Enhancement of Mechanical Properties in the Heat Affected Zone of AA 5083 Weld Joints

W. U. S. Mirihanage

This Thesis was submitted to the Department of Materials Engineering of the University of Moratuwa in partial fulfillment of the requirements for the Degree of Master of Philosophy.

Department of Materials Engineering University of Moratuwa, Sri Lanka. 620.1(043)

Thesis

63811

83811

DECLARATION

I certify that the Thesis with the title "Enhancement of Mechanical Properties in the Heat Affected Zone of AA 5083 Weld Joints " is entirely my own work. It has not been accepted for any degree and it is not being submitted for any other degree.

Candidate		
		UOM Verified Signature
W. U. S. Mirihanage	Signature	
	Date	15/05/2005
Supervisor		
Dr. N. Munasinghe	Signature	UOM Verified Signature
	Date	, 17/06/2005

ACKNOWLEDGMENT

Initially, I would like to thank my supervisor Dr. Nanda Munasinghe for his guidance, support and encouragement. Then, to Dr. Rohan Thitagala for his kind and supportive advices, Commander Lalith Alahakone and Lieutenant Senaka Kumarasinghe of Sri Lanka Navy for their support and co-operation had given to my studies about the weld defects in marine applications.

In addition to that, I like to express my gratitude to Dr. S. U. Adikary and all the academic and non-academic staff of the Department of Materials Engineering, University of Moratuwa for their help and contribution for my research.

Same time I appreciate and thank to Prof. Jayasinghe of Engineering Design Center, CAD/CAM/CAE and workshop staff of Department of Mechanical Engineering at University of Moratuwa, Department of Botany, University of Colombo and Colombo Dockyard Ltd. staff for their support and assistance.

I must be indebted to Asian Development Bank funded personal development project for their awarding of a full scholarship for entire studies.

At last but not least, it is indeed to thank my mother, father and my wife Nadeesha for their encouragement, support and sacrifice.

Wajira U. S. Mirihanage Department of Materials Engineering, University of Moratuawa.

15th March 2005

Acknowledgement

iii

ABSTRACT

Decline of Mechanical properties were observed at the Heat Affected Zone (HAZ) of the Gas Metallic Arc Weld (GMAW) joints of the Aluminium Alloy (AA) 5083. It was concerned as a direct effect of the weld thermal cycle on the work hardened material. Experimental efforts were aimed to set up a post welding procedure to recover this decline of properties. Presence of the Silicon in AA 5083 was significant in the experimental considerations due to its tendency of forming Mg₂Si precipitates at intensified temperatures. A series of mechanical and microstructure observations were done to evaluate the effectiveness of the post weld heat treatment, with the AA 5083. According to the experimental results heat treatment at 473K for 10 minutes produced the most effective improvement of mechanical properties at the HAZ of weld joint.

Abstract

CONTENT

De	claration	· ·	i
Ab	stract		ii
Ac	Acknowledgement		iii
Co	ntent		iv
Lis	t of Figu	ires	vi
1.	Introdu	ction	01
2.	Literatu	re Review	02
	2.1	Aluminum – Introduction to the Material	02
	2.2	Aluminum – History and Extraction Process	03
	2.3	Classification of Aluminum and Aluminum alloys	05
	2.4	Engineering Applications of Aluminum and Aluminum alloys	11
	2.5	Concerning Factors in Application of Aluminum Alloys	16
	2.6	Characteristics of AA 5083 and other 5xxx series alloys	20
	2.7	Welding of Aluminum alloys	24
	2.6	Gas Metallic Arc Welding(GMAW) Process	28
3	Problem	n Analysis	33
٦.	3 1	Defect analysis of A A 5083 GMAW joints	33
	2.1	Material Characteristics of A A 5082 welded is inte	20
	3.2	Material Characteristics of AA 5085 welded joints	38
4.	Experin	nental Results	39
	4.1	Materials Testing Equipments	39
	4.2	Chemical composition & Mechanical properties of AA 5083	43
	4.3	Variation of mechanical Properties along the AA 5083 GMAW joint	45

iv

4.4	Affects of heat on hardness of AA 5083	48
4.5	Variation in Mechanical Properties of Heat Treated AA 5083 GMAW Joints	49
4.6	5 Microstructure of AA 5083 (as received condition)	61
4.7	Microstructure variation along the AA 5083 GMAW joint	63
4.8	3 Affects of Heat on AA 5083 microstructure	65
4.9	Microstructure variations on heat treated	
	AA 5083 GMAW joints	66
4.	0 Experimental Limitations and further work	67
Discu	ssion	68
5.	Weld Thermal Cycle	68
5.2	2 Improvement Properties HAZ by Heat Treatment	69
5.2	3 Metallurgical Approach to Behavior of Precipitates	70
5.4	Practical Utilization of Experimental Results and further work	75
	University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk	
Concl	usion	76
Refere	ences	77

8. Annexes

5.

6.

7.

80

v

LIST OF FIGURES AND TABLES

Figures

Fig. No. 2.1	FCC structure of Aluminum unit cell	02
Fig. No. 2.2	Aluminum extraction process	05
Fig. No. 2.3	Gas Metallic Arc Welding Diagram	29
Fig. No. 3.1	Insufficient weld penetration	33
Fig. No. 3.2	Undercut	34
Fig. No. 3.3	Reinforcement too high	34
Fig. No. 3.4	Too much root penetration	34
Fig. No. 3.5	Edge misalignment	35
Fig. No. 3.6	Porosity at aluminum weld joint	35
Fig. No. 3.7.(a	a)Single pores	36
Fig. No. 3.7.(t	b)Pore clusters b)Pore clusters	36
Fig. No. 3.7.(d	c)Liner porosity www.lib.mrt.ac.lk	36
Fig. No. 4.1	GMAW welding plant	39
Fig. No. 4.2	Hounsfield Tensometer	39
Fig. No. 4.3	Microhardness Tester	40
Fig. No. 4.4	Vickers Hardness Tester	40
Fig. No. 4.5 (a	a)Grinding equipment	41
Fig. No. 4.5 (I	b) Polishers	41
Fig. No. 4.6	Metallurgical Microscope	42
Fig. No. 4.7	Scanning Electron Microscope	42
Fig. No. 4.8	Atomic Absorption Spectrometer	42
Fig. No. 4.9	AA 5083 Stress – Strain curve of AA 5083	45
Fig. No. 4.10	Variation of hardness along the AA 5083 GMAW joint	46
Fig. No. 4.11	Tensile samples to test weld joint properties	47
Fig. No. 4.12	Stress-Strain diagrams for Zones of AA 5083 weld joint	47

Fig. No. 4.13	Hardness variation of Treated AA 5083 samples	49	
Fig. No. 4.14	Hardness testing profile of weld joint	51	
Fig. No. 4.15	Change of micro hardness of the cross section of the weld treated for 5 minutes at Different Temperatures	51	
Fig. No. 4.16	Change of micro hardness of the cross section of the weld treated for 10 minutes at different Temperatures	52	
Fig. No. 4.17	Change of micro hardness of the cross section of the weld treated for 15 minutes at different Temperatures	52	
Fig. No. 4.18	Change of micro hardness of the cross section of the weld treated for at 473 K for different time intervals	53	
Fig. No. 4.19	Change of micro hardness of the cross section of the	53	
	weld treated for at 473 K for different time intervals		
Fig. No. 4.20	Tensile test sample preparation for Weld metal	55	
Fig. No. 4.21	Stress-Strain curve for treated samples	56	
Fig. No. 4.22	Tensile samples obtain from the HAZ of heat treated specimens	57	
Fig. No. 4.23	Change of Tensile Properties of the Heat Affected Zone treated for 5 Minutes	58	
Fig. No. 4.24	Change of Tensile Properties of the Weld Metal Zone treated for 10 Minutes	59	
Fig. No. 4.25	Change of Tensile Properties of the Heat Affected Zone treated for 15 Minutes	59	
Fig. No. 4.26	Change of tensile properties of the Heat Affected Zone soaked at 473 K	60	
Fig. No. 4.27	Change of tensile properties of the Heat Affected Zone treated at 673 K	60	Clean Change
Fig. No. 4.28	Micro Structure of AA 5083 etched after different etchants	62	
Fig. No. 4.29	Microstructure Examination Points in weld joint	63	
Fig. No. 4.30	Macro Photograph of AA 5083 Weld joint Cross Section	63	
Fig. No. 4.31	Microstructure Photographs of Various Points of AA 5083 Weld Joint	64	
Fig. No. 4.32	AA 5083 Heat Treated for Different Soaking Temperatures	65	
Fig. No. 4.33	Microstructure - HAZ of AA 5083 Heat Treated at 473K	66	
Fig. No. 4.34	Microstructure - HAZ of AA 5083 Heat Treated at 673K	66	

۵

Fig. No. 5.1	Temperature distribution during welding	68
Fig. No. 5.2	Linear Relationship of Radius of the Precipitate and Soaking time	72
Fig. No. 5.3	Movement of dislocations through precipitates	73
Fig. No. 5.4	Average micro hardness vs. treated time	74

Tables

Table 4.1.a)	Chemical composition of AA 5083 – Experimental values	43
Table 4.1.b)	Chemical composition of AA 5083 – Values by standards	43
Table 4.2	Comparison of Vickers and Microhardness Hardness values of AA 5083	44
Table 4.3	Average hardness after heat treatment of AA 5083 base metal	48
Table 4.4	Heat treatment parameters for hardness testing	50
Table 4.5	Heat treatment parameters for tensile testing	57
Table 4.6	Chemical Attacks on Intermetallic Phases in AA 5083	61