ENGINEERING CHARACTERISTICS OF SOME UNSATURATED RESIDUAL SOILS OF SRI LANKA

This thesis was submitted to the Department of Civil Engineering of the University of Moratuwa in partial fulfillment of the requirements for the Degree of Master of Science

Bentara Galhenage Nadeeka Tharanganie

Department of Civil Engineering University of Moratuwa Sri Lanka University of Moratuwa

Thecis

83816

83816

DECLARATION

The work included in this thesis in part or whole has not been submitted for any other academic qualification at any institute.

Signature of the Candidate

University of Moratuwa, Sri Lanka. www.lib.mrt.ac.lk

Certified.

ſ

^

UOM Verified Signature

Signature of the Supervisor

ABSTRACT

Theories and formulations developed for the behaviour of unsaturated soils incorporate the behaviour of saturated soils as a special case, leading to a generalization of the theory on mechanics for soils. The net normal stress (σ -u_a) and the matric suction (u_a-u_w) are the two stress state variables that are required to describe the state of an unsaturated soil. The soil-water characteristic curve has been shown to be a key soil property function which can be used to approximately simulate the behaviour of unsaturated soils. As the soil moves from a saturated state to a dry state, the distribution of soil, water and air phases change, giving rise to changes in the stress state. The influence of these phases on the soil-water characteristic curve and hence on the engineering behaviour of unsaturated soils, is of importance in the prediction of unsaturated soil properties.

Unsaturated shear strength functions and soil-water characteristic curves of soils obtained from Pussellawa and Kahagalla landslide sites, Sri Lanka, are developed over a matric suction value range of 0 - 800 kPa, based on the results obtained from a series of laboratory tri-axial tests on saturated and unsaturated samples. During tri-axial tests on unsaturated samples, pore-air pressure and pore-water pressure are controlled to maintain suction at a constant value in the soil specimen throughout any stage of the test. Saturated high air entry disks are installed at the bottom of the soil specimen to prevent the entry of pressurized air into the water supply system maintained at a lower pressure. The soilwater characteristic curves developed are compared with such typical curves reported in the literature.

The shear strength function of the soil at Pussellawa landslide site for the matric suction range of 50 kPa - 575 kPa can be expressed as:

 $t = 20 + (s_n - u_a) \tan 33 + \circ (u_a - u_w) \tan 11.77^\circ$

The shear strength function of the soil at Kahagalla landslide site for the matric suction range of 100 kPa - 500 kPa can be expressed as:

$$t = 22.3 + (s_n - u_a) \tan 25.2 + \circ (u_a - u_w) \tan 18.99^\circ$$

In a parallel study, a 5 bar pressure plate apparatus is used to develop soil-water characteristic curves of Pussellawa and Kahagalla landslide sites for a limited range of matric suction values. In the laboratory, a matric suction is applied to the soil specimen by maintaining a zero excess pore-water pressure (i.e., atmospheric pressure) and applying a positive pore-air pressure. In this case also, a saturated ceramic plate is used to prevent the entry of high pressure air into the compartment below the disk.

The soil-water characteristic curves of soil at Pussellawa and Kahagalla landslide sites were developed by using Modified tri-axial tests and Pressure plate tests.

Slope stability of Pussellawa and Kahagalla landslides are investigated to demonstrate the effect of partial saturation on the factor of safety against failure. Stability of each slope is analysed by developing a computer spread-sheet programme to consider saturated and unsaturated cases. The Modified Janbu's simplified method is used to analyze two slopes to obtain factor of safety values. For the analysis, location of the water table is changed in such a way that full saturation and partial saturation of slopes are achieved.

University of Moratuwa, Sri Lanka.

The slope stability analysis of Pussellawa and Kahagalla landslides show that slopes are currently stable with the parameters obtained from laboratory tests. The slope stability analysis shows that lowering the water table increases the factor of safety against failure of a soil slope, due to the influence of matric suction (partial saturation).

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to Dr. U.G.A. Puswewala, for his excellent guidance and assistance extended throughout the research programme. Dr. Puswewala has been supportive as a supervisor and has given me encouragement and inspiration during the research programme notwithstanding the duties he is performing as the head of the Department of Earth Resources Engineering of University of Moratuwa. His devotion in the subject of Unsaturated Soil Mechanics is also acknowledged.

My gratitude is extended to Dr. S.A.S. Kulathilaka and Dr. H.S. Thilakasiri, for their valuable insights and suggestions received during progress reviews and in some specific areas.

My special thanks to the University of Moratuwa for the services provided during the research programme. And also many thanks to the Asian Development Bank and Science and Technology Personnel Development Project of the Ministry of Science and Technology for funding the research and the scholarship granted.

www.lib.mrt.ac.lk

The assistance received from Mr. K.R. Pitipanaarachchi, technical officer, Mr. D.G.S. Vithanage, technical officer and Mr. D. Bandulasena, lab assistant, in the Soil Mechanics Laboratory of the University of Moratuwa, during the laboratory testing programme is acknowledged. Also I would like to acknowledge the assistance extended by Mr. J.M. Gunasekara, technical officer, of Civil Engineering Workshop for fabricating experimental setups successfully.

And my sincere thanks are extended to my colleagues Mr. M.A.K.M. Madurapperuma, Mr. H.M.I. Thilakarathna, Miss. D.K.N.S. Sagarika, Mr. B.H.D.Y. Madunoraj and Mr. R. Thivakar; for the assistance given to me throughout the research programme.

B.G.N. Tharanganie 25th November 2004

CONTENTS

.

1

*

	PAGE
ABSTRACT	i-ii
ACKNOWLEDGEMENT	iii
CONTENTS	iv-v
List of Figures	vi-viii
List of Tables	ix
List of Appendices	х
1.0 INTRODUCTION	
1.1 Background to Unsaturated Soil Mechanics	1-4
1.2 Slope stability of unsaturated residual soils	5-8
1.3 Objectives of the research	8
1.4 Organization of the Research and the Thesis	9-10
2.0 LITERATURE REVIEW	
2.1 Phases of soil	11-12
2.2 Stress state variables	12-14
2.3 Shear strength of unsaturated soils	14-16
2.4 Measurement of matric suction	16-18
2.5 Soil-water characteristic curve (SWCC)	18-21
2.6 General approach of slope stability on unsaturated soils	22-30
3.0 EXPERIMENTAL RESEARCH PROGRAMME	
3.1 Collection of Soil Samples	31
3.2 Classification and Index Tests	31
3.3 Tests on Modified Tri-axial Apparatus	31-36
3.4 Tests on Pressure Plate Apparatus	36-39

4.0 INTERPRETATION OF LABORATORY TEST RESULTS

4.1 Results of Classification and Index tests	40-41
4.2 Development of shear strength functions	41-47
4.3 Development of Soil-Water Characteristic Curves using	
Modified Tri-axial Apparatus	47-50
4.4 Development of Soil-Water Characteristic Curves using	
Pressure Plate Apparatus	51-53
4.5 Comparison of Soil-Water Characteristic Curves obtained	
from two methods	54-57

5.0 SLOPE STABILITY ANALYSIS

5.1 Basis for the Analysis	58
5.2 Analysis of Pussellawa Landslide	58-62
5.3 Analysis of Kahagalla Landslide	62-66

6.0 CONCLUSIONS

6.1 Shear Strength Functions, These & Dissertations	67
6.2 Soil-Water Characteristic Curves	67
6.3 Influence of Partial Saturation on Slope Stability	68

7.0	REFERENCES	69-70
8.0	APPENDICES	71-102

v

LIST OF FIGURES

		PAGE
Figure 1.1	Categorization of soil mechanics	1
Figure 1.2	Present distribution of weathering types	2
Figure 1.3	Extremely arid, arid, and semi-arid areas of the world	3
Figure 1.4	Provision of surface drains of Pussellawa landslide site	6
Figure 1.5	Installation of perforated tubes of Pussellawa landslide site	7
Figure 1.6	Watawala landslide site from a distance	8
Figure 2.1	Four phases of unsaturated soils	11
Figure 2.2	The stress state variables for an unsaturated soil	13
Figure 2.3	Extended Mohr-Coulomb failure envelope for unsaturated soil	15
Figure 2.4	Linear shear strength envelope	15
Figure 2.5	Conventional tensiometer	17
Figure 2.6	Soil water content versus matric suction for a glacial till	19
Figure 2.7	Typical soil-water characteristic curve for a silty soil	20
Figure 2.8	Free body of a slice showing the forces acting on it	25
Figure 2.9	Chart showing the correction factor in Janbu's method of slope stability analysis	26
Figure 2.10	Forces acting on a slice through a sliding mass with a circular	
	slip surface	27
Figure 2.11	Forces acting on a slice through a sliding mass with a composite	
	slip surface	27
Figure 3.1	Layout of the modified triaxial test set-up	32
Figure 3.2	Complete tri-axial setup	34
Figure 3.3	A closer view of the specimen on the triaxial set-up	34
Figure 3.4	The 5-bar pressure plate extractor	37
Figure 3.4	Cross sectional view of a ceramic pressure plate cell	37
Figure 4.1	Particle size distribution curve of Pussellawa landslide site	41
Figure 4.2	Particle size distribution curve of Kahagalla landslide site	41
Figure 4.3	Deviator stress vs axial strain graphs of Pussellawa landslide soil	42

Figure 4.4	Deviator stress vs axial strain graphs of Kahagalla landslide soil	42
Figure 4.5	Shear strength vs normal stress graphs of Pussellawa landslide soil	43
Figure 4.6	Shear strength vs normal stress graphs of Kahagalla landslide soil	44
Figure 4.7	Apparent Cohesion vs Matric Suction graph of Pussellawa	
	landslide soil	45
Figure 4.8	Apparent Cohesion vs Matric Suction graph of Kahagalla	
	landslide soil	46
Figure 4.9	Soil-water characteristic curve of Pussellawa landslide soil drawn	
	on natural scale (tri-axial tests)	48
Figure 4.10	Soil-water characteristic curve of Pussellawa landslide soil drawn	
	on semi-logarithmic scale (tri-axial tests)	49
Figure 4.11	Soil-water characteristic curve of Kahagalla landslide soil drawn	
	on natural scale (tri-axial tests)	50
Figure 4.12	Soil-water characteristic curve of Kahagalla landslide soil drawn on	
	semi-logarithmic scale (tri-axial tests)	50
Figure 4.13	Soil-water characteristic curve of Pussellawa landslide soil drawn	
	on natural scale (pressure plate tests)	51
Figure 4.14	Soil-water characteristic curve of Pussellawa landslide soil drawn	
	on semi-logarithmic scale (pressure plate tests)	52
Figure 4.15	Soil-water characteristic curve of Kahagalla landslide soil drawn	
	on natural scale (pressure plate tests)	53
Figure 4.16	Soil-water characteristic curve of Kahagalla landslide soil drawn	
	on semi-logarithmic scale (pressure plate tests)	53
Figure 4.17	Comparison of Soil-water characteristic curves of Pussellawa soil	55
Figure 4.18	Comparison of Soil-water characteristic curves of Kahagalla soil	55
Figure 4.19	Comparison of grading curves with 3.35mm as maximum and	
	1.18mm as maximum of Pussellawa soil	56
Figure 4.20	Comparison of grading curves with 3.35mm as maximum and	
	1.18mm as maximum of Kahagalla soil	57
Figure 5.1	Cross sectional view of pussellawa landslide	59

6

Figure 5.2	Factor of Safety values with depth to the water table from failure	
	surface for Pussellawa landslide	62
Figure 5.3	Cross sectional view of Kahagalla landslide	63
Figure 5.4	Factor of Safety values with depth to the water table from failure	
	surface for Kahagalla landslide	66

Ų

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF TABLES

		PAGE
Table 3.1	Set of stresses used for soil from Pussellawa landslide site	35
Table 3.2	Set of stresses used for soil from Kahagalla landslide site	35
Table 3.3	Set of stresses used for soils at Pussellawa landslide site	39
Table 3.4	Set of stresses used for soils at Kahagalla landslide site	39
Table 4.1	Results of basic soil tests of Pussellawa landslide site	40
Table 4.2	Results of basic soil tests of Kahagalla landslide site	40
Table 4.3	Summary of tri-axial tests of Pussellawa landslide soil	44
Table 4.4	Summary of tri-axial tests of Kahagalla landslide soil	45
Table 4.5	Matric suctions and corresponding Volumetric water contents	
	of Pussellawa landslide soil (tri-axial tests)	48
Table 4.6	Matric suctions and corresponding Volumetric water contents	
	of Kahagalla landslide soil (tri-axial tests)	49
Table 4.7	Matric suctions and corresponding Volumetric water	
	contents of Pussellawa landslide soil (pressure plate tests)	51
Table 4.8	Matric suctions and corresponding Volumetric water	
	contents of Kahagalla landslide soil (pressure plate tests)	52
Table 5.1	Factor of safety values for saturated analysis of Pussellawa	
	landslide site	60
Table 5.2	Factor of Safety values for unsaturated analysis of Pussellawa	
	landslide site	61
Table 5.3	Summary of Factor of Safety values for Pussellawa landslide site	61
Table 5.4	Factor of safety values for saturated analysis of Kahagalla	
	landslide site	64
Table 5.5	Factor of Safety values for unsaturated analysis of Kahagalla	
	landslide site	64
Table 5.5	Summary of Factor of Safety values for Kahagalla landslide site	65

ix

LIST OF APPENDICES

PAGE

Appendix A	Derivation of factor of safety equation for unsaturated soil	71-74
Appendix B	Modified Triaxial test results of Pussellawa landslide	75-80
Appendix C	Modified Triaxial test results of Kahagalla landslide	81-85
Appendix D	Saturated and Unsaturated analysis of Pussellawa soil	86-93
Appendix E	Saturated and Unsaturated analysis of Kahagalla soil	94-101
Appendix F	Section of Kahagalla landslide	102

4

•

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk