LIBRARY UNVERSITY OF MORATUWA, SRI LANKA MORATUWA

LB/DON/90/2012

25

COMPARISON OF FACTOR EXTRACTION AND ROTATION METHODS IN EXPLORATORY FACTOR ANALYSIS

S.M.P.Siriwardhana

(08/10308)

Dissertation submitted in partial fulfilment of the requirements for the degree Master of Science in Operational Research

University of Moratuwa

Sri Lanka

51 12 519.80043

TH

April 2012

103419

103419

Declaration of the Candidate

"I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any University or other institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another except where the acknowledgment is made in the text"

Signature: **UOM Verified Signature**

Date: 21.04.12

"I have supervised and accepted this thesis/dissertation for the award of the degree"

Signature:

Date:

a my Parants and Husband

To my Parents and Husband

ACKNOWLEDGEMENT

Writing a thesis is a long journey which one cannot travel alone. It requires patience, encouragement, and support from many people, specially one's supervisor. I would like to take this opportunity to extend my sincere respect and gratitude to my supervisor Dr.T.S.G.Peiris (Senior Lecturer in Statistics, Department of Mathematics, University of Moratuwa) for his intellectual inspiration, patience, guidance and encouragement. Without him this thesis could not have been completed.

Also I would like to thank all of my colleagues with whom I studied at the University of Moratuwa. Their encouragement and support are very much appreciated.

Last but not least, I would like to deeply thank my parents and my husband who always stand by me.

ABSTRACT

Exploratory Factor Analysis (EFA) is a technique to explore the underlying factors of a large set of observed variables which cannot be measured directly. In general there are seven types of factor extraction methods. For a meaningful interpretation of occurred factor model, the extraction method usually followed by either Orthogonal rotation or Oblique rotation method. However it has not been recommended a particular method of EFA for a given set of data. Further most of the researchers are misusing Principal Component Analysis (PCA) with Exploratory Factor Analysis. Therefore, this study was carried out to investigate a possibility of recommending a particular method for a given set of data using a data set comprising seven variables on crimes. Data were analysed using the statistical software SPSS.

To illustrate the contrast of PCA and EFA, analysis was begun with Principle Component. For the comparison of different types of extraction methods under EFA, variables were extracted using Maximum Likelihood Factoring, Principle Axis Factoring and General Least Squares followed by all the Orthogonal rotation methods separately. The steps of the analysis in EFA were quite same with all the extraction methods, however the final result and the effect of the prior assumptions make difference. It is very important to confirm that KMO statistic to be greater than 0.6, prior to carry out EFA for the adequacy of sample size in order to derive valid statistical inferences. If the variables having multivariate normal distribution it is recommended to conduct Maximum Likelihood or General Least Squares. For the non normal distributions, Principle axis factoring is recommended. However it is recommended to compare the results from each method irrespective of the distribution of data set.

Among Orthogonal rotations Varimax rotation is recommended as it provides simple factor loadings to interpret. Quartimax generally does not provide simple factor loadings as in Varimax. It is not recommended to carry out all possible combinations of factor extraction methods and rotation methods to any set of data, as same results will not be produced by each combination. The recommendation given for the particular data set was confirmed using Jackknife validation method.

Keywords: Factor analysis, Generalized Least Squares, Maximum Likelihood Extraction, Orthogonal rotations, Principal Axis Factoring

TABLE OF CONTENTS

	Page
Declaration of the candidate	i
Declaration of the Supervisor	ii
Dedication	iii
Acknowledgement	īv
Abstract	v
Table of Content	vi
List of Figures	ix
List of Tables	x
List of Abbreviations	xii
Chapter 1: Introduction	1
1.1 Concept of Factor Analysis	1
1.2 Factor Extraction Methods	2
1.3 Rotation Methods	4
1.4 Objectives of the study	6
1.5 Secondary data	6
Chapter 2: Basic Theory in Factor Analysis	7
2.1 Overview	7
2.2 What is factor analysis	7
2.3 Definitions of Key terms and output tables in Factor Analysis	9
2.4 Principal Component Analysis (PCA)	11
2.4.1 Computation of Principal Components from manifest	
Variables	12
2.5 Exploratory Factor Analysis	14
2.5.1 1- Factor model for EFA	15

2.5.2 2- Factor model for Exploratory Factor Analysis	16
2.5.3 Steps to follow in Exploratory Factor Analysis	18
2.6 Methods of Exploratory Factor Analysis	20
2.6.1 Maximum Likelihood Factoring	21
2.6.2 Principal Axis Factoring	21
2.6.3 Unweighted Least Squares	21
2.6.4 Generalized Least Squares	21
2.6.5 Alpha Factoring	21
2.6.6 Image Factoring	22
2.7 Methods of Rotations	22
2.7.1 Varimax Criterion	23
2.7.2 Quartimax Criterion	23
2.7.3 Equamax Criterion	23
Chapter 3: Results and discussion on factor extraction and rotation methods	
3.1 Preliminary Analysis of data	24
3.1.1 Descriptive Analysis	24
3.1.2 Box plot of observed variables	25
3.1.3 Association between variables	27
3.1.4 Find out the number of components to retain	29
3.1.5 Confirmation of the number of selected components	30
3.1.6 Jackknife validation	31
3.2 Factor Extraction using Principal Component Analysis (PCA)	32
3.2.1 Preliminary analysis of PCA	32
3.2.2 Results of new components	34
3.2.3 Use of Orthogonal rotations	35
3.2.4 Summary of Principal Component Analysis	36
3.3 Factor Extraction using Maximum Likelihood Factoring (ML)	37
3.3.1 Preliminary analysis of ML	37

3.3.2 Use of Orthogonal rotations	41
3.3.3 Summary of Maximum Likelihood factoring	42
3.4 Factor Extraction using Principal Axis Factoring (PAF)	
3.4.1 Preliminary analysis of PAF	44
3.4.2 Use of Orthogonal rotations	46
3.4.3 Summary of Principal Axis Factoring	47
3.5 Factor Extraction using Generalized Least Squares (GLS)	
3.5.1 Preliminary analysis of GLS	49
3.5.2 Testing the adequacy of number of factors	50
3.5.3 Summary of Generalized Least Square	51
3.6 Summary of 2 Factor models Vs Method of Extraction	52
Chapter 4: Conclusions and Recommendations	53
Reference List	
Appendices	59
1.1 Rate of different crimes per 100,000 in various states in USA	59
1.2 Computed tables for Jackknife validation	61

LIST OF FIGURES

		0-
Figure 2.1	Structure of methods under Factor Analysis	8
Figure 2.2	The model for Principle Component	11
Figure 2.3	Geometric representation of PCA	13
Figure 2.4	The Structural model for 2-Common Factors	14
Figure 2.5	Geometric representation of 1-Factor model	15
Figure 3.1	Box plot of manifest variables	26
Figure 3.2	Scree plot	30

Page

LIST OF TABLES

		Page
Table 3.1.1	Descriptive statistics of observed variables	24
Table 3.1.2	Association between variables	27
Table 3.1.3	Kaiser-Meyer-Olkin Measure of sample adequacy	28
Table 3.1.4	Eigen value analysis	29
Table 3.2.1	Results of the Eigen values of the correlation matrix using PCA	32
Table 3.2.2	Communalities of the components after extraction	33
Table 3.2.3	Factor loadings for 2-factor model using PCA without rotation	34
Table 3.2.4	Results of Orthogonal rotations on 2 components	35
Table 3.3.1	Results of the Eigen values of the correlation matrix using ML	37
Table 3.3.2	Factor loadings and communality estimates for 2- factor model	
	fitted to data by ML	38
Table 3.3.4	Factor loadings for 2-factor model using ML with Varimax and	
	Equamax rotations	41
Table 3.3.5	Factor loadings for 2-factor model using ML with Quartimax	
	rotation	42
Table 3.4.1	Results of the Eigen values of the correlation matrix using PAF	44
Table 3.4.2	Factor loadings and communality estimates for 2- factor model	
	fitted to data by PAF	44
Table 3.4.3	Factor loadings for 2-factor model using PAF with Varimax and	
	Equamax rotations	46
Table 3.4.4	Factor loadings for 2-factor model using PAF with Quartimax	
	rotation	47
Table 3.5.1	Results of the Eigen values of the correlation matrix using GLS	49

Table 3.5.2	Factor loadings and communality estimates for 2- factor model	
	fitted to data by GLS	50
Table 3.6.1	Summary of $2 - Factors$ with the method of extraction	52

LIST OF ABBREVIATIONS

Abbreviation	Description
FA	Factor Analysis
PCA	Principle Component Analysis
EFA	Exploratory Factor Analysis
ML	Maximum Likelihood
PF	Principle Factoring (Using for Principal Axis Factoring)
GLS	Generalized Least Squares
v	Variance

xii