STUDY ON BEHAVIOUR OF CONCRETE FINS AGAINST BLAST PRESSURE

R. M. B. Prasad

(138752X)

Master of Engineering Degree in Structural Engineering Design

University of Moratuwa Sri Lanka

April 2017

STUDY ON BEHAVIOUR OF CONCRETE FINS AGAINST BLAST PRESSURE

R. M. B. Prasad

(138752X)

Thesis submitted in partial fulfilment of the requirements for the degree Master of Engineering

Department of Civil Engineering

University of Moratuwa

Sri Lanka

April 2017

Declaration

"I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books)."

Signature:

Date:

The above candidate has carried out research for the Masters thesis under my supervision.

Signature of the supervisor: Date:

Abstract

Designing structures against blast loading is becoming more and more important as the number of terrorists attacks are increasing day by day. It is necessary to protect the structures against a credible blast load to ensure the safety of the occupants. In this context, blast resisting facades are incorporated in buildings to avoid the blast pressure waves entering into the building as the highest damage is done by the pressure waves when compared with the fragments moved by an explosion. Pressure waves could damage the axially loaded elements and it may lead to progressive collapse of the structure. This study investigated the behaviour of concrete fins and they were categorized depending on the failure mode which is based on the occupancy levels such as immediate occupancy, life safety and collapse prevention. Concrete fins were analysed using Sap2000 software by taking into account the material nonlinearity and loading nonlinearity. Weight of blasting materials, standoff distance, fin spacing, fin size and reinforcement ratios were varied to create different analysis cases. When the standoff distance was 50m, all the analysis cases were in immediate occupancy level, and it was found that standoff distance of 25m is as the manageable distance in blast. However, standoff distance of 10m resulted many analysis cases exceeded the collapse prevention limit. It was identified that standoff distance of 25m as the manageable limit with respect to the safety and the cost.

Specially dedicated to my beloved family and to whom were behind me always....

Acknowledgements

First of all, I would like to express gratitude to my supervisor, Dr. Baskaran for his useful advice and guidance during this research study. I would also like to express my sincere appreciation to staff members of the Department of Civil Engineering of University of Moratuwa for their kind assistances.

Further, I wish to acknowledge my friends and colleagues for their support and encouragement.

Last but not least, my most heartfelt appreciation goes to my family who give me invaluable support as always.

Finally, I am grateful to everyone who helped me in various ways to complete this research.

TABLE OF CONTENTS

Decla	ration	i
Abstr	act	ii
Dedic	cation	iii
Ackn	owledgements	iv
Table	of Content	V
List of Figures		viii
List o	f Tables	Х
List of Abbreviations		
1.0	Introduction	1
	1.1 Background	1
	1.2 Research Objectives	6
	1.3 Scope of Work	6
	1.4 Outline of report	6
2.0	Literature Review	7
	2.1 Introduction	7
	2.2 External Layout Planning	7
	2.3 Blast Phenomenon	8
	2.3.1 Types of explosions	8
	2.3.2 Blast Wave Characteristics	9
	2.3.3 Mach Reflections	13

	2.3.4 Blast Loading	15
	2.3.4.1 Scaled Distance	15
	2.3.4.2 Methods of Predicting Blast Loads	16
	2.4 Material Behaviour	19
	2.4.1 Enhancement of Material Properties	19
	2.4.2 Material Models	20
	2.4.3 Performance Based Design	21
	2.5 Façade Types and its development	23
	2.5.1 Blast Effects on Facades	24
	2.6 Conclusion	24
3.0	Methodology	27
	3.1 Background	27
	3.2 Research Process	27
	3.3 Modelling	28
	3.3.1 Analysis Model	28
	3.3.2 Analysis	32
	3.3.3 Load Cases	33
	3.4 Material Models	37
	3.4.1 Concrete Material Model	37
	3.4.2 Steel Material Model	38
	3.4.3 Enhancing of Material Properties	39

	3.5 Structural Elements	40
	3.6 Calculation of Loads	40
	3.7 Failure Criteria	42
	3.8 Cost Comparison	43
4.0	Analysis and Results	44
	4.1 Background	44
	4.2 Analysis Results	44
	4.3 Summary of Results	50
	4.4 Comparison of Cost for Different Options	59
	4.5 Summary	60
5.0	Discussion	61
6.0	Conclusions and Recommendation for Future Works	63
	6.1 Conclusion	63
	5.2 Recommendations for Future Works	63

References	65
Appendix A: Design Calculations	68

LIST OF FIGURES

Figure 1.1	Central Bank Building after the Bomb Blast	02
Figure 1.2	Damage to the Murrah Federal Building, Oklahoma City	03
Figure 1.3	US Embassy Attack, Nairobi, Kenya	03
Figure 1.4	Deformed Glass Panel under Blast Loading	05
Figure 2.1	External Layout Planning (Yandzio and Gough, 1999)	07
Figure 2.2	Categories of Confined Burst (Yandzio and Gough, 1999)	09
Figure 2.3	Variation of Incidental Pressure with Time (Department of Defense, USA, 2008)	10
Figure 2.4	Comparisons of Incidental Pressure and Reflected Pressure (Yandzio and Gough, 1999)	11
Figure 2.5	Variation of Reflected Pressure Coefficient with Angle of Incidence (Department of Defense, USA, 2008)	12
Figure 2.6	Wave Actions on a Building	13
Figure 2.7(a)	Formation of Mach Stem (Yandzio and Gough, 1999)	14
Figure 2.7(b)	Wave Pattern of Mach Stem (Yandzio and Gough, 1999)	14
Figure 2.8	Variation of Blast Pressure with Scaled Distance (Review of Blast Wave Parameters, 2012)	17
Figure 2.9	Positive Phase Parameters (Department of Defense, USA, 2008)	18
Figure 2.10	Negative Phase Parameters (Department of Defense, USA, 2008)	19
Figure 2.11	Stress-Strain Relationships for Confined and Unconfined	
	Concrete (Reinforced Concrete Structures, 1974)	21

viii

Page

Figure 2.12	Performance Levels (FEMA 356, 2000)	22
Figure 2.13	Occupancy Levels (Computers and Structures INC, 2009)	23
Figure 2.14	Variation of Blast Pressure on Façade (Ngo et al., 2007)	24
Figure 3.1	Research Process	26
Figure 3.2	Modelling of Concrete Fins with Façade	28
Figure 3.3	Arrangements of Fins	29
Figure 3.4	Analysis model with Frame Elements	30
Figure 3.5	Details of Analysis Section 150x500	31
Figure 3.6	Details of Analysis Section 150x500	32
Figure 3.7	Details of Analysis Section 150x500	32
Figure 3.8	Stress-Strain Curve for Concrete Confined by Rectangular	
	Hoops, (Kent and Park, 1971)	37
Figure 3.9	Steel Material Model	39
Figure 3.10	Variation of Blast Pressure (Simplified)	41
Figure 4.1	Variation of Force with Deformation of the Hinge	48
Figure 4.2	Variation of Bending Moment with Time for R50W100	49
Figure 4.3	Variation of Bending Moment with Time for R50W200	50
Figure 4.4	Graphical Representation of Analysis Results of 150x500 fin	57
Figure 4.5	Graphical Representation of Analysis Results of 150x600 fin	58

LIST OF TABLES

Table 2.1	Material Enhancement Factors (Blast Effects	
	on Buildings, 1995)	20
Table 3.1	Different Analysis Cases	33
Table 3.2	Load Cases	33
Table 3.3	Calculated loads for standoff distance 10m and weight of explosive materials 10 kg, 25 kg, 50 kg, 100 kg and 200 kg	34
Table 3.4	Calculated loads for standoff distance 25m and weight of explosive materials 25 kg, 50 kg, 100 kg and 200 kg, 300 kg and 400 kg	35
Table 3.5	Calculated loads for standoff distance 50m and weight of explosive materials 100 kg and 200 kg, 300 kg and 400 kg	36
Table 4.1	Analysis results of 150x500x8T10-R50W400-3m	45
Table 4.2	Analysis results of 150x500x8T10-R25W300-2m	46
Table 4.3	Analysis results of 150x500x8T10-R10W25-2m	47
Table 4.4	Stage of Hinge of 150x500 8T10	51
Table 4.5	Stage of Hinge of 150x500 8T12	52
Table 4.6	Stage of Hinge of 150x500 10T10	53
Table 4.7	Stage of Hinge of 150x500 12T12	53
Table 4.8	Stage of Hinge of 150x600 10T10	54

х

Page

Table 4.9	Stage of Hinge of 150x600 10T12	54
Table 4.10	Stage of Hinge of 150x600 12T10	55
Table 4.11	Stage of Hinge of 150x600 12T12	55
Table 4.12	Stage of Hinge of 150x800 16T12	56
Table 4.13	Analysis results of 150x800 fin	59
Table 4.14	Comparison of construction cost of fins	59

LIST OF ABBREVIATIONS

Abbreviation	Description
f'c	Concrete cylinder strength
fcu	Concrete cube strength
f_{dy}	Dynamic yield strength of steel
\mathbf{f}_{du}	Dynamic tensile strength of steel
f _{dcu}	Dynamic cube strength of concrete
fu	Tensile strength of steel
fy	Yield strength of steel
P(t)	Pressure at time t
P(r)	Reflected pressure
Pr-	Maximum pressure at negative phase
Pso	Peak incident pressure
R	Standoff distance
tof	Duration of positive phase
t _{rf} -	Duration of a blast
W	Weight of blast material
Z	Scaled distance