likelihood estimation of  , the joint density 

 ( )    (    )∏  (     |            ) 
 
       

is maximized over       . The value of   that maximizes  ( ) will be denoted as   . 

It is more convenient to minimize the function 

  ( )        ( ( ))  

which has the form 

 ( )     (  (    ))  ∑   . (     |            )/
 
     

One difficulty in finding the optimal value    is that the transition densities are not 

generally known. However, by considering the Euler approximation and letting 

 (    )       at 

       . 

     (  )            (            )      (            )√      

where     (    ). 

 

This implies that 

 (     |            )  
 

√    
 
   .

 (     )
 

   
 /    

where             (            )   and       (            )√  .  

 

This transition density can be substituted into the expression for  ( ) which can 

subsequently be minimized over   .  

 

In this research study, we considered four SDE models Brownian motion, Geometric 

Brownian motion, CIR model and Vasicek model. We need to estimate the parameters 

of four SDE models using Maximum likelihood estimation method. 
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First consider the Brownian motion. 

Let     and     be the parameters of Brownian motion model. By considering the 

Euler- Maruyama approximation, the gold price at time   can be approximated using the 

equation, 

 ( )   (   )          √     

where  ( ) is the gold price at time t,        ⁄  and     (    ). 

This implies that  

 (                  )  
 

√     
   (
 (     )

 

    
) 

where                 and        √  . 

By substituting this transition density to the equation  ( ), 

  ( )   ∑   (
 

√  (   √  )
 
   (

 (             )
 

 (   √  )
 *, 

    

  ∑  

(

 
 

√  (   √  )
 

)

 

 

   

 ∑(
 (             )

 

 (   √  )
 +

 

   

 

     

(

 
 

√  (   √  )
 

)

  
 

 (   √  )
 ∑(             )

 

 

   

  

To minimize  ( ), differentiate with respect to     and     . 

By differentiating with respect to    , 
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 (   √  )
  ∑ (             )     

 

   

 

 
 

(   ) 
∑(             )

 

   

 

 At the optimal value of    , 
  

    
  . 

  

    
|
     ̂  

   

 

(   ) 
∑(         ̂    )

 

   

   

∑(         ̂    )

 

   

   

 ̂   ∑
(       )

   

 

   

 
(     )

   
 

 

By differentiating  ( ) with respect to    , 

  

    
     

(

 
 

√  (   √  )
 

)

  
 

 (   √  )
 ∑(             )

 

 

   

 

   √  (   √  )
 
 
 

√    
  

 

(   ) 
 

 

   (   ) 
∑(             )
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  (   ) 
∑(             )

 

 

   

 

 
   (   )

  ∑ (             )
  

   

  (   ) 
 

At the optimal value of    , 
  

    
  . 

  

    
|
     ̂  

   

   ( ̂  )
  ∑ (         ̂    )

  
   

  ( ̂  ) 
   

   ( ̂  )
  ∑(         ̂    )

 

 

   

   

 ̂  
  
∑ (         ̂    )

  
   

   
 

Hence, the parameters for Brownian motion can be obtained from the equations: 

 ̂   
(     )

   
 

and  

 ̂  
  
∑ (         ̂    )

  
   

   
 

Let  ̂    and      be the parameters of Geometric Brownian motion model. By 

considering the Euler- Maruyama approximation, the gold price at time   can be 

approximated using the equation, 

 ( )       (   )        (   )√     
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where  ( ) is the gold price at time t,        ⁄  and     (    ). 

This implies that  

 (                  )  
 

√     
   (
 (     )

 

    
) 

where                      and             √  . 

By substituting this transition density to the equation  ( ),  

 ( )   ∑   

(

 
  

√  (        √  )
 
   (

 (                  )
 

 (        √  )
 +

)

 
 

 

   

 

  ∑  

(

 
 

√  (        √  )
 

)

 

 

   

 ∑(
 (                  )

 

 (        √  )
 +

 

   

 

  ∑  

(

 
 

√  (        √  )
 

)

 

 

   

 
 

 (    √  )
 ∑
(                  )

 

     

 

   

 

To minimize  ( ), differentiate with respect to      and      . 

By differentiating with respect to     , 

  

     
 

 

 (    √  )
  ∑

 (                  )         

     

 

   

 

 
  

(    ) 
∑
(                  )    
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At the optimal value of     , 
  

     
  . 

 
  

     
|
      ̂   

   

  

(    ) 
∑
(                  )    

     

 

   

   

∑
(                  )    

     

 

   

   

∑
(       )

    

 

   

  ̂          

 ̂    
 

   
∑
(       )

    

 

   

 

By differentiating  ( ) with respect to     , 

  

     
  ∑√  (        √  )

  

√        
  

 

     

 

   

 
  

   (    ) 
∑
(                  )

 

     

 

   

 

  ∑       
 

     

 

   

 
 

  (    ) 
∑
(                  )

 

     

 

   

 

 
 

    
 

 

  (    ) 
∑
(                  )

 

     

 

   

 

 
   (    )

  ∑
(                  )

 

     
 
   

  (    ) 
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At the optimal value of     , 
  

     
  . 

  

     
|
     ̂   

   

   ( ̂   )
  ∑

(         ̂         )
 

     
 
   

  (    ) 
   

    ̂   
  ∑

(         ̂         )
 

    
 

 

   

   

 ̂   
  

∑
(         ̂         )

 

     
 
   

   
 

 ̂   
  
 

   
∑(
   (   ̂     )    

    
)

  

   

 

Hence, the parameters for Geometric Brownian motion can be obtained from the 

equations: 

 ̂    
 

   
∑
(       )

    

 

   

 

and  

 ̂   
  
 

   
∑(
   (   ̂     )    

    
)
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Then consider the CIR model. 

Let           and      be the parameters to be determined. 

By considering the Euler- Maruyama approximation, the gold price at time   can be 

approximated using the equation, 

 ( )  (          (   ))       √ (   )√     

where  ( ) is the gold price at time t,        ⁄  and     (    ). 

This implies that  

 (                  )  
 

√     
   (
 (     )

 

    
) 

where           (             )   and         √      . 

By substituting this transition density to the equation  ( ),  

 ( )

  ∑   

(

 
  

√  (    √      )
 
   (

 (        (             )   )
 

 (    √      )
 )

)

 
 

 

   

 

  ∑   

(

 
 

√  (    √      )
 

)

 

 

   

 ∑(
 (        (             )   )

 

 (    √      )
 )

 

   

 

  ∑  

(

 
 

√  (    √      )
 

)

 

 

   

 
 

 (    √  )
 ∑
(        (             )   )
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To minimize  ( ), differentiate with respect to            and      . 

By differentiating with respect to     , 

  

     
 

 

 (    √  )
  ∑

 (        (             )  )     

    

 

   

 

 
  

(    ) 
∑
(        (             )  )

    

 

   

 

 At the optimal value of     , 
  

     
  . 

  

     
|
      ̂   

   

  

(    ) 
∑
(        ( ̂     ̂       )  )

    

 

   

   

∑
(        ( ̂     ̂       )  )

    

 

   

   

∑
(       )

    

 

   

  ̂     ∑
 

    

 

   

  ̂          

 ̂     ∑
 

    

 
     ̂        ∑

(       )

    

 
      3.4.4 

By differentiating with respect to     , 

  

     
 

 

 (    √  )
  ∑

 (        (             )  )         
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(    ) 
∑(        (             )  )

 

   

 

 At the optimal value of     , 
  

     
  . 

 
  

     
|
      ̂   

   

  

(    ) 
∑(        (             )  )

 

   

   

∑(        (             )  )

 

   

   

       ̂        ̂     ∑    

 

   

   

 ̂        ̂     ∑     
 
               3.4.5 

Considering equations 3.4.4 and 3.4.5, 

       ̂      

  ∑     
 
   

 
∑
(       )
    

 
     ̂     ∑

 
    

 
   

   
 

 ̂   (
 

∑     
 
   

 
∑

 
    

 
   

 
,  

     

  ∑     
 
   

 
∑
(       )
    

 
   

   
 

 ̂   

   ∑     
 
   ∑

 
    

 
   

 ∑     
 
   

 
 (     )  ∑     

 
   ∑

(       )
    

 
   

   ∑     
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 ̂    
 (     )  ∑     

 
   ∑

(       )
    

 
   

  .   ∑     
 
   ∑

 
    

 
   /

 

Substituting  ̂    to the  equation 3.4.4, 

 ̂    
(     )    ̂     

  ∑     
 
   

 

By differentiating  ( ) with respect to     , 

  

     
  ∑√  (    √      )

  

√        
  

 

     

 

   

 
  

   (    ) 
∑
(        (             )   )

 

    

 

   

 

  ∑       
 

     

 

   

 
 

  (    ) 
∑
(        (             )   )

 

    

 

   

 

 
 

    
 

 

  (    ) 
∑
(        (             )   )

 

    

 

   

 

 
   (    )

  ∑
(        (             )   )

 

    
 
   

  (    )
 

 

At the optimal value of     , 
  

     
  . 

  

     
|
      ̂   

   

   (    )
  ∑

(        (             )   )
 

    
 
   

  (    ) 
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   (    )
  ∑

(        (             )   )
 

    

 

   

   

 ̂   
  
∑
(        (             )   )

 

    
 
   

   
 

 ̂   
  
 

   
∑
(        (             )   )

 

    

 

   

 

Hence, the parameters for the CIR model can be obtained from the equations: 

 ̂    
 (     )  ∑     

 
   ∑

(       )
    

 
   

  .   ∑     
 
   ∑

 
    

 
   /

 

 ̂    
(     )    ̂     

  ∑     
 
   

 

and 

 ̂   
  
 

   
∑
(        (             )   )

 

    

 

   

  

Finally consider the Vasicek model. 

Let           and      be the parameters to be determined. 

 

By considering the Euler- Maruyama approximation, the gold price at time   can be 

approximated using the equation, 

 ( )  (          (   ))       √     

where  ( ) is the gold price at time t,        ⁄  and     (    ). 



35 
 

This implies that  

 (                  )  
 

√     
   (
 (     )

 

    
) 

where           (             )   and         √  . 

By substituting this transition density to the equation  ( ),  

 ( )   ∑   

(

 
  

√  (    √  )
 
   (

 (        (             )   )
 

 (    √  )
 +

)

 
 

 

   

 

  ∑  

(

 
 

√  (    √  )
 

)

 

 

   

 ∑(
 (        (             )   )

 

 (    √  )
 +

 

   

 

  ∑  

(

 
 

√  (    √  )
 

)

 

 

   

 
 

 (    √  )
 ∑(        (             )  )

 

 

   

 

To minimize  ( ), differentiate with respect to            and      . 

By differentiating with respect to     , 

  

     
 

 

 (    √  )
  ∑ (        (             )  )     

 

   

 

 
  

(    ) 
∑(        (             )  )
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 At the optimal value of     , 
  

     
  . 

 
  

     
|
      ̂   

   

  

(    ) 
∑(        ( ̂     ̂       )  )

 

   

   

∑(        ( ̂     ̂       )  )

 

   

   

∑(       )

 

   

  ̂        ̂     ∑    

 

   

   

 ̂        ̂     ∑     
 
             3.4.6 

By differentiating with respect to     , 

  

     
 

 

 (    √  )
  ∑ (        (             )  )         

 

   

 

 
  

(    ) 
∑(        (             )  )    

 

   

 

 At the optimal value of     , 
  

     
  . 

 
  

     
|
      ̂   

   

  

(    ) 
∑(        ( ̂     ̂       )  )    
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∑(        ( ̂     ̂       )  )    

 

   

   

∑(       )    

 

   

  ̂     ∑    

 

   

  ̂     ∑    
 

 

   

   

 ̂     ∑     
 
     ̂     ∑     

  
    ∑ (       )    

 
     3.4.7 

Considering equations 3.4.6 and 3.4.7, 

       ̂     ∑     
 
   

   
 
∑ (       )    
 
     ̂     ∑     

  
   

  ∑     
 
   

 

(     )∑    

 

   

  ̂     (∑    

 

   

+

 

  ∑(       )    

 

   

   ̂     ∑    
 

 

   

 

 ̂     ((∑    

 

   

+

 

  ∑    
 

 

   

)  (     )∑    

 

   

  ∑(       )    

 

   

 

 ̂    
(     )∑     

 
     ∑ (       )    

 
   

  ((∑     
 
   )   ∑      

 
   )

 

By substituting  ̂   to the equation 3.4.6, 

 ̂    
(
(     )
    ̂   ∑     

 
   *
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By differentiating  ( ) with respect to     , 

 ∑  

(

 
 

√  (    √  )
 

)

 

 

   

 
 

 (    √  )
 ∑(        (             )  )

 

 

   

 

  

     
  ∑√  (    √  )

  

√    
  

 

     

 

   

 
  

   (    ) 
∑(        (             )  )

 

 

   

 

  ∑       
 

     

 

   

 
 

  (    ) 
∑(        (             )  )

 

 

   

 

 

 
 

    
 

 

  (    ) 
∑(        (             )  )

 

 

   

 

 
   (    )

  ∑ (        (             )  )
  

   

  (    ) 
 

At the optimal value of     , 
  

     
  . 

  

     
|
      ̂   

   

   (    )
  ∑ (        (             )  )

  
   

  (    ) 
   

   (    )
  ∑(        (             )  )
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 ̂   
  
∑ (        (             )  )

  
   

   
 

 ̂   
  

 

   
∑(        (             )  )

 

 

   

 

Hence, the parameters for the Vasicek model can be obtained from the equations: 

 ̂    
(     )∑     

 
     ∑ (       )    

 
   

  ((∑     
 
   )   ∑      

 
   )

 

 ̂    
(
(     )
    ̂   ∑     

 
   *

 
 

and 

 ̂   
  
 

   
∑(        (             )  )

 

 

   

  

 

Table 3.1 contains the maximum likelihood estimators of the four SDE models described 

in this research. Using a sample of past gold prices in Sri Lanka, it can be determined the 

above parameters. In this study, gold prices per troy ounce from 01
st
 of October, 2015 to 

07
th

 of October, 2016 were used to estimate the parameters given in table 3.1. 
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Table 3.1: Table of maximum likelihood estimators of the four SDE models  

Model Parameter Estimated value 

Brownian Motion  ̂   (     )

   
 

 ̂  
 
 ∑ (         ̂    )

  
   

   
 

Geometric Brownian 

Motion 

 ̂     

   
∑(
       
    

*

 

   

 

 ̂   
 
  

   
∑(
   (   ̂     )    

    
)

  

   

 

CIR Model  ̂    (
(     )
  ∑     

 
   

 
 
   
∑
       
    

 
   *

(
 

∑     
 
   

 
∑  

    ⁄ 
   

 +

 

 ̂    (     )
     ̂   

∑     
 
   

 

 ̂   
 
  

   
∑
(    ̂      (   ̂     )    )

 

    

 

   

 

Vasicek Model  ̂    (     )∑     
 
     ∑ (       )    

 
   

  ((∑     
 
   )   ∑      
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3.5 Maximum Error of the Estimate 

The maximum error of the estimate is denoted by   and is one-half the width of the 

confidence interval.  

    
 ⁄

 

√ 
 

where   
 ⁄
 is the Z– score obtained from the Z- table,   is the population standard 

deviation and   is the sample size. 

This formula will work for means and proportions because they will use the Z or T 

distributions which are symmetric.  

 

3.6  Forecasting Accuracy Measures 

Needless to say, forecasting is an important task in this research. With many different 

methods in 

forecasting, understanding their relative performance is critical for more accurate 

prediction of the daily gold price. Various accuracy measures have been used in the 

literature. In this research two accuracy measures are considered.  

 

3.6.1 Root Mean Square Error (RMSE) 

     √∑
(     ̂) 

 

 

   

 

where    is the observed value and   ̂ is the forecasted value  at time     and   is the 

number of observations. The minimum value of RMSE indicates the best model. 
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3.6.2  Mean Absolute Percentage Error (MAPE) 

     (
(∑ |

     ̂
  
| 

   *

 
⁄
)      

where    is the observed value,   ̂ is the forecasted value  at time     and   is the 

number of observations. 

 

Minimum value of MAPE indicates the best model. 
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CHAPTER 04 

DATA ANALYSIS 

This chapter describes the analysis of data followed by a discussion of the research 

findings. Daily gold prices per troy ounce from 1
st
 of October, 2015 to 14

th
 of October, 

2016 were obtained from http://www.cbsl.gov.lk/htm/english/_cei/er/g_1.asp on 1
st
 of 

November 2016. Among these data, daily gold prices from 1
st
 of October, 2015 to 07

th
 

of October, 2016 are used for modeling and other 05 observations are used for 

forecasting. 

4.1 Data Analysis 

Figure 4.1 represents the graph of daily gold prices per troy ounce in Sri Lanka from 1
st
 

of October, 2015 to 14
th

 of October, 2016. 

 

 

Figure 4.1: The graph of Gold price per troy ounce in Sri Lanka from 01/10/2015 to 

14/10/2016 
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It can be clearly observed that all the gold prices during this period is in between 

Rs.150000 to Rs.200000. And also there is an upward trend of the daily gold prices of 

Sri Lanka in this period. Because of several economic factors such as inflation, currency 

movements, uncertainty etc. the price of gold may be fluctuate rapidly. 

 

Figure 4.2: The graph of the histogram for the Gold Price in Sri Lanka 

To graphically summarize the given data set, the best way is to use a histogram. Figure 

4.2 represents the histogram for the daily gold prices in Sri Lanka. It is a non- symmetric 

graph and it has no apparent pattern. Therefore the price of gold in Sri Lanka is a 

random distribution. Like the uniform distribution, it may describe a distribution that has 

several peaks.  

Figure 4.3 represents the graph of cumulative distribution function for the daily gold 

prices in Sri Lanka.  
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Figure 4.3: The graph of cumulative distribution function for the gold price in Sri 

Lanka 

In this study, four SDE models Brownian motion, Geometric Brownian motion, CIR 

model and Vasicek model are considered. To forecast the daily gold prices using these 

SDE models, parameters of the four SDE models should be estimated. 

The table 4.1 represents the estimated parameters of the four SDE models. To estimate 

the parameters, table 3.1 and daily gold prices from 01/10/2015 to 07/10/2016 in Sri 

Lanka are used.  

Using the parameters of the table 4.1, four stochastic differential equations can be 

written as follows: 

 Brownian Motion 

  ( )                          ( ) 

 Geometric Brownian Motion 

  ( )         ( )          ( )  ( ) 
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 CIR Model 

  ( )  (                  ( ))          √ ( )  ( ) 

 Vasicek Model 

  ( )  (                   ( ))               ( ) 

where  ( ) is the gold price at time   and the   ( ) is a linearly independent Wiener 

process. 

Table 4.1: Table of estimated parameters of the four SDE models using maximum 

likelihood estimation method 

Model Parameter Estimated value 

Brownian Motion     27722.543 

    28207.0273 

Geometric Brownian Motion      0.1751 

     0.1593 

CIR Model      406154.478 

     -2.1487 

     66.7345 

Vasicek Model      439873.2658 

     -2.3401 

     28118.0053 

 

After estimating parameters, daily gold prices in Sri Lanka can be forecasted using 

Euler- Maruyama approximations of the above four SDE models. Euler- Maruyama 

approximations of the four SDE models are given below: 

  Brownian Motion 

 ( )   (   )                       √     
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 Geometric Brownian Motion 

 ( )   (   )         (   )          (   )√     

 CIR Model 

 ( )   (   )  (                  (   ))          √ (   )√     

 Vasicek Model 

 ( )   (   )  (                   (   ))             √     

where  ( ) is the gold price at time   with  ( )     ,     
 
   ⁄  and      (    ). 

Using the above equations, sample paths can be obtained for the four SDE models. By 

taking Rs.185099.78 which is the gold price at 10
th

 of October 2016 as the initial gold 

price, 05 sample paths were obtained for each of the SDE models. Figure 4.4, 4.5, 4.6 

and 4.7 represents the sample paths for the Brownian motion, Geometric Brownian 

motion, CIR and Vasicek model respectively.  

 

Figure 4.4: The Graph of Five Sample Paths for the Brownian motion Model 
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Figure 4.5: The Graph of Five Sample Paths for the Geometric Brownian motion 

Model 

 

Figure 4.6: The Graph of Five Sample Paths for the CIR Model 
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Figure 4.7: The Graph of Five Sample Paths for the Vasicek Model 

The Monte Carlo technique is used to simulate the daily gold prices in this study. 

Considering the law of large numbers, by generating large number of sample paths and 

taking the average of them, a unique value can be obtained to the gold price. Figure 4.8 

represents the convergence of the average gold price on 11
th

 of October 2016.  

 

Figure 4.8: The graph of convergence of the forecasted gold prices on 11/10/2016 
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If we generate few number of sample paths, the average value may vary. But if the 

number of sample paths is large, the average value of the gold price converges to some 

fixed value. Figure 4.8 shows that when we increase the number of sample paths from 0 

to 500000, average value is converged to some fixed value. Forecasted value for the date 

11/10/2016 using Brownian motion is converged to Rs.185212.5. The converged gold 

prices for Geometric Brownian motion, CIR model and Vasicek model are 

Rs.185228.35, Rs.185133.7 and Rs.185122.06 respectively. The actual gold price on 

11
th

 of October, 2016 is, Rs.184942.16. Similarly, we can obtain the graphs for other 03 

days. That graphs are included in appendix 02. 

Actual gold prices and the convergent gold prices from 11
th

 of October 2016 to 14
th

 of 

October 2016 are given in the table 4.2. First row of the table represents the gold price of 

10
th

 of October, 2016 which is used as the initial value. Second column represents the 

actual gold price and third to sixth columns represents the forecasted values for the 

Brownian motion, Geometric Brownian motion, CIR model and Vasicek model 

respectively. According to the table, forecasted daily gold price of Sri Lanka is 

increasing and the values are much closed to the actual ones. 

Table 4.2: Table of Actual and Forecasted Gold Prices from 11/10/2016 to 

28/11/2016 

Date Actual data 

(Rs.) 

Brownian 

Motion 

(Rs.) 

Geometric 

Brownian 

Motion(Rs.) 

CIR model 

(Rs.) 

Vasicek 

Model (Rs.) 

10/10/2016 185099.78 185099.78 185099.78 185099.78 185099.78 

11/10/2016 184942.16 185212.5 185228.35 185133.7 185122.06 

12/10/2016 184661.38 185322.9 185358.55 185166.08 185148.44 

13/10/2016 184916.99 185430.25 185490.13 185199.81 185174.25 

14/10/2016 184741.44 185536.68 185619.04 185231.36 185198.9 
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Table 4.3 represents the maximum errors of each predicted value using four SDE models 

under 95% confidence level. From that table, it can be observed that the maximum error 

is getting large when the date is far from the initial date.   

Table 4.3: Table of Maximum Errors of Estimates 

Date Brownian 

Motion (Rs.) 

Geometric 

Brownian 

Motion(Rs.) 

CIR model 

(Rs.) 

Vasicek 

Model (Rs.) 

11/10/2016 4.9396 5.1545 5.018 4.91 

12/10/2016 6.9729 7.2876 7.0597 6.9092 

13/10/2016 8.5297 8.9298 8.6335 8.4186 

14/10/2016 9.8468 10.3199 9.9214 9.6861 

 

Finding the suitable model among four SDEs to forecast the daily gold prices is a main 

objective of this study. Forecasting accuracy measures can be used to check the best 

fitted model among the four SDEs. In this research, root mean square error (RMSE) and 

mean absolute percentage error (MAPE) are used to check the accuracy. Table 4.4 

represents RMSE and MAPE values for the four SDE models. 

Table 4.4: Table of forecasting accuracy measures for four SDE models 

Model Root Mean 

Square Error 

(RMSE) 

Mean Absolute 

Percentage 

Error (MAPE) 

Brownian Motion 592.987 0.3031% 

Geometric Brownian Motion 645.489 0.3293% 

CIR Model 390.966 0.1988% 

Vasicek Model 369.135 0.187% 
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According to the table 4.4, Vasicek model has the minimum RMSE value 369.135 and 

the minimum MAPE value 0.187 %.  

As the final step of this research, the MAPEs and RMSEs obtained for four SDE models 

are compared with the ARIMA (2, 1, 2) model in [14]. ARIMA (2, 1, 2) model can be 

written as, 

  (         
 )(   )   (         

 )   

By substituting the estimated coefficients to the equation,   

                                                                      

Table 4.5 represents the forecasted values for the ARIMA (2, 1, 2 ) model.  

Table 4.5: Forecasted Values for the ARIMA ( 2, 1, 2) Model 

Actual Value (Rs.) Forecasted Value (Rs.) 

184942.16 185540.57 

184661.38 184546.92 

184916.99 185395.14 

184741.44 185166.88 

 

RMSE value and the MAPE value for the ARIMA (2,1,2) model are 441.77 and 

0.2187% respectively. Hence the Vasicek model has the minimum RMSE and MAPE 

value among four SDEs and ARIMA(2,1,2) model.  
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CHAPTER 05 

CONCLUSION AND FURTHER RESEARCH 

In this chapter, the main findings are summarized in section 5.1 and general conclusions 

based on the findings of the studies are described in section 5.2. Furthermore, the 

strengths and limitations of this study are considered and suggestions for further 

research are presented in section 5.3 and 5.4.   

5.1 Summary 

In this research study, the Sri Lankan gold price is forecasted choosing the suitable 

model among four SDE models, Brownian motion, Geometric Brownian motion, CIR 

model and Vasicek model. The gold price of Sri Lanka per troy ounce from 01
st
 of 

October 2015 to 14
th

 of October were used to analyze and predict the daily gold price in 

Sri Lanka. Parameter estimation of four SDE models were done using maximum 

likelihood estimation method. Numerical simulations of SDEs are carried out using 

Euler – Maruyama approximation method.  By applying estimated parameters to the four 

SDE models, gold prices of Sri Lanka is predicted from 11
th

 of October 2016 to 14
th

 of 

October 2016. To simulate the gold prices, Monte Carlo technique is used. Using two 

forecasting accuracy measures RMSE and MAPE, the suitable model among four SDE 

models to forecast the daily gold prices in Sri Lanka is selected. Then, these measures 

are compared with the forecasting accuracy measures of the ARIMA (2, 1, 2) model in 

[14]. To analyze the data, MATLAB software is used.  

5.2 Conclusion 

According to the results of this research study, simulated gold prices of four SDE 

models are much closer to actual ones. Therefore we can conclude that SDE models can 

be used to forecast gold prices in Sri Lanka and it will be helpful for investors who are 

interested in invest their money in gold market. Because they can invest their money in 

gold market with a law risk. 



54 
 

Among the four SDE models which we considered, Vasicek model has the minimum 

RMSE and MAPE values. Hence we can conclude that the Vasicek model is the suitable 

SDE model to forecast the daily gold prices in Sri Lanka from 11
th

 of October 2016 to 

14
th

 of October 2016.  

In this study, the MAPEs and RMSEs of four SDEs are compared with an ARIMA 

model which is used to forecast monthly gold prices in Sri Lanka. In literature a model 

to predict daily gold prices in Sri Lanka could not be found. Therefore that model is used 

to compare the forecasting accuracy. Comparatively, Vasicek model is better than the 

ARIMA (2,1,2) model to predict gold prices for a short period according to the values of 

forecasting accuracy measures. But it can be observed that simulated forecasted values 

using four SDEs are linearly increasing. The reason for that is using the Monte Carlo 

simulation to simulate the results. In Monte Carlo simulation, mean of the large number 

of sample paths is used and the mean of  random process is converged to zero when we 

used a large sample [2]. Hence the predicted daily gold prices have a linear pattern. 

Because of that, this method is suitable for short runs only.  

In case of sudden change in the data, the best model among four SDE models may be 

changed to another model. Because of that, predicting large number of data points using 

a one SDE model is not suitable. Hence this method is suitable only to forecast smaller 

number of daily gold prices. 

In this research study, several mathematical programs are developed to estimate the 

parameters of four SDE models, to forecast the daily gold price and to check the best 

model among four SDEs using the mathematical software MATLAB. These programs 

can be used for any data set not only for the daily gold prices. If we can update the data 

set, we can find the best model and forecast the gold price at any time using those 

mathematical programs.  
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According to the results obtained in this study, daily gold prices from 11/10/2016 to 

14/10/2016 can be predicted using the Vasicek model, 

 ( )   (   )  (439873.2658 2.3401 (   ))   28118.0053√      

5.3 Limitations of the Study 

In this research study, we only considered four SDE models, Brownian motion, 

Geometric Brownian motion, CIR model and Vasicek model. Parameters of these four 

models are not depend on the time. There are many SDEs which has time dependent 

parameters. If we can consider such SDEs too, we can predict the gold price more 

accurately. 

5.4 Further Research 

As a future work of this research, one can compare some statistical models and SDE 

models to find the most suitable model to forecast the daily gold prices in Sri Lanka.  

In this research, four SDE models were considered and the parameters of the models are 

not depend on time. One can extend this research using some SDE models which have 

time dependent parameters.  
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APPENDIX 01 

Parameter Estimation of Four SDE Models 

%This program compute the parameters of four SDE models 

Brownian motion, Geometric Brownian motion, CIR model and 

Vasicek model according to the Sri Lankan gold price using 

maximum likelihood method 

clc;  

format long;  

gold=xlsread('gold rate.xlsx'); %Read the excel file which 

contains gold price data 

N=length(gold)-1;  

dt=1/252;    %The length of the time step 

  

%Parameters of Brownian motion using maximum likelihood 

method 

alpha_bm=(gold(end)-gold(1))/(dt*N); 

 

SS1=0; 

for i=1:N 

    SS1=SS1+(gold(i+1)-gold(i)-alpha_bm*dt)^2; 

End 

 

sigma_bm=sqrt(SS1/(N*dt)); 

  

%Parameters of Geometric Brownian motion using maximum 

likelihood method 

SS2=0; 

 



60 
 

for j=1:N 

    SS2=SS2+(gold(j+1)-gold(j))/gold(j); 

End 

 

beta_gbm=SS2/(dt*N); 

  

SS22=0; 

for k=1:N 

    SS22=SS22+((gold(k+1)-

(1+beta_gbm*dt)*gold(k))/gold(k))^2; 

end 

  

sigma_gbm=sqrt(SS22/(N*dt)); 

  

 

%Parameters of CIR model using maximum likelihood method 

alpha_cir=(N*(gold(end)-gold(1))-(sum(gold)-

gold(end))*SS2)/(dt*(N^2-(sum(gold)-

gold(end))*(sum(1./gold)-1/gold(end)))); 

 

beta_cir=(gold(end)-gold(1)-alpha_cir*N*dt)/(dt*(sum(gold)-

gold(end))); 

 

SS3=0; 

for m=1:N 

    SS3=SS3+(gold(m+1)-alpha_cir*dt-

(1+beta_cir*dt)*gold(m))^2/gold(m); 

End 

 

sigma_cir=sqrt(SS3/(N*dt)); 
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%Parameters of Vasicek model using maximum likelihood 

method  

SS41=0; 

for b=1:N 

    SS41=SS41+(gold(b+1)-gold(b))*gold(b); 

end 

sum_1=(((sum(gold)-gold(end))*SS41)-((gold(end)-

gold(1))*(sum(gold.^2)-gold(end)^2)))/(dt*((sum(gold)-

gold(end))^2-N*(sum(gold.^2)-gold(end)^2))); 

 

alpha_vas=(((sum(gold)-gold(end))*SS41)-((gold(end)-

gold(1))*(sum(gold.^2)-gold(end)^2)))/(dt*((sum(gold)-

gold(end))^2-N*(sum(gold.^2)-gold(end)^2))); 

 

beta_vas=(gold(end)-gold(1)-sum_1*N*dt)/(dt*(sum(gold)-

gold(end))); 

 

SS4=0; 

for p=1:N 

    SS4=SS4+(gold(p+1)-alpha_vas*dt-

(1+beta_vas*dt)*gold(p))^2; 

End 

 

sigma_vas=sqrt(SS4/(N*dt)); 

  

%Create the table of parameters. 
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parameter={'alpha(BM)';'sigma(BM)';'beta(GBM)';'sigma(GBM)'

;'alpha(CIR)';'beta(CIR)';'sigma(CIR)';'alpha(Vasicek)';'be

ta(Vasicek)';'sigma(Vasicek)'}; 

 

MLE=[alpha_bm;sigma_bm;beta_gbm;sigma_gbm;alpha_cir;beta_ci

r;sigma_cir;alpha_vas;beta_vas;sigma_vas]; 

  

T1=table(parameter,MLE); 

  

fprintf('Parameters of four SDE models using maximum 

likelihood estimation method \n'); 

  

disp(T1); %Display the table of parameters 

 

Simulation and Forecasting Accuracy Measures 

%Written by WMHN Weerasinghe 

%This program simulate the SDEs using Euler  Maruyama 

method 

%and test the forecasting accuracy using two tests RMSE and 

MAPE 

  

%Simulation 

parameters;    %Run the program parameters 

 

y=xlsread('gold_forecast.xlsx'); %Read the excel file which 

contains the data use to forecast 

m=length(y); 

n=1:10:500000; 
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BM=zeros(length(n),m);  %Vector of generating values of 

Brownian motion 

 

GBM=zeros(length(n),m); %Vector of generating values of 

Geometric Brownian motion 

 

CIR=zeros(length(n),m); %Vector of generating values of CIR 

model 

 

Vasicek=zeros(length(n),m); %Vector of generating values of 

Vasicek model 

x0=y(1);    %Initial value 

  

BM(:,1)=x0; 

GBM(:,1)=x0; 

CIR(:,1)=x0; 

Vasicek(:,1)=x0; 

  

for p=1:length(n) 

 

A=randn([n(p),m-1]); %A matrix of random numbers    

 

B=zeros(1,m-1);  

 

for b=1:m-1 

 

     B(b)=mean(A(:,b));   %Calculate the mean of each 

column of A 

 

end 
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for c=2:m 

  

  BM(p,c)=BM(p,c-1)+alpha_bm*dt+sigma_bm*sqrt(dt)*B(c-1); 

 

  GBM(p,c)=GBM(p,c-1)+beta_gbm*GBM(p,c-1)*dt+  

sigma_gbm*GBM(p,c-1)*sqrt(dt)*B(c-1); 

 

  CIR(p,c)=CIR(p,c-1)+((alpha_cir)+beta_cir*CIR(p,c-1))*dt+  

sigma_cir*sqrt(CIR(p,c-1))*sqrt(dt)*B(c-1); 

   Vasicek(p,c)=Vasicek(p,c-1)+((alpha_vas)+  

beta_vas*Vasicek(p,c-

1))*dt+sigma_vas*sqrt(dt)*B(c-1); 

     

end 

end 

   

for z=2:m 

  

    figure; 

     

    plot(n,BM(:,z)','r-',n,GBM(:,z)','b-',n,CIR(:,z)', 

'k-',n,Vasicek(:,z)','g-',n,y(z)*ones(1,length(n))); 

 

    legend('BM','GBM','CIR','Vasicek','Actual'); 

 

end 

x=1:length(gold)+length(y); 

figure;  
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plot(x,[gold' y']); 

 

title('Gold price of Sri Lanka from 01st of October 2015 to 

28th of October 2016'); 

xlabel('Date'); 

ylabel('Gold Price');  

figure; 

 

subplot(2,2,1); 

plot(1:length(y),BM(length(n),:),1:length(y),y,'*'); 

title('Plot of past gold prices and forecasted gold prices 

using BM model'); 

  

subplot(2,2,2); 

plot(1:length(y),GBM(length(n),:),1:length(y),y,'*'); 

title('Plot of past gold prices and forecasted gold prices 

using GBM model'); 

  

subplot(2,2,3); 

plot(1:length(y),CIR(length(n),:),1:length(y),y,'*'); 

title('Plot of past gold prices and forecasted gold prices 

using CIR model'); 

  

subplot(2,2,4); 

plot(1:length(y),Vasicek(length(n),:),1:length(y),y,'*'); 

title('Plot of past gold prices and forecasted gold prices 

using Vasicek model');  

actual_data=y; 

model1=BM(length(n),:)'; 

model2=GBM(length(n),:)'; 
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model3=CIR(length(n),:)'; 

model4=Vasicek(length(n),:)'; 

figure; 

t=0:length(y)-1; 

plot(t,model1','k-',t,model2','g-',t,model3','b-

',t,model4', 

'c-',t,y,'r-'); 

legend('BM','GBM','CIR','Vasicek','actual'); 

  

T1=table(actual_data,model1,model2,model3,model4); 

disp(T1); 

  

  

  

A11=(y'-BM(length(n),:)); 

B11=(y'-GBM(length(n),:)); 

C11=(y'-CIR(length(n),:)); 

D11=(y'-Vasicek(length(n),:)); 

  

figure; 

subplot(2,2,1); 

plot(1:length(y),A11,'*'); 

subplot(2,2,2); 

plot(1:length(y),B11,'*'); 

subplot(2,2,3); 

plot(1:length(y),C11,'*'); 

subplot(2,2,4); 

plot(1:length(y),D11,'*'); 
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%Forecasting accuracy 

  

RMSE1=sqrt(sum(abs(A11).^2)/length(y)); 

RMSE2=sqrt(sum(abs(B11).^2)/length(y)); 

RMSE3=sqrt(sum(abs(C11).^2)/length(y)); 

RMSE4=sqrt(sum(abs(D11).^2)/length(y)); 

  

MAPE1=(sum(abs(A11)./BM(length(n),:))/length(y))*100; 

MAPE2=(sum(abs(B11)./GBM(length(n),:))/length(y))*100; 

MAPE3=(sum(abs(C11)./CIR(length(n),:))/length(y))*100; 

MAPE4=(sum(abs(D11)./Vasicek(length(n),:))/length(y))*100; 

  

model={'Brownian Motion'; 'Geometric Brownian Motion'; 

'CIR';'Vasicek'}; 

 

RMSE=[RMSE1;RMSE2;RMSE3;RMSE4]; 

 

MAPE=[MAPE1;MAPE2;MAPE3;MAPE4]; 

  

T2=table(model,RMSE,MAPE); 

 

disp(T2); 

  

Sample Paths Generation 

%This program generates sample paths for the SDE models, 

Brownian motion, geometric Brownian motion, CIR model and 

Vasicek model. 

parameters; 
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y=xlsread('gold_forecast.xlsx'); %Read the excel file which 

contains the data use to forecast 

  

m=101; 

n=5;   

BM=zeros(n,m);  %Vector of generating values of Brownian 

motion 

GBM=zeros(n,m); %Vector of generating values of Geometric 

Brownian motion 

CIR=zeros(n,m); %Vector of generating values of CIR model 

Vasicek=zeros(n,m); %Vector of generating values of Vasicek 

model 

  

  

x0=y(1);    %Initial value 

  

BM(:,1)=x0; 

GBM(:,1)=x0; 

CIR(:,1)=x0; 

Vasicek(:,1)=x0; 

 

for p=1:n 

A=randn([n,m-1]); %A matrix of random numbers    

  

for c=2:m 

     

  BM(p,c)=BM(p,c-1)+alpha_bm*dt+sigma_bm*sqrt(dt)*A(p,c-1); 

      

  GBM(p,c)=GBM(p,c-1)+beta_gbm*GBM(p,c-1)*dt+  

sigma_gbm*GBM(p,c-1)*sqrt(dt)*A(p,c-1); 
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  CIR(p,c)=CIR(p,c-1)+((alpha_cir)+beta_cir*CIR(p,c-1))*dt+  

sigma_cir*sqrt(CIR(p,c-1))*sqrt(dt)*A(p,c-1); 

     

  Vasicek(p,c)=Vasicek(p,c-1)+  

((alpha_vas)+beta_vas*Vasicek(p,c-1))*dt+  

sigma_vas*sqrt(dt)*A(p,c-1); 

     

end 

  

end 

figure 

  

for i_1=1:n 

    hold on; 

    plot(0:m-1,BM(i_1,:)); 

end 

 

figure; 

 

for i_2=1:n 

   hold on; 

    plot(0:m-1,GBM(i_2,:)); 

end 

  

figure; 

 

for i_3=1:n 

   hold on; 

    plot(0:m-1,CIR(i_3,:)); 
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end  

figure; 

  

for i_4=1:n 

    hold on; 

    plot(0:m-1,Vasicek(i_4,:)); 

end 
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APPENDIX 02 

Monte Carlo simulations of the forecasted gold prices from 12
th

 of October 2016 to 

14
th

 of October 2016.   

12/10/2016 

 

13/10/2016 
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14/10/2016 
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APPENDIX 03 

Gold Price of Sri Lanka in Rupees from 01/10/2015 to 14/10/2016 

 

Date Gold Price (Rs.) 

01.10.2015 157574.104 

02.10.2015 157134.843 

05.10.2015 160768.1198 

06.10.2015 160487.2945 

07.10.2015 161959.6559 

08.10.2015 160774.8253 

09.10.2015 160728.0625 

12.10.2015 162490.3533 

13.10.2015 162442.4899 

14.10.2015 164685.7591 

15.10.2015 166316.0396 

16.10.2015 166228.3504 

19.10.2015 165650.7861 

20.10.2015 164663.7863 

21.10.2015 166008.0883 

22.10.2015 164343.1347 

23.10.2015 164931.795 

26.10.2015 164243.6864 

28.10.2015 164680.2028 

29.10.2015 163635.9117 

30.10.2015 161538.0497 

02.11.2015 160814.9254 

03.11.2015 160128.1341 

04.11.2015 158333.5129 

05.11.2015 156819.7196 

06.11.2015 156934.9254 

09.11.2015 154711.1945 

11.11.2015 154970.0821 

12.11.2015 154546.4881 

13.11.2015 153732.0576 

16.11.2015 155136.5138 

17.11.2015 154112.8495 

18.11.2015 151885.0426 

19.11.2015 153455.7704 

20.11.2015 154174.6454 

23.11.2015 152459.4916 

24.11.2015 152738.933 

26.11.2015 153252.5517 

27.11.2015 153094.9603 

30.11.2015 150926.2789 

01.12.2015 153616.6656 

02.12.2015 153187.3727 

03.12.2015 150522.2986 

04.12.2015 152087.5964 

07.12.2015 155407.1923 

08.12.2015 153197.9607 

09.12.2015 154163.515 



74 
 

10.12.2015 153780.3309 

11.12.2015 152829.6352 

14.12.2015 154150.6484 

15.12.2015 152803.6777 

16.12.2015 152638.9139 

17.12.2015 153312.7431 

18.12.2015 151484.4273 

21.12.2015 153315.7149 

22.12.2015 154716.2058 

23.12.2015 154189.7187 

28.12.2015 154134.3139 

29.12.2015 154247.0284 

30.12.2015 153982.5198 

31.12.2015 153015.7719 

01.01.2016 152822.509 

04.01.2016 153507.5012 

05.01.2016 155184.4858 

06.01.2016 155207.84 

07.01.2016 158331.7341 

08.01.2016 158796.2628 

11.01.2016 158874.4732 

12.01.2016 157582.4629 

13.01.2016 155826.0485 

14.01.2016 157105.9157 

18.01.2016 156989.6548 

19.01.2016 156956.5374 

20.01.2016 157114.0797 

21.01.2016 158324.0206 

22.01.2016 158188.5505 

25.01.2016 158333.17 

26.01.2016 159846.0911 

27.01.2016 161285.5816 

28.01.2016 161164.864 

29.01.2016 160529.2603 

01.02.2016 161311.9 

02.02.2016 162226.4738 

03.02.2016 162419.2105 

05.02.2016 166259.5578 

08.02.2016 167758.2265 

09.02.2016 171661.2504 

10.02.2016 171579.165 

11.02.2016 173622.545 

12.02.2016 178058.1478 

15.02.2016 176002.7446 

16.02.2016 172935.1131 

17.02.2016 173040.231 

18.02.2016 173903.15 

19.02.2016 176602.11 

23.02.2016 174999.9904 

24.02.2016 176730.9793 

25.02.2016 177616.3693 

26.02.2016 178082.7255 

29.02.2016 176876.9562 

01.03.2016 179291.175 

02.03.2016 176636.1159 

03.03.2016 178804.8162 

04.03.2016 181787.1656 

08.03.2016 183199.09 

09.03.2016 180597.7545 

10.03.2016 180130.7807 

11.03.2016 184523.7413 

14.03.2016 180600.9755 
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15.03.2016 176673.225 

16.03.2016 177317.591 

17.03.2016 180702.425 

18.03.2016 181760.09 

21.03.2016 180321.09 

23.03.2016 179084.1829 

24.03.2016 175202.5113 

28.03.2016 174234.5413 

29.03.2016 175485.3305 

30.03.2016 178063.875 

31.03.2016 176679.7005 

01.04.2016 176953.1105 

04.04.2016 175334.955 

05.04.2016 176270.305 

06.04.2016 176787.6255 

07.04.2016 176392.62 

08.04.2016 178018.69 

11.04.2016 179975.73 

12.04.2016 180600.9755 

15.04.2016 176709.2 

18.04.2016 177846.01 

19.04.2016 177140.9 

20.04.2016 180378.65 

22.04.2016 179910.2555 

25.04.2016 177546.7811 

26.04.2016 178406.5005 

27.04.2016 179169.89 

28.04.2016 178709.41 

29.04.2016 183342.99 

03.05.2016 186285.745 

04.05.2016 186575.2044 

05.05.2016 186595.6066 

06.05.2016 186511.8118 

09.05.2016 187537.0032 

10.05.2016 184255.8889 

11.05.2016 184993.0894 

12.05.2016 185651.9775 

13.05.2016 184737.3963 

16.05.2016 186248.433 

17.05.2016 186488.904 

18.05.2016 186112.6838 

19.05.2016 183309.0463 

20.05.2016 183083.8625 

24.05.2016 181939.725 

25.05.2016 178937.275 

26.05.2016 179549.425 

27.05.2016 177261.15 

30.05.2016 175220.65 

31.05.2016 176874.9125 

01.06.2016 177780.4877 

02.06.2016 177328.5583 

03.06.2016 176673.9345 

06.06.2016 181326.405 

07.06.2016 181560.878 

08.06.2016 181823.125 

09.06.2016 183973.4659 

10.06.2016 184399.1276 

13.06.2016 184745.9643 

14.06.2016 185493.7931 

15.06.2016 185884.79 

16.06.2016 187842.075 

17.06.2016 185016.4683 
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20.06.2016 185573.4025 

21.06.2016 186180.0418 

22.06.2016 184273.7825 

23.06.2016 183850.1875 

24.06.2016 185933.7988 

27.06.2016 192731.4988 

28.06.2016 191889.775 

29.06.2016 191809.8875 

30.06.2016 191170.7875 

01.07.2016 192876.7488 

04.07.2016 196820.2863 

05.07.2016 195225.1486 

07.07.2016 198798.2002 

08.07.2016 196973.525 

11.07.2016 198984.5113 

12.07.2016 197169.6125 

13.07.2016 193876.63 

14.07.2016 194670.5863 

15.07.2016 193065.5738 

18.07.2016 193022.725 

20.07.2016 193507.86 

21.07.2016 190912.2425 

22.07.2016 193789.2 

25.07.2016 191945.4625 

26.07.2016 192345.5463 

27.07.2016 192163.3588 

28.07.2016 194877.7789 

29.07.2016 195048.3024 

01.08.2016 196728.9775 

02.08.2016 196529.3 

03.08.2016 198660.6372 

04.08.2016 197765.6975 

05.08.2016 198085.3093 

08.08.2016 194674.48 

09.08.2016 194271.168 

10.08.2016 196370.72 

11.08.2016 195700.96 

12.08.2016 194986.0123 

15.08.2016 194729.1975 

16.08.2016 195495.9825 

18.08.2016 197093.5725 

19.08.2016 196010.325 

22.08.2016 194094.09 

23.08.2016 194542.23 

24.08.2016 194651.355 

25.08.2016 192829.8546 

26.08.2016 193043.0764 

29.08.2016 191658.3833 

30.08.2016 192720.5204 

31.08.2016 191475.738 

01.09.2016 190839.0033 

02.09.2016 191121.7462 

05.09.2016 192579.2945 

06.09.2016 192866.5032 

07.09.2016 196240.1892 

08.09.2016 195801.9492 

09.09.2016 194602.9175 

13.09.2016 193267.6899 

14.09.2016 191694.3008 

15.09.2016 192861.6922 

19.09.2016 191707.1159 

20.09.2016 191849.9963 
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21.09.2016 191775.8014 

22.09.2016 194711.5757 

23.09.2016 194834.86 

26.09.2016 195314.8651 

27.09.2016 195402.5499 

28.09.2016 193956.3162 

29.09.2016 194065.7428 

30.09.2016 194305.1365 

03.10.2016 193448.7159 

04.10.2016 192048.5351 

05.10.2016 186601.3864 

06.10.2016 185938.9861 

07.10.2016 184526.5768 

10.10.2016 185099.7832 

11.10.2016 184942.1631 

12.10.2016 184661.3795 

13.10.2016 184916.9855 

14.10.2016 184741.44 
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