Development of Information System for enhancing upcountry vegetable cultivation in Sri Lanka

M.D.L. Senarath
Index no : 08/10039

Faculty of Information Technology
University of Moratuwa
December 2012
Development of Information System for enhancing upcountry vegetable cultivation in Sri Lanka

M.D.L. Senarath
Index no: 08/10039

Dissertation submitted to the Faculty of Information Technology, University of Moratuwa, Sri Lanka for the partial fulfillment of the requirements of the M.Sc in Information Technology

December 2012
Declaration

I declare that this dissertation does not incorporate, without acknowledgement, any material previously submitted for a Degree or a Diploma in any University to the best of my knowledge and belief, it does not contain any material previously published or written by another person or myself except where due reference is made in the text. I also hereby give consent for my dissertation, if accepted, to be made available for photocopying and for interlibrary loans, and for the title and summary to be made available to outside organization.

M.D.L. Senarath
(Index No. 08/10039)

Supervised by

Mr. S.C.Premarathne
Coordinator
M.Sc. In Information Technology
Faculty of Information Technology
University of Moratuwa

Signature

05/04/2013
Dedication

This report is sincerely dedicated to
The farmers who are engaged in the cultivation of vegetables in spite of the hard-ship
they encounter in their daily living work instinctively for the benefit of society.

The Research community in the field of Agriculture who are using their knowledge,
technology and skills for the improvement of living standards of our people

The Policy makers whose sole interest is the up-liftment and
Development of the country
I express my gratitude to Dean, faculty of Information Technology, University of Moratuwa for giving me the opportunity to follow the M.Sc. program.

I also sincerely thank to Mr. V.K. Nanayakkara, former Director of HARTI for granting me to follow this course of work.

I am very much grateful to Mr. S.C.Premarathne, Co-ordinator of M.Sc. Programme for giving me the necessary guidelines, valuable comments, suggestions and professionalisms towards improving the presentation of this project.

I wish to pay my tribute to staff of statistics and data processing unit of HARTI for their valuable support and cooperation extended to obtain survey data and related information required.

I would like to thank Mr. Channa De Alwis, Maintenance engineer, IT faculty, University of Moratuwa who encouraged and supported me in many ways.
Abstract

Sri Lanka is one of the developing countries in South-Asian region where Agriculture remains the mainstay of economy and approximately 33% of the total labor force is engaged in Agriculture. Production of rice is the most important activity and cultivation of other cereals, vegetables and fruits are also prominently in the economy of Sri Lanka. Therefore it is very important to analyze the agricultural information for the purpose of formulating policies and also enhancing the knowledge of farmers to encourage them to be in the Agriculture. In this context, production, price fluctuations, forecasting, seasonal indices and the factors which could affect for these variables are highly important. In this project, four upcountry vegetables namely potatoes, beans, carrot and cabbage were selected and, an attempt was made to develop a web-based information system, which can be used for effective decision making on expected harvest of selected crops with the utilization of lands, according to Agro-ecological measures and demographic characteristics and also on seasonal indices and time series forecasting to educate farmers, consumers and other interested parties as well. The regression models for estimated harvest were developed with the use of SPSS statistical software from the raw data collected from a sample survey conducted in Matale, Kandy, Nuwara-eliya and Badulla districts. The information system will provide users to select key variables by district, crop and the season and any of pre-defined categories of independent variables identified by each model and then visualize the expected harvest. The seasonal indices and most appropriate price forecasting trend lines were generated by considering monthly prices for a period of 2001 to 2010. These three measures would be a total solution that is available in the system for effective decision making.
Table of Contents

Declaration
Dedication
Acknowledgements
Abstract

Table of Contents

Chapter One – Introduction
1.1 Background Information
1.2 Problem in brief
1.3 Motivation
1.4 Proposed Solution
1.5 Objectives of the project
1.6 Summary

Chapter Two – Literature Review
2.1 Introduction
2.2 High temperature
2.3 Drought
2.4 Salinity
2.5 Flooding
2.6 Adaptation to climate change
2.7 Enhancing vegetable production system
2.8 Water saving irrigation management
2.9 Cultural practices
2.10 Prioritizing Vegetable research to address impact of climate change
2.11 Exploitation of Genetic Diversity
2.12 Increasing area under improved varieties
2.13 Vegetable nursery management
2.14 Protected cultivation
2.15 Vegetable seed production
2.16 Promotion of organic cultivation
2.17 Use of insect pollinators
2.18 Minimizing post harvest losses
2.19 Summary

Chapter three – Methodology
3.1 Introduction
3.2 Description of sample survey data
3.2.1 Demographic characteristics of farmer
3.2.2 Awareness regarding farming and technologies
3.2.3 Location and form of the land
3.2.4 Crop establishment
3.2.5 Coding of identified variables
3.3 Description of retail prices
3.4 Summary
Chapter four – Data analysis

4.1 Introduction 23
4.2 Sample size 24
4.3 Demographic characteristics of farmers 27
4.4 Awareness about agricultural information and technologies 29
4.5 Nature of land 30
4.6 Regression analysis 32
4.7 Seasonal Index 52
4.8 Price forecasting models 55
4.9 Summary 58

Chapter five – Requirement Analysis

5.1 Introduction 59
5.2 User requirements 59
5.3 Functional requirements 61
5.4 Non-functional requirements 61
5.5 Context Models 63
 5.5.1 Context model for decision support system 63
 5.5.2 Context diagram for calculating estimated harvest 64
 5.5.3 Context diagram for visualizing seasonal indices 65
 5.5.4 Context diagram for visualizing and actual and estimated prices 66
5.6 Summary 67

Chapter six – Technology adopted for the system 69

6.1 Introduction 69
6.2 Reasons for selecting proposed technology 69
6.3 Background of the technology used 69
6.4 PHP and Mysql’s place in development 71
6.5 Technology architecture 72
6.6 Summary 72

Chapter seven – Implementation 73

7.1 Introduction 73
7.2 Basic mechanism for implementation 73
7.3 Information stored in the system 73
 7.3.1 Background Information 74
 7.3.2 Derived information 74
7.4 Components of the web-site 75
 7.4.1 Estimated production process 76
 7.4.2 Preview of seasonal indices 76
 7.4.3 Preview of price forecasting 77
 7.4.4 Preview of dynamic information 77
7.5 Implementation of components 77
 7.5.1 Database implementation 77
 7.5.2 Login module implementation 77
Chapter eight – Evaluation

8.1 Introduction

8.2 Achievements of the objectives
 8.2.1 Data gathering
 8.2.2 Creating a database
 8.2.3 Regression models
 8.2.4 Seasonal indices
 8.2.5 Price forecasting
 8.2.6 Web based information system
 8.2.7 Assessment on results
 8.2.8 Training and developments

8.3 Summary

Chapter nine – Conclusion and Further work

9.1 Overview

9.2 Assessment of the system

9.3 Problems encountered and limitation in development of project

9.4 Further developments

9.5 Summary

References

Appendixes

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H
Appendix I
Appendix J
List of Tables

Table 1.1	Annual extent cultivated	02
Table 1.2	Annual Production	03
Table 1.3	Per-Capita consumption(Kg)	03
Table 1.4	Annual Requirement (M.tons)	04
Table 1.5	Average retail prices (Rs/Kg)	04
Table 3.1	Demographic characteristics	16
Table 3.2	Knowledge regarding the farming technologies	17
Table 3.3	Knowledge regarding the protection methods	18
Table 3.4	Awareness about fertilizer	18
Table 3.5	Awareness about other cultivation methods	19
Table 4.1	Distribution of sample by districts	24
Table 4.2	Distribution of sample by crops cultivated	24
Table 4.3	Distribution of sample by districts and crops cultivated	25
Table 4.4	Distribution of sample by crops cultivated in each season	25
Table 4.5	Different samples selected for regression models	26
Table 4.6	Description of samples taken for regression analysis	26
Table 4.7	Distribution of sample by Gender and districts	27
Table 4.8	Distribution of sample by age group and districts	27
Table 4.9	Distribution of sample by level of education and districts	28
Table 4.10	Distribution of sample by income group and districts	29
Table 4.11	Distribution of sample by knowledge on agro. Problems	29
Table 4.12	Number of plots selected in the sample	30
Table 4.13	Distribution of plots by slope and districts	31
Table 4.14	Distribution of plots by height of top soil	31
Table 4.15	Regression model for Beans in maha season in Matale district	33
Table 4.16	Regression model for Cabbage in maha season in Matale district	34
Table 4.17	Regression model for Potatoes in maha season in Nuwara-eliya district	35
Table 4.18	Regression model for Carrot in maha season in Nuwara-eliya district	36
Table 4.19	Regression model for Carrot in yala season in Nuwara-eliya district	37
Table 4.20	Regression model for Cabbage in yala season in Nuwara-eliya district	38
Table 4.21	Regression model for Cabbage in yala season in Badulla district	39
Table 4.22	Regression model for Potatoes in yala season in Badulla district	40
Table 4.23	Regression model for Beans in maha season in Badulla district	41
Table 4.24	Regression model for Beans in yala season in Badulla district	42
Table 4.25	Regression model for Beans in maha season in Kandy district	43
Table 4.26	Regression model for Cabbage in maha season in Kandy district	44
Table 4.27	Regression model for Beans in yala season in Kandy district	45
Table 4.28	Regression model for Carrot in yala season in Kandy district	46
Table 4.29	Regression model for Cabbage in yala season in Kandy district	47
Table 4.30	Regression model for Carrot in intermediate season in Kandy district	48
Table 4.31	Regression model for Cabbage in intermediate season in Kandy district	49
Table 4.32	Seasonal index	50
Table 4.33	Actual and estimated prices in 2010 based on models	51
Table 5.1	User requirements	52
List of Figures

Figure 3.01 Architecture of prediction of harvest 21
Figure 4.01 Production of beans in maha season in Matale district 34
Figure 4.02 Production of cabbage in maha season in Matale district 35
Figure 4.03 Production of cabbage in yala season in Matale district 36
Figure 4.04 Production of potatoes in maha season in Nuwara-eliya district 37
Figure 4.05 Production of carrot in maha season in Nuwara-eliya district 38
Figure 4.06 Production of carrot in yala season in Nuwara-eliya district 39
Figure 4.07 Production of cabbage in yala season in Nuwara-eliya district 40
Figure 4.08 Production of potatoes in maha season in Badulla district 41
Figure 4.09 Production of potatoes in yala season in Badulla district 42
Figure 4.10 Production of beans in maha season in Badulla district 43
Figure 4.11 Production of beans in yala season in Badulla district 44
Figure 4.12 Production of beans in maha season in Kandy district 45
Figure 4.13 Production of cabbage in maha season in Kandy district 46
Figure 4.14 Production of beans in yala season in Kandy district 47
Figure 4.15 Production of carrot in yala season in Kandy district 48
Figure 4.16 Production of cabbage in yala season in Kandy district 49
Figure 4.17 Production of carrot in intermediate season in Kandy district 50
Figure 4.18 Production of cabbage in intermediate season in Kandy district 51
Figure 4.19 Retail price seasonal index for Beans 53
Figure 4.20 Retail price seasonal index for Cabbage 53
Figure 4.21 Retail price seasonal index for Carrot 54
Figure 4.22 Retail price seasonal index for Potatoes 54
Figure 4.23 Actual and estimated prices of Beans in 2010 56
Figure 4.24 Actual and estimated prices of Cabbage in 2010 57
Figure 4.25 Actual and estimated prices of Carrot in 2010 57
Figure 4.26 Actual and estimated prices of Potatoes in 2010 58
Figure 5.1 Business activity diagram 62
Figure 5.2 Context model of decision support system 63
Figure 5.3 Process model of calculating estimated harvest 64
Figure 5.4 Process model of visualizing seasonal indices 65
Figure 5.5 Process model of displaying actual and estimated prices 66
Figure 6.1 Technology Architectural diagram 72
Figure 8.1 Seasonal index for potatoes 83
Figure 8.2 Price forecasting 84