VALUE ADDITION TO LOCAL VEIN QUARTZ IN PRODUCING INDUSTRIAL GRADE SILICA

Supun Sashiendra Pathirage

(158007M)

Thesis submitted in partial fulfillment of the requirements for the degree Master of Science

Department of Earth Resources Engineering

University of Moratuwa Sri Lanka

February 2018

DECLARATION

"I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works.

Signature:

The above candidate has carried out research for the Masters thesis under my supervision.

Name of the supervisor: Prof: N. P Ratnayake

Signature of the supervisor:

Date:

Date:

The above candidate has carried out research for the Masters thesis under my supervision.

Name of the supervisor: Dr. L. P. S. Rohitha

Signature of the supervisor:

Date:

ABSTRACT

Applications of high-purity quartz as a raw material in high-tech industry are numerous. A few of them includes semiconductors, microchips, industrial integrated circuits, high temperature lamp tubing, optical fibers, chemically reinforced glass and solar silicon cells. Sri Lanka is rich in quartz mineralization with an abundance of major vein quartz deposits with purity levels over 99.5% of SiO₂. Developing high-tech products requires considerable capital investment, expertise and advance processing technologies which are lacking in developing countries like Sri Lanka. Thus leading to export raw quartz with enforced size reduction of run-of quarry quartz in grit and powder forms to industrialized countries without further value addition. Therefore, an alternative approach is evaluated and recommended to achieve a higher level of value addition by exporting semi-processed and processed industry specific quartz raw material. Chemical composition of major types of vein quartz and mining activities of 7 vein quartz deposits and mass scale quartz processing at a plant located in Badulla district of Uva Province, Sri Lanka have been subjected to study. Critical step evaluation of the process in mining, transport and processing activities was carried out with reference to critical trace elements by using isodynamic magnetic separator, inductively coupled plasma optical emission spectroscopy and atomic absorption spectrophotometer. Results show that colourless quartz contains the lowest trace elements concentration while feldspar-associated quartz has the highest. Lowest Fe, Al, Cr, Mn and Ni levels were observed in colourless and milky quartz in selected deposits. Manual chipping of Fe stains reduce Fe levels of 300 ppm while soil contamination increase Fe levels by 375 ppm. Transportation in iron lined trailer has a possibility to increase Fe levels up to 150 ppm due to contact with rust layer. In processing, Fe levels can be reduced by more than 20 ppm by removing the finer size fraction in each crushing step. Further reduction can be obtained to a level below 9 ppm by dry magnetic separation with 10,000 gauss 24 trays magnetic separators. Through selective mining and exercising quality control in mining, transportation and processing activities, industry specific quartz raw material can be produced.

Key words: Vein quartz, Chemically reinforced glass, Silica

DEDICATED TO SRI LANKANS WHO CONTRIBUTED FOR FREE EDUCATION

ACKNOWLEDGEMENT

I would firstly like to express my sincere gratitude to my supervisors Prof. N.P. Ratnayake and Dr. L.P.S.Rohitha for the guidance, dedication and helping hand throughout this study and made this research to harvest its maximum benefits.

My deepest gratitude is extended to Mrs. Y.P.S. Siriwardhana, Chief Chemist of Geological Survey and Mines Bureau for the assistance, encouragement and support extended to me at all times during my work as area specialist and guidance in chemical analysis with ICP-OES.

I am also grateful to Mr. K. Kumaranayagam, Chairman of Woolim Lanka Pvt Ltd, all the staff at Woolim Lanka for readily providing all the facilities to successfully carryout this research within fully equipped chemical laboratory for a time period of three years.

I would also like to acknowledge The Head of the Department, research coordinator, academic staff and non-academic staff members of Department of Earth Resources Engineering, for providing me the opportunity and facilities to use laboratories and resources for the research.

My special gratitude to my parents, wife, son and friends for their valuable guidance and support offered during my research period.

TABLE OF CONTENTS

D	Declaration of the candidates & supervisors	Ι
A	bstract	Π
D	Dedication	III
A	cknowledgment	IV
Т	able of content	V
L	ist of Figures	VIII
L	ist of Tables	Х
L	ist of Abbreviations	XII
L	ist of Appendices	XIII
1.	CHAPTER 01 – Introduction and Objectives	
1.	1.1. Introduction	1
	1.1.1. Background	1
	1.1.2. Research Problem	3
	1.2. Objectives	3
	1.2.1. Research Objectives	3
2.		
	2.1. Introduction	4
	2.1.1. Introduction - Silica	4
	2.1.2. SiO ₂ Modifications and Varieties	4
	2.2. Characteristics of Quartz	5
	2.3. Properties of Quartz	6
	2.3.1. SiO ₂ Content	6
	2.3.2. Point Defects	9
	2.3.3. Trace Elements	10
	2.3.4. Fluid and Mineral Inclusions	11
	2.4. Upgrading Quartz Using Processing Techniques	11
	2.4.1. Pre-processing	12
	2.4.2. Physical Processing	14
	2.4.3. Chemical Treatment	15
	2.4.4. Thermal Treatment	16

	2.5. Sri Lankan Geology	16	
	2.5.1. Silica Types in Sri Lanka	16	
	2.6. Quartz Production and Export	18	
	2.6.1. Export Quantities of Vein Quartz	19	
	2.6.2. Export Prices of Vein Quartz	20	
	2.6.3. Sri Lankan Export Taxes Applicable to Vein Quartz	21	
	2.6.4. World Market Prices of Vein Quartz	21	
	2.7. Health Hazard in Quartz Industry	22	
	2.7.1. Silicosis	22	
	2.7.2. Occurrence of Silicosis in Sri Lankan quartz industry	23	
3.	CHAPTER 03 – Materials and Methodology		
	3.1. Introduction	24	
	3.2. Study Area	24	
	3.2.1. Location	24	
	3.2.2. Climate	27	
	3.3. Methodology	27	
	3.3.1. Selection of Sample Location	27	
	3.3.2. Sampling Method	29	
	3.3.3. Analysis	30	
4. CHAPTER 04 – Result and Discussion			
	4.1. Introduction	32	
	4.2. Quartz Types	32	
	4.2.1. SiO ₂ Content	37	
	4.2.2. Trace Element Content and Variation	38	
	4.3. Gas and Fluid Inclusions	46	
	4.4. Chipping Quartz Lumps	47	
	4.5. Soil Contamination	49	
	4.6. Contamination in Transportation	51	
	4.7. Removal of Fe Using Size Reduction	51	
	4.8. Removal of Fe Using Magnetic Separators	55	
5.	CHAPTER 05 – Conclusion and Recommendation		
	5.1. Conclusions	56	

5.2. Recommendations

Reference Lis	st	58
Appendix 1	Fe concentration in selected vein quartz deposits in Badulla	63
Appendix 2	Fe concentration in feldspar-associated quartz	63
Appendix 3	Al concentration in selected vein quartz deposits in Badulla	64
Appendix 4	Cr concentration in selected vein quartz deposits in Badulla	65
Appendix 5	Mn concentration in selected vein quartz deposits in Badulla	66
Appendix 6	Ni concentration in selected vein quartz deposits in Badulla	67
Appendix 7	Fe concentration in trailer contaminated quartz and clean	67
	Quartz	
Appendix 8	Prevention techniques of iron in quartz processing plant	68

56

LIST OF FUGURES

		Page
Figure 2.3.1	Purity levels with applied industrial applications	07
Figure 2.1.2	Varieties of quartz	08
Figure 2.3.2	Schematic structure of α -quartz and most common	09
	point defects	
Figure 2.5.1	Vein quartz deposits of Sri Lanka	17
Figure 3.2.1	Location of seven quartz deposits, Badulla, Sri Lanka	25
Figure 3.2.1-1	Location of the quartz processing factory, Badulla,	26
	Sri Lanka	
Figure 3.2.2	Monthly average rainfall in Badulla area from	27
	1994 to 2014	
Figure 3.3.1	Quartz processing flow chart at model processing plant	28
Figure 3.3.1-1	Quartz mining flow chart at selected deposits	29
Figure 4.2.1	Major 6 Types of Quartz in Badulla Area	36
Figure 4.2.2.1	Fe concentration in selected vein quartz deposits	38
Figure 4.2.2.2	Al concentration in selected vein quartz deposits	41
Figure 4.2.2.3	Cr concentration in selected vein quartz deposits	42
Figure 4.2.2.4	Mn concentration in selected vein quartz deposits	44
Figure 4.2.2.5	Ni concentration in selected vein quartz deposits	45
Figure 4.4	Fe stains in milky quartz in selected vein quartz	47
	deposits of Badulla	
Figure 4.4-1	Graphical comparison of Fe concentration in Fe	48
	stained quartz chips and cleaned lumps	
Figure 4.5	Comparison of the trace element content of soil	50
	contaminated and clean quartz	
Figure 4.6	Comparison of Fe concentration in trailer	51
	contaminated quartz and clean quartz	
Figure 4.7	Comparison of Fe concentration of grit products	52
	+1 mm and -1 mm	

Figure 4.7-1	Comparison of Fe concentrations of grit products	54
	80- 300 μ and – 80 μ measured using isodynamic	
	magnetic separator	
Figure 4.8	Comparison of Fe levels before and after magnetic	55
	separation	

LIST OF TABLES

		rage
Table 2.1.2	Modifications of SiO ₂ having the same mineral	05
	phase and their crystal structure	
Table 2.6	Production quantities of vein quartz	19
Table 2.6-1	Export quantities and local usage of vein quartz	19
Table 2.6.1	Country-wise export quantities of vein quartz	20
Table 2.6.2	Export quantities and prices of vein quartz	20
Table 2.6 .4	Typical silica sand and quartz specification	21
	by market	
Table 3.2.1	Description of Sample Locations	24
Table 3.3.3.2	Operating conditions of ICP-OES	31
Table 4.2	Quartz types and cause of colours	32
Table 4.2-1	Trace element content of milky quartz from vein	33
	quartz deposits of Badulla, Sri Lanka	
Table 4.2-2	Trace element content of rose quartz from vein	33
	quartz deposits of Badulla, Sri Lanka	
Table 4.2-3	Trace element content of smokey quartz from vein	34
	quartz deposits of Badulla, Sri Lanka	
Table 4.2-4	Trace element content of colourless quartz from	34
	vein quartz deposits of Badulla, Sri Lanka	
Table 4.2-5	Trace element content of mica-associated quartz	35
	from vein quartz deposits of Badulla, Sri Lanka	
Table 4.2-6	Trace element content of feldspar-associated quartz	35
	from vein quartz deposits of Badulla, Sri Lanka	
Table 4.2-7	Permissible levels of chemical composition in	37
	quartz raw material for different types of industrial	
	applications of quartz	
Table 4.4	Fe concentration of Fe stainedquartz chips and	48
	cleaned lumps	
Table 4.5	Trace element contents of soil contaminated quartz	49

Page

selected vein quartz deposits of Badull	elected vein quartz d	eposits of	Badulla
---	-----------------------	------------	---------

Table 4.7	Fe concentrations of grit products $+1 \text{ mm and} - 1 \text{ mm}$	53
Table 4.7-1	Fe concentrations of grit products 80- 300 μ and – 80 μ	53
Table 4.8	Comparison of Fe concentration before and	55
	after magnetic separation	

LIST OF ABBREVIATIONS

AAS	-	Atomic Absorption Spectrophotometer
BOI	-	Board of Investment
ESR	-	Electron Spin Resonance
FOB	-	Free On Board
GDP	-	Gross Domestic Product
HC	-	Highland Complex
HPQ	-	High Purity Quartz
ICP-OES	-	Inductively Coupled Plasma Optical Emission Spectroscopy
ILO	-	International Labour Organization
NIST	-	National Institute of Standards and Technology
NIR	-	Near Infrared
SiO ₂	-	Silicon Dioxide
SRM	-	Standard Reference Materials
VC	-	Vijayan Complex
WC	-	Wanni Complex
XRT	-	X-ray Transmission

LIST OF APPENDICES

Appendix Description		Page
Appendix 1	Fe concentration in selected vein quartz deposits in Badulla	58
Appendix 2	Fe concentration in feldspar-associated quartz	63
Appendix 3	Al concentration in selected vein quartz deposits in Badulla	63
Appendix 4	Cr concentration in selected vein quartz deposits in Badulla	64
Appendix 5	Mn concentration in selected vein quartz deposits in Badulla	65
Appendix 6	Ni concentration in selected vein quartz deposits in Badulla	66
Appendix 7	Fe concentration in trailer contaminated quartz and clean	
	Quartz	67
Appendix 8	Prevention techniques of iron in quartz processing plant	68