REFERENCES

- Brode H. L. (1955). Numerical solution of spherical blast waves, Journal of Applied Physics, American Institute of Physics, Vol. 26, Issue 6, pp. 766-775
- Bajić Z, Dimitrijević R and Sirovatka R.(2007) *The dependence of shockwave parameters on scaled distance for plastic explosive PPE-01.* Proc. of 2nd symposium TEH, Belgrade, Serbia
- Chandra N., Ganpule S., Kleinschmit N. N., Feng R., Holmberg A. D., Sundaramurthy A., Selvan R. and Alai (2012). Evolution of Blast Wave Profiles in Simulated Air Blasts: Experiment and Computational Modelling. Shock Waves 22:403-415
- Cranz C (1926), Textbook of ballistics: Internal Ballistics, Springer, Berlin, pp. x + 454. 37
- Dewey M. The Shape of the Blast Wave: Studies of the Friedlander Equation. Retrieved from http://www.blastanalysis.com
- Draganic H. and Sigmund V. (2012). *Blast Loading on Structures*. Technical Journal 19, 3, pp. 643-652
- Federal Emergency Management Agency (FEMA 356).(2000). *Prestandard and Commentary for the Seismic Rehabilitation of Buildings*. Prepaired by American Society of Civil Engineering for the Federal Emergency Management Agency, Washington, D.C.
- Elvira, Mendis P., Lam N. and Ngo T. (2012). Progressive Collapse Analysis of RC Frame Subjected to Blast Loading. Australian Journal of Structural Engineering, Vol 7, Issue 01, pp. 47-55
- Held M. (1983). Blast waves in free air. *Propellant. Explosieve, Pyrotechnices*, 8(1), pp.1-8.
- Henrych J. (1979). *The dynamics of explosion and its use*. Development in civil engineering, Elsevier Science Publishers, Amsterdam, The Netherlands, pp. 558
- Hopkinson, B. (1915), British Ordnance Board Minutes, 13565, 1915
- Indian Standard.(2013). IS 4991: Criteria for Blast Resistant Design of Structures for Explosions above Ground. New Delhi, Bureau of Indian Standards
- Kent D.C. and Park R. (1971). Flexural Members with Confined Concrete, Journal of the Structural Division, ASCE, Vol. 97, ST7, pp. 51-93
- Kinney G. F., Graham K.J. (1985). *Explosive Shocks in Air*, 2nd ed., Springer, Berlin, pp. 269

- Lam N., Mendis P. and Ngo T. (2004). *Response Spectrum Solution for Blast Loading*. Electronic Journal of Structural Engineering, 4(2004) pp. 28-44
- Lumantarna R., Ngo T. and Mendis P. (2012). *Limitations in Simplified Approach in Assessing Performance of Façade under Blast Pressure*. Civil Engineering Dimension, Vol. 14, No. 3, (Special Edition), pp.147-155
- Mander J. B., Priestley M. J. N. and Park R. (1988). *Theoretical Stress-Strain Model* for Confined Concrete. Journal of Structural Engineering, Vol. 114, No. 8, pp 1804-1826
- Manmohan D.G, Vasant A. M., Anil K. G. and Steffen M. (2012) An Abridged Review of Blast Wave Parameter. Defence Science Journal, Vol. 62, No. 5, pp. 300-306
- Mays G. C. and Smith P. D. (1995). *Blast Effects on Buildings*. London, Thomas Telford Publications
- Mohammed S. and Al- Ansari. (2012). Building Response to Blast and Earthquake Loading. International Journal of Civil Engineering and Technology, Volume 3, Issue 2, pp. 327-346
- Newmark N.M., Hansen R.J. (1961). *Design of blast resistant structures*, Shock and Vibration Handbook, Vol.3, New York, McGraw-Hill
- Ngo T., Mendis P., Guptha A and Ramsay J. (2007). Blast Loading and Blast Effects on Structures-An Overview. EJSE Special Issue: Loading on Structures, pp 76-91
- Ngo T. and Mendis P. (2008). Modeling *Reinforced Concrete Structure Subjected to Impulsive Loading Using Concrete Lattice Model*. Electronic Journal of Structural Engineering, (2008) 8, pp. 80-89
- Nguyen T. P. and Tran M. T. (2011). Response of Vertical Wall Structure under Blast Loading by Dynamic Analysis. The Twelfth East Asia-Pacific Conference on Structural Engineering and Construction, Procardia Engineering, 14 (2011), pp. 3308-3316
- Mills C. A. (1987). The design of concrete structures to resist explosions and weapon effects. Proceedings of the 1st Int. Conference on concrete for hazard protections, Edinburgh, UK, pp. 61-73
- Oswald, C. J., and Bazan, M. (2014) *Performance and Blast Design for Non-Load Bearing Precast Concrete Panels*. SEI Structures Congress, Boston, MA
- Remennikov A.(2003). A Review of Method for Predicting Bomb Blast Eeffects on Buildings. Journal of Battlefield Technology, 6(3) pp. 5-10
- Rueda J. E. M. and Elnashai A. S. (1997). Confined Concrete Model under Cyclic Load. Materials and Structures, Vol. 30(197), pp. 139-147

- Sadovskiy M.A. (2004). *Mechanical effects of air shockwaves from explosions according to experiments*. Symposium No 4, Nauka Press, Moscow
- Tiwari A.K., Tiwari A. K. and Dhiman A. (2016). Analysis of Concrete Wall under Blast Loading. International Conference on Advances in Emerging Technology (ICAET 2016) Vol. 07, pp. 12-23
- Unified Facilities Criteria. (2008). UFC 03-340-02 Structures to Resist the Effect of Accidental Explosions. United States of America, Department of Defense
- Yandzio E. and Gough M. (1999). *Protection of Buildings against Explosions*, Berkshire, Steel Construction Institute Publication 244

Appendix A

Design Calculations

	Ref	ere	ence	e	Calculation																					Output					
					M	odu	lus	of	Ela	sti	city	at	28	of I	Nor	ma	I W	/eig	ht (Coi	ncr	ete									
BS	5 81	10							E_{28}	8	=	K_0	+ ().2 :	$f_{cu,2}$	8													⊨		
Pa	rt 2	2																											⊢		
CI	7.2								\mathbf{K}_0		=	20	N/1	mm	2												⊢				
									ſ			•			2																
<u> </u>									I _{ct}	1,28	=	30	N/1	mm	-				-								├				
<u> </u>					<u> </u>				F		_	20		1 22	20																
					-				L ₂₈	3	_	20).ZX	.50												-				
-											=	26	N/1	mm	2												Ea	, =			
												20	1 1/1														228	26	N/1	mm	2
																											╞	20	1 1/1		
																											-				
						1																									
									L		L				L										L						
																											\vdash			L	
																													⊢		
																											⊢				
																											⊢				
																											┢				
																											├				
																											-		[
-																											┢				-
																											╞				
																													⊢		
	<u> </u>						<u> </u>															<u> </u>					_			<u> </u>	-
	<u> </u>					<u> </u>	<u> </u>		-		-				-							<u> </u>			-		┣—			<u> </u>	-
	-						-	-	-		-			-	-							-			-	-	┣—	$\left - \right $		-	
					-			-						-												-				<u> </u>	-
-	-					-	-	-	-		-			-	-							-			-	-	<u> </u>			<u> </u>	<u> </u>
																														<u> </u>	1
																											\vdash		<u> </u>	L	
					<u> </u>																						⊢			<u> </u>	
																											E				
														Feature																	
р			Designed											Date																	
	D																			Ch	iecl	<u>ke</u> d					Da	te			
K															Job Code						Pa	ige		69							

	Ref	fere	nce		Calculation																0	utp	ut					
				N	late	rial	St	renş	gth	En	har	ıce	mei	nts														
					_				_					_	1							<u> </u>			_			
					Et	1han	icer	nen	$\frac{\text{ts a}}{cc}$	re o		ula	ted	bas	ed	on t	the e	equ	atic	ons g	iven	1n 1	the		_			
-				-	DC	OK I	Bia	SLE	nec		on i	3u1	lain	igs.											_			
Bl	ast]	Effe	ects	-	+ -	~											 							-+	-			
on	Bu	ildir	ngs		-	Туре	e of	stre	ss	C	oncr	ete	_	Rei	nfor	cing	g bar	s		Stru	ctura	stee	21	- 🕂	-			
			Ū						-+	f	dcu /f	cu		f _{dy} I	fy		f _{du} /j	fu		f_{dy}/f_y	*	fdu	lf _u					
					S	endi hear	ng				$1 \cdot 25 \\ 1 \cdot 00$	5		$1 \cdot 2$ $1 \cdot 1$	20 .0		1.05 1.00		1.20 1.20 1.10			$1 \cdot (1 \cdot $	1∙05 1∙05 —					
						omp	ress	ion	aifia		1.15	; 	50.0	1.1	.0							_						
_				_	st	rengt	h ind	creas	e fac	tor o	of $1 \cdot 1$	10.	50 5	leer	or ies	s m	ау бе	enr	nance	ea by	the av	erage	6	-+	_			
-				-																					_			
				-	Conc	rete	Str	eng	th F	- Enh	anc	em	ent												_			
			+	Ť				6																	+			
				F	or B	end	ing																		_		_	
						ť _{du}	t _{cu}			=	1.2	.5													\downarrow			
						f				_	•			2											_			
⊢		$\left \right $		+	_	¹ cu					30	IN/1	mm											+	+	-		
				-		f.				=	302	x1.2	25											f	du :	=		
						-au																			uu	37.	5 N	$/\text{mm}^2$
										=	37.	.5 N	J/m	m^2														
																									_			
				S	teel	Stre	ngt	th E	nha	ince	eme	nt													_			
_						f.	f			_	1.0														_			
-				-		1dy	1y				1.2														_			
⊢				-		f _v				=	50	0 N	/mr	n^2											-			
						5					500																	
						f _{dy}				=	1.2	2x5	00															
										=	550	0 N	/mr	n^2										1	dy	=		
<u> </u>						f	/ f			_	1.0	5													_	<u>55(</u>) N/	<u>'mm²</u>
-				-		1 _{du} /	' _u			-	1.0	13													_			
				+		f				=	60	1 0 N	 [/mr	m^2								-		+	+			
				+		-u					000														+			\square
						\mathbf{f}_{du}				=	1.0)5x(600															
				\square																					J			
<u> </u>				\square						=	630	0 N	/mr	n ²											du	=		<u> </u>
<u> </u>			_	+						-												_		$\left \right $	+	<u>63(</u>) N/	<u>'mm</u>
		$\left \right $		+	_					-											_			+	+	_		
-		$\left \right $	-	+		-				-														+	+	-		
			+	+																					+			
				\Box																				\square				
						-																			\downarrow			
<u> </u>															[[Γ-			-						
																			re: De	atur sigr	e ed	+		1	ח	te		
D	D	<u> </u>																	Ch	ecke	ed	+		L	Dai	te		
R	_																		Jol	b Co	de	+			Pa	ge		70

Reference	Calculation	Output			
	Calculation of Basic Cost of Structural Elements				
	Concreting works = $R_s 19000 00 \text{ per m}^3$				
	Formwork $=$ Rs 1200.00 per m ²				
	Reinforcement work = Rs 200.00 per kg				
	Calculation of Cost of 150x500 fin having 8T10				
	Calculation of cost for a one meter length is done in this analysis				
	Volume of the concrete= $0.15x0.5$				
	$= 0.075 \text{ m}^3$				
	$Cost for concreting = 0.075 \times 19000$				
	= Rs 1425.00				
	Area of the formwork= $0.15x1x2 + 0.5x1x2$				
	$= 1.3 \text{ m}^2$				
	$Cost for formwork = 1.3 \times 1200$				
	= Rs 1560.00				
	Weight of the reinforcement $=$ $0.617x8x1$				
	= 4.936 kg				
	Cost for Reinforcements = 200x4.936				
	= Rs 985.60				
	Total Cost for 150x500-8T10 = 1425 + 1560 + 985.50				
			_		
			_		
		- -			
D	Designed	Date			
D D	Checked	Date			
К	Job Code	Page	71		

Reference	Calculation	Output			
	Calculation of Cost of 150x500 fin having 8T12	2			
		·			
	Calculation of cost for a one meter length is done	in this analysis			
	Volume of the concrete $= 0.15 \times 0.5$				
	$= 0.075 \text{ m}^3$				
	Cost for concreting $=$ 0.075×19000)			
	= Rs 1425.00				
	Area of the formwork $= 0.15 x 1 x 2 + 0$) 5 x 1 x 2			
	$= 1.3 \text{ m}^2$				
	Cost for formwork $=$ $1.3x1200$				
	= Rs 1560.00				
	Weight of the reinforcement - 0.888v8v1				
	= 7.104 kg				
	Cost for Reinforcements=Rs 1420.80				
	Total Cost for $150x500-8T10 = 1425 + 1560$	+ 1420.8			
	D. 4405 90				
	= K\$ 4405.80				
	Calculation of Cost of 150x500 fin having 10T1	10			
	Calculation of cost for a one meter length is done	in this analysis			
	Volume of the concrete $=$ $0.15x0.5$				
	$= 0.075 \text{ m}^3$				
	$Cost for concreting = 0.075 \times 10000$				
	= Rs 1425.00				
	Area of the formwork $=$ $0.15x1x2 + 0$).5x1x2			
	$= 1.3 \text{ m}^2$				
	Cost for formwork – 1.2×1200				
	$= R_{\rm S} 1560.00$				
	Fe	ature			
D _	De	signed	Date		
R D	Ch	ecked	Date 72		
	Jo	b Code	Page 72		

Reference	Calculation	Outpu	t
	Weight of the reinforcement $=$ $0.0.617 \times 10 \times 1$		
	= 6.16 kg		
	Cost for Painforcements – Ba 1222.00		
	- KS 1232.00		
	Total Cost for $150x500-8T10 = 1425 + 1560 + 1232$		
	= Rs 4217.00		
	Calculation of Cost of 150x500 fin having 10T12		
	Calculation of cost for a one meter length is done in this analysis		
	Volume of the concrete $= 0.15 \times 0.5$		
		+ $+$ $+$	+
	- 0.0/5 m ⁻	+ + +	+
	Cost for concreting $= 0.075 \times 19000$		+
			+
	= Rs 1425.00		
	Area of the formwork= $0.15x1x2 + 0.5x1x2$		
	$= 1.3 \text{ m}^2$		
	$Cost for formwork = 1.3 \times 1200$		
	- $ -$		
	Weight of the reinforcement $= 0.888 \times 10 \times 1$		
	= 8.88 kg		
	Cost for Reinforcements=Rs 1776.00		
	1 otal Cost for 150x500-8110 = 1425 + 1560 + 1420.8		
	$- D_{5} 47(1 \Omega \Omega)$	+ $+$ $+$	+
			_
	Calculation of Cost of 150x600 fin having 10T10		_
			+
	Calculation of cost for a one meter length is done in this analysis		
	Volume of the concrete $=$ $0.15x0.6$		
	$= 0.09 \text{ m}^3$	+ + +	
		+ $+$ $+$	
		+ $+$ $+$ $+$	+
	= R _s 1710 00		+
	Feature		
D	Designed	Date	
	Checked	Date	
к	Job Code	Page 7	'3

Reference	Calculation	0	utput
	Area of the formwork $= 0.15 \times 12 \times 12$		
	$= 1.5 \text{ m}^2$		
	Cost for formwork = 1.5x1200		
	$= R_{\rm S} 1800.00$	_	
	Weight of the reinforcement $=$ $0.617 \times 10 \times 1$		
	Cost for Reinforcements = Rs 1232.00		
	Total Cost for 150x500-8T10 = 1710 + 1800 + 1232		
	$= R_{s} 4742 00$		
	Calculation of Cost of 150x600 fin having 10T12		
	Cost for concepting		
	= Rs 1/10.00		
	Cost for formwork = Rs 1800.00		
	Weight of the reinforcement $= 0.888 \times 10 \times 10^{-10}$		
	= 8.88 kg		
	Cost for Reinforcements = 8.88x200		
	D 1776 00		
	= Rs 176.00		
	Total Cost for $150x500-8T10 = 1710 + 1800 + 1776$		
	= Rs 5286.00		
	Calculation of Cost of 150x600 fin having 12T10		
	Cost for concreting $=$ Rs 1710.00		
	Weight of the reinforcement = 0.617x12x1		
	= //.404 kg	_	
	Cost for Reinforcements $= 7.404 \times 200$		
	= Rs 1478.40		
	Feature		
D	Designed	Date	
	Checked	Date	
IX .	Job Code	Page	74

Reference	Calculation	0	Output			
	Total Cost for 150x500-8T10 = 1710 + 1800 + 1478.40					
	= Ks 4988.40					
	Coloulation of Cost of 150x600 fin having 12T12					
	Cost for concreting $= \text{Rs} 1710.00$					
	Cost for formwork = Rs 1800.00					
	Weight of the reinforcement $=$ $0.888x12x1$					
	= 10.656 kg					
	Cost for Reinforcements $= 10.656 \times 200$					
		_				
	= KS 2131.20	-				
	Total Cost for $150x500-8T10 = 1710 + 1800 + 213120$					
	$= R_{s} 5641.20$					
	Calculation of Cost of 150x800 fin having 16T12					
	Calculation of cost for a one meter length is done in this analysis					
	Volume of the concrete $= 0.15 \times 10^{-10}$					
	$= 0.12 \text{ m}^3$					
	Cost for concreting - 0.12x10000					
			_			
	$= R_{s} 2280 00$					
	Area of the formwork $= 0.15x1x2 + 0.8x1x2$					
	$= 1.9 \text{ m}^2$					
	Cost for formwork $=$ $1.9x1200$					
	= Rs 2280.00					
	weight of the reinforcement $= 0.888 \times 16 \times 10^{-10}$	-				
	= 14.208 kg	-				
	Cost for Reinforcements $= 14.208 \times 200$					
			-+			
	$= R_{s} 2841.6$					
			\square			
	Feature					
	Designed	Date				
D	Checked	Date				
	Job Code	Page	75			

	Ref	ere	ence	e	Calculation																Output										
						_																									
					-	10	tal	Cos	st fo	or L	50x	500)-81	110		=	223	80 -	- 22	280	+2	841	.6				-				
																=	Rs	74	01.0	60							-				
																											-				
																											-				
																											-				
	-			-			-		-																						
																											-				
	-			-			-		-												-										
																											-				
																											-				
																											-]	
																											-				
				-	-		-		-																		<u> </u>				
																			<u> </u>												
				<u> </u>			<u> </u>		<u> </u>																		<u> </u>				
									<u> </u>												<u> </u>										
	-			-	-		-		-												-	-									
																											-				
	-			-		-	-		-												-	-									
	-			-		-	-		-												-	-									
		_													Fe	atu	re					_									
D	P	<u> </u>												Designed					Da	te											
R	D	<u> </u>												Ch La	h C	ked	<u> </u>				Da Da	te									
		1																					Job Code							10	