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ABSTRACT

Exploratory Factor Analysis (EFA) is a technique to explore the underlying factors of a large 
set of observed variables which cannot be measured directly. In general there are seven types 
of factor extraction methods. For a meaningful interpretation of occurred factor model, the 
extraction method usually followed by either Orthogonal rotation or Oblique rotation 
method. However it has not been recommended a particular method of EFA for a given set 
of data. Further most of the researchers are misusing Principal Component Analysis (PCA) 
with Exploratory Factor Analysis. Therefore, this study was carried out to investigate a 
possibility of recommending a particular method for a given set of data using a data set 
comprising seven variables on crimes. Data were analysed using the statistical software 
SPSS.

To illustrate the contrast of PCA and EFA, analysis was begun with Principle Component. 
For the comparison of different types of extraction methods under EFA, variables were 
extracted using Maximum Likelihood Factoring, Principle Axis Factoring and General Least 
Squares followed by all the Orthogonal rotation methods separately. The steps of the 
analysis in EFA were quite same with all the extraction methods, however the final result 
and the effect of the prior assumptions make difference. It is very important to confirm that 
KMO statistic to be greater than 0.6, prior to carry out EFA for the adequacy of sample size 
in order to derive valid statistical inferences. If the variables having multivariate normal 
distribution it is recommended to conduct Maximum Likelihood or General Least Squares. 
For the non normal distributions, Principle axis factoring is recommended. However it is 
recommended to compare the results from each method irrespective of the distribution of 
data set.

Among Orthogonal rotations Varimax rotation is recommended as it provides simple factor 
loadings to interpret. Quartimax generally does not provide simple factor loadings as in 
Varimax. It is not recommended to carry out ail possible combinations of factor extraction 
methods and rotation methods to any set of data, as same results will not be produced by 
each combination. The recommendation given for the particular data set was confirmed 
using Jackknife validation method.

Keywords: Factor analysis, Generalized Least Squares, Maximum Likelihood Extraction, 
Orthogonal rotations, Principal Axis Factoring
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CHAPTER 01

INTRODUCTION

1.1 Concept of Factor Analysis

The Factor Analysis was first introduced in 1904 by Charles Spearman who is 

known as the father of Factor Analysis (Fabrigar, 1999). Factor analysis basically 

allowed the investigator to find out the underlying factor structure of observed 

variables which cannot be measured directly. There are two types of factor analysis 

namely Exploratory Factor Analysis (EFA) and Confirmatory Factor Analysis (CFA) 

.In EFA there is a collection of many extraction methods. Maximum Likelihood, 

Principle Axis Factor, Weighted Least Squares , Un weighted Least Squares, 

Generalized Least Squares, Imagine Analysis, Minimum Residual Analysis and 

Alpha Factoring to name just some.

Principal Component Analysis (PCA) is sometimes misused with Factor Analysis as 

in both methods there is a variable reduction procedure. However, Principal 

Component Analysis cannot be considered as a Factor Analysis and it differs with 

the purpose of use. If the purpose is to reduce the information in many variables in 

to a set of weighted linear combinations of those variables then PCA is the 

appropriate method to use. Factor Analysis is used when the purpose is to identify 

the latent variables which are contributing to the common variance in a set of 

measured variables. Thus the aim of factor analysis is to reveal any latent variables 

that cause to the covariance in the observed variables. Therefore during factor 

extraction the common variance of a variable is partitioned from its unique variance 

and error variance and only the common variance appears in the solution. In contrast 

Principal Component Analysis does not differentiate between common and unique 

variance, as it ignores the immeasurable effects that really exists. With this issue in 

some situations such as, when the factors are uncorrelated and communalities are 

moderate, it can produce inflated values of variance accounted for by the components 

(Costello, 2005).
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Due to the discrepancies between the solutions when applying different 

combinations, the researchers have tend to apply their own preferred factor 

extraction method for the analysis with the popularity they have been given in 

researches so far. Once the well known publisher (Harmen,1976) has mentioned in 

his book; “Modem Factor Analysis”, the preferred type of factor solutions are 

determined on the basis of two general principles namely (i) statistical simplicity and 

(ii) scientific meaningfulness.

However for a given set of data, it is rather difficult to recommend a particular factor 

extraction and factor rotation method. Thus the common practice is to apply few 

combinations of factor extractions and factor rotation methods to make sure that the 

final results are invariant of the type of rotation & factor extraction method.

1.2 Factor Extraction Methods

There are many books written on this subject of factor analysis and its applications. 

Although the main purpose of factor analysis was based on the psychology at the 

very beginning, with the arrival of new extraction methods, the role became vital 

after 1950’s with meteorology and medicine, political and taxonomy, archaeology 

and economy and many more.

Popular writers such as H.Harmen , Charles W. Muller , Jae-on Kim and Thimothy 

A.Brown have mentioned in their published books about the comparisons they and 

their researches’ have made over these number of methods. Before moving on to the 

comparisons of different publishes, I first concern on the popular method of factor 

extraction which is somewhat under argument level, the Principle Component 

Analysis. Although Principal Component Analysis (PCA) is the default method of 

extractions in many popular statistical software packages, including SPSS and SAS it 

is under argument whether it is a true method for factor analysis.
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As described in the paper “Best Practices in Exploratory Factor Analysis”, PCA is 

only a data reduction method. It became common decades ago when computers were 

slow and expensive to use; it was quicker, cheaper alternative to factor analysis. It is 

computed without regarding any underlying structure caused by latent variables; 

components are calculated using all of the variance of the manifest variables, and all 

of that variance appears in the solution. However many authors analyze data without 

an a priori idea about how the variables are related. (Costello & Osborne, 2005)

In a review of article on “Use of Exploratory Factor Analysis” published by the 

Department of psychology in University of East Carollina, 

(http://core.ecu.edu/psvc/wuensclik/stathelp/efa.htm), revealed that the Maximum 

Likelihood extraction allows computation of assorted indices of goodness-of-fit and 

the testing of the significance of loadings and correlations between factors, but 

requires the assumption of multivariate normality. Principal Factors (Principal Axis 

Factoring) method has no distributional assumptions. Therefore they suggested that, 

the analyzer should first examine the distributions of the measured variables for 

normality. Unless there are severe problems like |skew| >2 or |kurtosis| >7 for 

measured variables it has been recommended the ML extraction. If there are severe 

problems as above it has been suggested to transform variables rather than using 

Principal Factor methods.

Further Brown (2006) has compared advantages and disadvantages in Maximum 

Likelihood and the other methods of Factor Analysis with his experiments on data 

analysis. A key advantage of the Maximum Likelihood estimation method is that it 

allows for a statistical evaluation of how well the factor solution is able to reproduce 

the relationships among the indicators in the input data. In other words it detects how 

closely the correlations among the indicators predicted by the factor analysis 

parameters, approximate the relationship seen in the input correlation matrix. 

However, he also emphasized that the Maximum Likelihood estimation requires the 

assumption of multivariate normal distribution of the variables. If the input data 

depart substantially from a multivariate normal distribution, important aspects of the

3
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results of ML estimators in EFA can be distorted and not trustworthy (e.g. goodness 

of model fit, significance tests of model parameters). Another potential disadvantage 

of ML estimation is, its occasional tendency to produce “improper solutions”. An 

improper solution exists when factor model does not converge on a final set of 

parameter estimates, or produces an “out of range” estimate such as an indicator with 

communality above 1.0. However, PF has the strong advantages of being free of 

distributional assumptions and of being less prone to improper solutions than ML.

Unlike ML, PF does not provide goodness-of-fit indices useful in determining the 

suitability of the factor model and the number of latent variables. Thus PF might be 

preferred in instances where marked non-normality is evident in the observed 

measures or perhaps when ML estimation produces an improper solution may be a 

sign of more serious problems, such as a poorly specified factor model or a poorly 

behaved input data matrix. (Brown, 2006)

It is far less the number of articles and books have written on the other factor 

extraction methods such as Weighted Least Squares, Un weighted Least Squares, 

Generalized Least Squares, Imagine Analysis, and Alpha Factoring which leads us to 

believe that the usage of those methods may less due to some unrevealed issues.

1.3 Rotation Methods

A rotation is a linear transformation that is performed on the factor solution or the 

extracted factors, for the purpose of making the solution easier to interpret. It further 

allows you to identify meaningful factor names or descriptions. There are two main 

rotation methods (Orthogonal and Oblique) following the extraction methods done. 

The Orthogonal is carried out when the axis are also orthogonal, and Oblique is done 

when the new axis are not required to be orthogonal to each other.
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In review article by (http://core.ecu.edu/psvc/wuenschk/stathelp/efa.htin) University 

of East Carollina , they provide a strong argument in favor of oblique rotations rather 

than orthogonal solutions. They highlighted that dimensions of interest to 

psychologists are not often dimensions we would expect to be orthogonal. If the 

latent variables are, in fact, correlated, then an oblique rotation will produce a better 

estimate of the true factors and a better simple structure than will an orthogonal 

rotation. If the oblique rotation indicates that the factors have close to zero 

correlations between one another, then the analyst can go ahead and conduct an 

orthogonal rotation (which should then give about the same solution as the oblique 

rotation). They also claimed that an oblique rotation often produced a slightly better 

simple structure than did a Varimax rotation which comes under orthogonal rotation 

methods, but the pattern of loadings was almost always the same with Varimax as 

with oblique rotation.

In Orthogonal rotations the most widely used of these is the Varimax criterion. It 

seeks the rotated loadings that maximize the variance of the squared loadings for 

each factor; the goal is to make some of these loadings as large as possible and the 

rest as small as possible in absolute value. The Varimax method encourages the 

detection of factors each of which is related of few variables. It discourages the 

detection of factors influencing all variables.

The Quartimax criterion, on the other hand, seeks to maximize the variance of 

squared loadings for each variable and tends to produce factors with high loadings 

for all variables. (Tryfos, 2001)

5
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1.4 Objectives of the Study

The various combinations in Exploratory Factor extraction methods and factor 

rotation methods have come across with different levels of applications which some 

are with the illustrations by researches and methodologists and some still with the 

argumentries which they have failed to give an exact proof. Under these 

circumstances the objectives of this study are as follows.

(i) To review some of the existing Extraction methods.

To review the use of rotation methods.(ii)

(iii) To recommend a particular method of combination for a given set of data.

1.5 Secondary Data

A secondary data set obtained from SAS manual is shown in Appendix 1.1. It is 

consisting of seven types of variables named as average number of murders 

(Murder), number of rapes (Rape), number of robberies (Robbery), number of 

burglaries (Burglary), number of larceny (Larceny), number of assault (Assault) and 

number of auto crimes (Auto) per 100,000 people in different states of America.

6



CHAPTER 2

BASIC THEORY IN FACTOR ANALYSIS

2.1 Overview

This chapter will outline separate introductions to several methods come under factor 

analysis in order to have a basic understanding on each method that will be using for 

the comparison in the Analysis. It also provides descriptions on the key terms and 

output tables which are generally included in factor analysis, dealing with the outputs 

of SPSS software package as per this dissertation.

2.2 What is Factor Analysis?

Factor analysis is a method of data reduction technique in multivariate environments 

without affecting the covariance of the initial system. Basically it consists with 

Principal Component Analysis and Common Factor Analysis.

The Common factor Analysis comprises with many methods which identify the 

internal structure of a set of variable. Some basic objectives of Factor Analysis are:

I. To determine how many common factors are needed to explain the set of 

variables.

II. To find the extent to which each variable is associated which each of set of 

common factors.

III. To provide interpretation to the common factors.

IV. To determine the amount of each factor possessed by each manifest variable.

The figure 2,1 shows the composition of factor analysis with the basic 

definition of each main type of analysis.
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Factor Analysis (FA)

A collection of methods used to examine how 

underlying constructs influence the responses on a 

number of measured variables. (DeCosta, 1998)

Confirmatory Factor Analysis 
(CFA)

Exploratory Factor Analysis
(EFA)

Tests whether the specified set of 
constructs, is influencing responces 
in a predicted way.

Attempts to discover the nature of 

the constructs influencing a set of 

responses.

Method of 
extraction

> r

■ Maximum Likelihood (ML)

■ Principle Axis Factor(PAF)

■ Generalized Least Squares(GLS)

■ Un Weighted Least Squares(ULS)

■ Alpha Factoring (AF)

■ Image Factoring (IF)

I
> Rotation of factor loadingsExtract the selected number of factors

Figure 2.1: Structure of methods under Factor Analysis

The structural details of EFA and PCA and geographical representation of both 

analysis systems will be discussed in separate section in 2.4 and 2.5 respectively.

8



2.3 Definitions of Key Terms in Factor Analysis

Manifest variables

These are the observed variables that can be measured directly. Sometimes this is 

also called as measured variable or an indicator.

Latent Variables

Variables that effect to the total variability of the system of the observed variables 

but cannot get a measurement directly. In PCA the effect of latent variables are 

ignoring.

Communality
Communality refers to the percent of variance in an observed variable that is 

accounted for by the retained components (or factors). Although communalities are 

computed in both PCA and EFA, the concept of variable communality is more 

relevant in factor analysis than in PCA, as it depicts the proportion of variance of a 

particular item that is due to common factors which related to the latent variables in 

factor analysis.

Common variance

The amount of variance in an observed variable shared with all other variables. 

Common variance is due to the latent variables or the underlying factors in the data 

set. This is also can be defined as the communality of an observed variable.

Unique variance

The amount of variance of the variable it self. It also can be defined as 1- 

communality. If we regard this uniqueness is due to another factor, then this factor is 

unique to that variable only. In PCA there is no separation of Unique and Common 

variance, it accounts all the variance in an observed variable while in EFA it consider 

only the Common variance.

9



Correlation matrix

Correlation is a measure of the relation between two or more variables. Correlation 

coefficients can range from -1.00 to + 1.00 . The value of -1.00 represents a perfect 

negative correlation while a value of +1.00 represents a perfect positive correlation. 

A value of 0.00 represents a lack of correlation. With the different methods under 

Exploratory Factor analysis, the correlation matrix is compiled with different types 

of variable correlations. It can be between observed variables and between estimated 

or predicted variables.

Total variance of a data set

Total variance is more relevant when talk about the Principal Component Analysis. 

Prior to the analysis of each data set the first step is to standardize the observed 

variables (mean = 0, variance = 1). The total variance in the data set is simply the 

sum of the variances of these observed variables. On the other hand total variance 

can be defined as the sum of the common variance and unique variance when 

applying to the factor analysis.

Factor loadings

Correlation coefficients between the variables (rows) and factors (columns). On the 

other hand it can be defined as the contribution of certain factor amount of certain 

observed variable loaded on specific factor.

Eigen values

Indicate the amount of variance explained by each principle component or each 

factor.

Scree plot
This is a method of selecting the number of factors to inclusion. It is a plot of the 

Eigen values of the correlation matrix associated with each component and look for a 

“break” between the components with relatively large Eigen values and those with 

small Eigen values. The components that appear before the break are assumed to be 

meaningful and are retained for rotation; those appealing after the break are assumed 

to be unimportant and are not retained.

10



Factor matrix (matrix with factor ladings)

This table gives how much each manifest variable loads onto each of the latent 

variable before rotation. After rotation the same matrix comes as “Factor rotated 

matrix”. From the Factor rotated matrix we can clearly interpret the newly defining 

factors for further analysis.

2.4 Principal Component Analysis (PCA)

The purpose of Principal Component Analysis is to derive a small number of 

components which are independent and that can be accounted for most of the 

variance in the large set of measured variables. Those derived components are 

defined simply as linear combination of measurements which are optimally weighted 

and there is no separation of variances, will contain both common and unique 

variances. A model of Principal Component Analysis of 5 variables reduced to 2 

components can be represented as shown in figure 2.2 (Costa, 1998).

Component 1Measure 1

Component 2Measure 2
i=> Component 1

Measure 3 Component 3

Component 2
Measure 4 Component 4

Measure 5 Component 5

Figure 2.2: The model for Principle Component

11



There is no special consideration on differentiating the unique and common variance, 

as Principal Component Analysis ignores the immeasurable effects that really exist. 

It only attempts to keep a meaningful amount of variance of the initial system with 

the retained components. If the total variance of the system is and die

variability explained by the retained components is Z? V(PC* ) , PCA attempts to 

keep the ratio of (Zf V(JPC{) / greater than 75% . This is an arbitrary

(reasonable) value. The computation of this Principal Components and the 

geometrical representation of those PCs in vector space will be discussed in next sub 

topic.

2.4.1 Computation of principal components from manifest variables

The first component extracted accounts for a maximal amount of total variance in the 

observed variables and it is known as first principal component (PCI). Under typical 

conditions, this means that the first component will be correlated with many of the 

observed variables. The second component extracted will have two important 

characteristics. First, this component will account for a maximum amount of variance 

in the data set that was not accounted for by the first component. And also in typical 

conditions, this means that the second component will be correlated with some of the 

variables that did not display a strong correlation with the 1st component. The second 

characteristic of the 2nd component is that it will be uncorrelated with the first 

component. And it is known as the second principal component (PC2). Likewise the 

components build in vector space being orthogonal to each other.

The geometric presentation of PCA with 2 new principal components is shown in

,Xn)figure 2.3. Consider there are n numbers of observed variables (Xi, X2, X3, 

being correlated to each other having normal distribution.

12



Figure 2.3: Geometric representation of PC A

In general, Principal component analysis chooses a coordinate system for the vector 

space consisting of all linear combination of vectors. The first principal component 

points in the direction of maximum variation in the data. The dimensional reduction 

is achieved by ignoring dimensions which do not explain much variation. According 

to this computation the basic model for a Principal Component comes as a linear 

combination of n number of observed variables such that;

PCi = EjLi aij Xj; i = l,2,...p

PCj = aj 1X1 + a^X2 + ...+ aijXj +. ■ • + <hn XnFor i =1

where PQ is the Principal Component , ay is the regression coefficient or the 

weight for f1 observed variable (Xj), used in creating i* Principal Component. The 

regression coefficient for the same observed variable will differ according to the 

weight it gives creating the new Principal Component. Such that in PCA the 

observed data reduced to small number of new components remaining maximum 

amount of total variability of the initial system.

13



2.5 Exploratory Factor Analysis

PCA is useful for reducing the dimensionality of multivariate system using fewer 

number of independent variables. In EFA it attempts to discover the nature of the 

constructs influencing a set of responses. That is, to explain the inter correlation 

between the variables of the multivariate system using common factors to all the 

variables in the original system. In simple, suppose two variables Xj and X2 are 

correlated. EFA assumes the existence of an unobserved variable that is linearly 

related to Xi and X2, and explains the correlation between them. The following 

figure 2.4 illustrates the structure of a common factor model. (Costa, 1998).

Measure 1 -4 Ui

Factor 1 Measure 2 <4. U2

U3Measure 3

Factor 2
Measure 4 4. U4

Measure 5 4 U5

Factors that effect to 
the unique variance of 
the measures

Underlying factors that 
effect to the common 
variance of measures

Figure 2.4: The structural model for 2-Common Factors

This model shows that each observed response ( Ith measure) is influenced partially 

by unique factors ( Uj ) and at the same time partially influenced by underlying 

common factors (Factor 1 and Factor 2) that cannot be measured directly.

14



The ultimate goal of the factor analysis is to find out this unobserved variable from 

the structure of the original variables. This estimated unobserved variable is called a 

common factor. As the FA perform by examining the pattern of correlation between 

the observed measures, one can get a priori idea such that the measures that are 

highly correlated are likely influenced by the same factors, while those that are 

relatively uncorrelated are likely influenced by different factors.

2.5.1 1 - Factor model for EFA

The geometry of the relationship between original variable comprises with the two 

common factors and unique factors is illustrated in figure 2.5.

Figure 2.5: Geometric representation of 1-Factor Model

The correlated variables XI and X2 are shown schematically in this figure. Each of 

these vectors are decomposed in to linear combination of a common factor F and its 

unique factor Ui assuming that there is only one underlying factor. This is known as 

1-Factor model and it is represented as,

Xj = bj F + Ui; i = 1,2

15



Then; Xi=biF + Ui

X2 = b2 F + U2

The unique factors Ui and U2 which contribute to the unique variance of each factor 

are uncorrelated with the common factor F and with each other. So that all three 

components F, Ui and U2 are mutually orthogonal.

The number of dimensions is increasing with the total number of common factors 

and the unique factors as all those are independent or orthogonal from each other. As 

in contrast in PCA the number of dimensions are equal to the number of Components 

built.

2.5.2 2- Factor model for EFA

As discussed in Section 2.5, we can explain the linear relationship between the 

observed variables X\s and two underlying factors Fi and F2 can be represented as;

Xi = b11 Fi + bj2 F2 + Ui

X2 = b2i Fi + b22 F2 + U2

Xi = bii Fi + bj2 F2 + UiIn general;

The terms Ui and U2 are known as the unique factors of observed variables or 

sometimes it defines as the error term when the hypothesized factors are not exactly 

define the whole variability of the observed variable. We will discuss the way of 

calculation the variability of Xi’s later on this section comparing methods of PCA 

and EFA. The parameters by are referred to as loadings. For an example b2i is called 

the loading of variable X2 on factor Fi or the correlation coefficient between the 

variable and the factor.
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When computing the variability of variable Xi we should make some assumptions. 

The unique factors or the error terms are independent from each other, therefore 

E(Ui) = 0 and V(Ui) = a2 . Since the factors cannot be measured we make an 

assumption as they have measured in standardized form. And these factors are 

independent from one another and with unique factors, therefore E(Fj) = 0 and 

V(Fi) = 1. The variance of Xi can be calculated with these two assumptions.

Xi = bii Fj + bi2 F2 + Uj

V(Xi) = b2i, V (F,) + b2i2V(F2) + V(Ui)

V(X,) = b2„+b2l2 + CTi2

Y Y

Communality Unique variance

The variance of Xi can be described by two parts, communality which is explained 

by the common factors Fi and F2 , and the specific or the unique variance that is 

unique for the specific variable or the part which is not accounted by the common 

factors. Due to this separation of variability the percentage of variance explained by 

the factors after the extraction are getting less in EFA methods in contrast with the 

Principle Component Analysis. At the same time the amount of the contribution of 

each factor (let us say Factor 1) in explaining sum of the squared observed variance 

or the extraction sums of squared loadings (Z b2u; i = 1, 2...7) also having a value 

below the initial Eigen values. This inequality is due to the extraction of factors 

considering only the common variance when conducting EFA methods.
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2.5.3 Steps to follow in Exploratory factor analysis

1) Collect Measurements

There should be a sufficient number of measurements, as factor analysis is a 

technique that requires a large sample size with variables that has measured 

in same experimental units. Many experiments have done in order to find out 

the adequacy of sample size. In general the sample size with 50 cases is very 

poor, 100 is poor, 200 is fair, 300 is good, 500 is very good, and 1000 or 

more is excellent. Over 300 cases is probably adequate, but the 

communalities after extraction should probably be above 0.5 (Field, 2005). In 

SPSS there is a statistical test called Kaiser-Meyer- Olkin (KMO) to test the 

adequacy of sample size.

2) Standardizing collected data

Depending on the matrix which going to be used for analysis, we need to do 

standardization for the data if those have measured in different scales. If the 

data have measured in same scale, then it is better to use covariance matrix. If 

the data have measured in different scales there are two ways, either we can 

use correlation matrix or first standardize the variables and take covariance 

matrix which is same as correlation matrix.

(Xjj-m)
Standardization of variables: Zy =

Where Xjj is the j'* observation of i* manifest variable, \x is the mean of Ith 

manifest variable and <7i is the standard deviation of im manifest variable. 

Then Zy represents how much amount of an observation, deviates above or 

below the mean of the respective manifest variable.
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3) Obtain the Correlation Matrix

Obtain the correlation matrix between all the variables. This matrix can be 

used to check the pattern of the relationships before moving to the real 

analysis. The correlation matrix obtained should be checked before proceed 

the other steps, with the problems of Singularity and Multicoilinearity (check 

whether Determinant > 0.00001) which depicts that there is no highly 

correlated (R> 0.8) or perfectly correlated (R = 1.00) variables. At the same 

time the correlation matrix should check with the hypothesis of not being an 

identity matrix (Ho: £ = I vs Hi: £ ^ !)• The Bartlett’s test of sphericity will 

test this hypothesis.

4) Select the number of Factors to inclusion

There are number of methods to determine the “optimal “ number of factors 

by examining the data. Kaiser criterion, Scree test, Method of proportion of 

variance accounted, and the interpretability criteria are some of the methods 

use in common. One of the most popular method The Kaiser Criterion states 

that you should use the number of factors equal to the number of eigenvalues 

of the correlation matrix that are greater than one.

5) Extract the initial set of factors.

This step is more important as one should know the exact purpose for the 

extraction; whether it is only for data reduction or for determine the 

underlying factors. In this specific topic of exploratory factor analysis which 

aims to identify the underlying factors, there are several methods that can be 

applied as mentioned in Figure 2.1.

103419
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6) Rotate the extracted factors to the final solution

By rotating the factors one can attempt to find a factor solution which has a 

simplest interpretation. And the method of rotation can be selected according 

to the analyzers’ ultimate goal of having correlated factors or uncorrelated 

factors.

3) Interpret the factor structure.

Each of the measures will be linearly related to each of the common factor 

and to the unique factor. The strength of the relationship is illustrated from 

the respective Factor loading, produced by the rotation.

2.6 Methods of Exploratory Factor Analysis

The methods are varying with the composition of correlation matrix that computes 

for the extraction of determined number of factors. The diagonal of the correlation 

matrix is replacing with estimated communalities. The way of estimating 

communalities varies with the method of extraction. Then the new eigen values are 

created for the extracted factors. And also with some of the methods there are 

specific assumptions that have to be made before the analysis begun. This section 

describes each of the extraction method available in software SPSS, giving a basic 

idea on how it differs with other extraction methods. The details for the definitions 

gathered from the stat notes of Factor Analysis sited by the North Carolina State 

University under public administration program. These extraction methods are, 

Maximum Likelihood Factoring, Principal Axis Factoring, Un weighted Least 

Square, Generalized Least Squares, Alpha Factoring, Image Factoring and Principal 

Component Analysis.

are
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2.6.1 Maximum Likelihood Factoring

Maximum Likelihood method assumes multivariate normality. Correlations are 

weighted by each variable’s uniqueness (uniqueness is 1 minus communality of 

the variable). Maximum Likelihood factoring generates a Chi-square goodness- 

of-fit test. From that the researcher can increase the number of factors one at a 

time until a satisfactory goodness-of-fit is obtained.

2.6.2 Principal Axis Factoring

A method of factor analysis in which the factors are based on a reduced 

correlation matrix using a priori communality estimates. These initial 

communalities are determined by the squared multiple correlation of the 

variable with the other variables. The communalities are inserted in the 

diagonal of the correlation matrix and the extracted factors are based only on 

the common variance, with specific and error variance excluded.

2.6.3 Unweighted Least Square

Based on minimizing the sum of squared of differences between observed and 

estimated correlation matrix, not counting the diagonal.

2.6.4 Generalized Least Square

Based on adjusting Unweighted Least Squares by weighting the correlations 

inversely according to their uniqueness, (more unique variables are weighted 

less) Uniqueness is defined as 1- h2 , where h2 is the communality of the 

observed variable. Like in Maximum Likelihood Factoring, in Generalized 

Least Squares also generates a chi- square goodness-of-fit test.

2.6.5 Alpha Factoring

Based on maximizing the reliability of factors, assuming variables are 

randomly sampled from a universe of variables. All other methods assume 

cases to be sampled and variables fixed.
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2.6.6 Image Factoring

Image factoring based in the correlation matrix of predicted variables rather 

than actual variables, where each variable is predicted from the others using the 

multiple regression.

2.7 Methods of Rotations

With the purpose of interpreting the ultimate factors in a meaningful way there are 

two major types of rotations. Those are Orthogonal Rotation methods and Oblique 

Rotation methods. Orthogonal rotations impose the restriction that the factors can 

not be correlated. And there are three main sub criterions called Varimax, Quartimax 

and Equamax. Oblique rotation allows the factors to be correlated with one another. 

Methods of Oblimin and Promax come under the Oblique rotations.

Crawford and Ferguson have introduced a general equation for the rotations, thus 

Varimax, Equamax and Quartimax rotations are special cases with different 

substitutions. ( http://www.stata.com/bookstore/stalal2/pdf/mv xlossarwpdf)

Rotationk

Quartimax

Varimax

Equamax

0

i/p
f/2p

7 <A2,(11'-/)A2> 
4—- <AZ,A2 (11' - /) > + 7 4 4cc A) =

Where A is the matrix to be rotated, T is the rotation and A = AT. Further p is the 

number of rows of A and f is the number of columns of A.
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2.7.1 Varimax criterion

This is the most widely used rotation method. It allows the analyzer to interpret 

the results much easier than the other methods. Varimax criterion creates 

rotated loadings in such a way that maximize the variance of the squared 

loadings for each factor and the goal is to make some of these loadings as large 

as possible and the other loadings as small as possible in absolute value. 

Therefore one can identify the best factors, each related to few variables 

without the factors that influence all variables.

2.7.2 Quartimax criterion

When compared to Varimax Criterion, Quartimax Criterion also tries to 

maximize the variance of squared loadings, but not for each factor but for each 

variable. So it tends to produce factors with high loadings for all variables. 

Therefore it’s difficult to interpret the results as we do in Varimax criterion.

2.7.3 Equamax criterion

This criterion is less in use. As it does not maximize or minimize the variances 

of squared loadings it is hard to interpret the results.
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CHAPTER 03

RESULTS AND DISCUSSION ON FACTOR 

AND ROTATION METHODS
EXTRACTION

Preliminary Analysis of Data3.1

3.1.1 Descriptive statistics

Some of the descriptive statistics of observed variables: the number of murders 

(Murder), the number of rapes (Rape), the number of robberies (Robbery), the 

number of assaults (Assaults), the number of burglaries (Burglary), the number of 

larcenies (Larceny) and the number of autos (Auto) are shown in table 3.1.1.

Table 3.1.1: Descriptive statistics of observed variables

KurtosisStandard
Deviation

Sample
Variance

SkewnessVariable Mean

-0.70.2914.93.97.4Murder
-0.260.596115.810.825.7Rape
4.061.677805.588.3124.1Robbery

0.61 0.10710050.7100.3211.3Assault
0.56 0.44187017.9432.51291.9Burglary

-0.310.37526943.5725.92671.3Larceny
3.991.6937401.4193.4377.5Auto

The results in Table 3.1.1 indicate that there is a low mean (7.4) and standard 

the number of murders when compared to other variables. The 

of larcenies (Larceny) is having the highest mean (2671.3) and standard
deviation (3.9) to 

number

deviation (725.9).

The values of kurtosis and skewness, ate useful to get an idea about the normality of

each variable. For univariate
„ minw where «Fis the mean, s is the standard deviation skewness can be written as follows, wnere ✓

and n is the number of data points.

data Yi, Y2...,Yn the formulas for kurtosis and
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Sg.iCYj-J)3Skewness
(N-i)s3

(tf-l)s4 ’3Kurtosis

Skewness tells about the symmetry of the distribution. In a normal distribution the 

skewness is zero which indicates that the variable has a perfectly symmetric 

distribution. Kurtosis tells about the peakedness of the distribution. Kurtosis in a 

normal distribution is three and it looks like a bell- shaped which not too peaked or 

flat. Therefore for a perfect normal distribution the kurtosis and skewness should be 

three and zero respectively.

When considering the skewness of these seven variables it can be assumed that all 

variables except for Robbery and Auto are having skewness close to zero indicating 

that it can be assumed all variables are normally distributed except Robbery and 

Auto. At the same time the values of kurtosis in Robbery (4.06) and Auto (3.99) are 

deviate from three while the other variables are having Kurtosis close to three. 

Therefore we can consider that the number of murders, number of rapes, number of 

assault, number of burglary and number of larceny are having fairly normal 

distributions while number of robberies and number of autos are having non-normal 

distributions.

3.1.2 Box plot of observed variables

the variability and skewness of each variable in a pictorial form, box 

plot was drawn as shown in figure 3.1 for each variable.
In order to see
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Figure 3.1. Box plot of manifest variables
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When consider the inter quartile range of each variable, the dispersion of the number 

of burglaries and number of larcenies are higher than that of the other variables 

indicating that those two variables have higher variability. On the other hand the 

number of murders, number of rapes and number of robberies are having a small

variation when compared to other four variables.
In this method the observations above the upper limit [Q3 + 1.5(Q3-Qi)] and below 

the lower limit [Qi - 1.5(Q3-Qi)] are taken as outliers. (Q3 = 3rd quartile and Q1 = 1st 

quartile). The whiskers of number of robberies, number of burglaries and number of 

auto crimes indicate of having skewed distributions confirming the results obtained 

in descriptive analysis. According to the above subjective criteria it can be seen that 
there are few outliers in Robbery, Burglary, Larceny and Auto (Fig: 3.1).
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3.1.3 Association between variables

In order to find out the strength of linear association among variables, correlation 

matrix was computed in table 3.1,2.

Table 3.1.2 : Association between variables

Murder Rape Robbery Assault Burglary Larceny

0.601
Rape (0.000)

0.484
(0.000)

0.592
(0.000)Robbery

0.649
(0.000)

0.740
(0.000)

0.557
(0.000)Assault

0.386
(0.003)

0.6370.712
(0.000)

0.623
Burglary (0.000) (0.000)

0.404 0.792
(0.002) (0.000)

0.447
(0.001)

0.614
(0.000)

0.102
(0.241)Larceny

0.276
(0.026)

0.558
(0.000)

0.444
(0.001)

0.5910.3490.069
(0.317)Auto (0.000)(0.007)

Parenthesis indicates the probability value for the significance of correlation at 5% .

According to the correlation matrix it reveals that there are significant correlations (p 

< 0 05) between any two observed variables except between number of Larcenies & 

number of murders and between number of autos & number of murders. The highly 

dependence structure among variables justifies the use of Factor analysis. This was 

further confirmed using KMO statistics shown in Table 3.1.3.
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Table 3.1.3 . Kaiser - Meyer - Olkin Measure of Sampling Adequacy

Kaiser-Meyer-OIkin Measure of Sampling Adequacy. .784

Bartlett's Test of Sphericity Approx. Chi-Square ( X22i) 219.506

(p = 0.000)

KMO measure of 0.784 (> 0.6) indicates high sampling adequacy for the factor 

analysis. On the other hand it indicates that the partial correlations are adequate to 

carry out the factor analysis. Barlett’s test of sphericity is to test whether the 

correlation matrix is an identity matrix.

H0: Correlation matrix = l6X6 Vs Hi : Correlation matrix is not an identity matrix

In other words, Bartlett’s test addresses the question of whether the correlation 

matrix should be factored.

Test statistic,

(2p - 5)
loglfllBS = - (n - 1) -

Where R = n?=i h and - i* eigen value, n = number of observations and p = 

number of variables, under the hypothesis of,

H0: BS ~ Xp2-p

According to the above result shown in table 3.1.4, the Bartlett’s test statistics is 

highly significant (X22, test statistics = 219.51, p = 0.000) confirming that the null 

hypothesis can be rejected. Thus it can be further justified the association between

the variables are significant, 

dimension reduction.

therefore it revealed in pursuing some form of
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As Bartlett’s test confirmed that factor analysis can be carried out the data were 

standardized prior to the analysis. As the number of each variable is highly vary with 

respect to sizes, data were standardized to bring t a common scale.

Find out the number of components to retain

Table 3.1.4 : Eigen value analysis

3.1.4

% of variance 
explained by each 

variable

Cumulative % of 
the variability 

explained

Eigen
values

Component

PCI 4.115 58.79 58.79
PC2 1.239 17.70 76.48
PC3 0.726 10.37 86.85

PC4 0.316 4.52 91.37

PC5 0.258 3.69 95.06

98.23PC6 3.170.222
100.000.124 1.77PC7

From the table 3.1.4, it is clear that the first two principal components explain

relatively large variance whereas the other subsequent components explain only 

small amount of variance. According to the Kaiser criterion (Eigen value >1) only 

PCI (4.445 >1) and PC2 (1.239 >1) can be selected as new variables. The 1st 

component explains 58.78% of the variability of the initial system while the 2nd 

component explains about 17.7% of the variability of the initial system. Therefore 

76% of the variability of the initial system is explained by the first two components

good representation of the original set of data. Thus it can be concluded
so that two

which is a
that the initial 7-D space multivariate data can be reduced to 2-D space,

linear combination of the originalvariables (components) areresulting new 

variables.

29



3.1.5 Confirmation of the number of selected components

In the above section, it was confirmed that two components are sufficient according 

to Keiser rule, as Kaiser (1959) recommended to retain only principal components 

with eigen values exceeding unity, for standardized data. The graphical approach 

proposed by Caltell (1966), to plot the variance accounted for each component (eigen 

value, in the case of correlation matrix) in order from largest to smallest. This is 

known as Scree plot (Figure 3.2)

Figure 3.2: Scree plot

Scree Plot

5“

4"

jj 3-
ro>ca>
2>in 2-

1-

0-

7654321
Component Number

Figure 3.1.2 shows an “elbow” shape at the second eigen value, after that remaining 

e- values decline in approximately linear function. Therefore scree plot also shows 

that the first two components account for most of the total variability of the data. The
remaining components account for a very small proportion of the variability (close to 

zero) and are probably unimportant. As the two criteria’s giving the same result of
factor model is continuing with further extractingselecting two components, two 

methods.
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3.1.6 Jackknife validation

In order to assess 

Jackknife validation
the validity of the above solution (selection of two components) 

was carried out. (See appendix 1.2). This method suggests 

carrying out PCA by holding one observation at a time and so PCA was carried out

for several times. Following table 3.1.5 summarize the results of selected PCs by the 

kaiser criterion in each turn.

Table 3.1.5 : Summary of jackknife validation process

Extraction Sums of Squared Loadings
Turn Component % of 

Variance
Cumulative

Total %

1 PCI 4.165 59.501 59.501
PC2 1.185 16.933 76.435

59.165 59.165PCI 4.1422
77.5101.284 18.345PC2
58.87658.8764.121PCI3
76.93818.0621.264PC2

57.692 55.6924.038PCI
4 16.853 74.5451.180PC2

58.76758.7674.114PCI
5 76.55417.7871.245PC2

It was found in all turns, eigen values greater than one (Kaiser criterion) were only in 

the first two components. Thus we can easily recommend that 7-D original data 

series can be reduced to 2-D model.
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Factor Extraction using Principal Component Analysis (PCA)3.2

3.2.1 Preliminary analysis of PCA

Results of preliminary analysis of principal components is shown in table 3.2.1

Table 3.2.1. Results of the Eigen values of the correlation matrix using PCA

Initial Eigenvalues Extraction Sums of Squared
Component

% of 
Variance

Cumulative % of 
Variance

CumulativeTotal Total
% %

PCI 4.115 58.785 58.785 4.115 58.785 58.785

PC2 1.239 17.696 76.481 1.239 17.696 76.481
PC3 0.726 10.369 86.850
PC4 0.316 4.520 91.370

PC5 0.258 3.685 95.056
98.228PC6 0.222 3.172
100.0001.7720.124PC7

The left panel of the table already explained with table 3.1.4. The number of rows in 

the right panel corresponds to the number of components (two) retained. It is 

important to consider the right panel consisting with the variability after the 

extraction of components. One of the major different achievements in Principal 

Component Analysis and Exploratory Factor Analysis illustrates the above table. The 

total variability of the extracted first two components remains in constant (eigen 

value for PCI = 4.115 and eigen value for PC2 = 1.239. calculation in table 3.2.3)
extracted from the whole variability of thephasizing that the components have 

observed variables.

em

In contrast when conducting EFA, the values of extraction sums of squared or the 

variance of factors after extraction will be less than that of in PCA.percentage
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Communality refers to the 

explained by the retained factors.
proportion of each variable’s variance that can be

An observed variable will display a large 
communality if it loads heavily on at least one of the retained components. Although 

communalities are computed in both PCA and EFA methods, the concept of 

variables communality is more relevant in EFA than in PCA. In Principle component 
analysis we compute new few components comprising with linear combination of 

observed variables, rather than building an underlying factor combination for an 

observed variable as in EFA.

In Principal Component Analysis as it is assumed that all variances are common or it 

takes in to account all the variability in observed variables, the initial communalities 

are all equal to 1. So the diagonal of the correlation matrix contains with ones (Is’) 

when extracting components with PCA. The initial communalities and final 

communalities of PCA are shown in table 3.2.2.

Table 3.2.2 : Communalities of the components after extraction

Final
Communality

Initial
Communality

Variable

.8611.000Murder

.8031.000

.6501.000Robbery

.7941.000Assault

.8481.000Burglary

.7261.000Larceny

.6711.000Auto

With the retained new components number of murders and number of burglaries, 

well represented in the factor space having 86.1% and 84.4% respectively. In the

variables number of Robberies (65%) and number of Autos (67.1%)

associated variances. All the other variables are having a good

are

are common

with less percentage
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representation of the variability ( > 70%). The values of the commonalities for two 

components model can be calculated as shown in below.

Community for 1th variable = (squared loading for PC„ + squared loading for PCi2)

= Z PCij2 , j = 1,2

For example communality for the variable number of murders (Murder) is equal to

the sum of the squared loadings of PCi and PC2 obtained in Table 3.2.1, ((0. 609)2 + 

(-0.700)2) = 0.86.

3.2.2 Results of new components

Table 3.2.3: Factor loadings for 2- factor model using PCA without rotation

Final
Communality

Variable (Xj) PCI PC2

Murder .609 -.700 .861
.876 -.189Rape .803

.047.805Robbery .650
-.382.805 .794Assault
.226.893 .848Burglary
.448.725 .726Larceny
.559 .671.599Auto

Variance (Eigen value) 
= la;2

5.3541.2394.115

The results in Table 3.2.3 indicates that component loadings of the first component

(PCI) for number of rapes, number of robberies, number of assaults, number of 

burglaries and number of larcenies are higher ( > 0.7) than that for the variables of 

number of murders and number of autos (0.6). However, comparing these loadings it 

is not easy to isolate some variables which load more on the first component than the

other variables. Therefore it is not possible to classify a meaningful component

of murders, number of rapes, number of robberies,consisting with the number
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number of assaults, number of burglaries, number of larcenies and number of autos. 
So it is necessary to rotate factors to obtain meaningful factors.

Therefore the 2 components are generally transformed using various transformations 

to make the component loading matrix , in particularly to make loadings in 

component 1 more simple and more meaningful. The proportion of variance 

variable accounted for by two components (communalities) is shown 

column of the table 3.2.3. Factor loadings obtained for 2- factor model using 

Orthogonal rotations of Varimax, Equamax and Quartimax are shown in next three 

tables.

in each

in the fourth

3.2.3 Use of Orthogonal rotations

Table 3.2.4: Results of Orthogonal rotations on 2 components

Rotation method
Varimax Equamax QuartimaxVariable

PCI PC2 PCI PC2PC2PCI
.921.927 .113-.045.927-.045Murder

.620 .647.742.501.742.501Rape

.693 .412.523.614.523.614Robbery
.767.453.833.316.833.316Assault

.867 .312.455.801.455.801Burglary .
.035.851.179.833.179.833Larceny

128.809.011.819.011.819Auto
2.142.616 3.2132.736Variability 2.6162.736

5.3535.352
5.352Total

PCI and PC2 are similar in both Varimax rotationThe loadings of each variable on
and Equamax rotation. When considering the loadings greater than 0.6 in Varimax

variable types of number of murders, number of rapes and 

highly loaded in Component 2 with 0.927, 0.742 and 0.833
and Equamax rotations, 

number of assaults are
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amount of loadings respectively, while 

number of larcenies and number of 

0.614, 0.801,0.833 and 0.819

number of robberies, number of burglaries, 

autos are highly loaded in Component 1 with 

amount of loadings respectively.

When considering the Quartimax rotation, with greater than 0.6 loadings, component

are different, same 

component as in Varimax and Equamax 

rotations. Therefore we can select similar factors from the 3 methods indicating 

results obtained using Principal Component Analysis are invariant of the rotation 

method.

one is the highly loaded variables although the loaded values

types of variables have loaded for each

3.2.4 Summary of Principal Component analysis

The two components extracted using PCA, were rotated since the interpretation is 

difficult with the component loadings in component matrix. Using three methods 

namely Varimax, Equamax and Quartimax by keeping the variance accounted for by

the two components remain the almost the same (with 5.35, 76.5%). Further the 

variance encountered by each variable separately were almost same for all three
loadings in Quartimax rotation varies with therotation methods except few

corresponding values in other methods. Thus when selecting the variables for the 

ponents with > 0.6, same set of variables loads in 1 component while the rest of 

the variables loads in 2n<* component regardless the method of rotation, indicating the
is invariant with the rotation method.

com

resulted analysis of Principal Component 
Variables number of murders, number of rapes and number of assault load highly on

Principal Component while number of robberies, number of burglaries, number 

of larcenies and number of autos load highly on the other Principal Component. Thus

for the selected two components can be written as linear

of each selected standardized variables separately.

one

the ultimate models 

combinations

+ 0 801 Burglary + 0.833 Larceny + 0.819 Auto 

= 0.927 Murder + 0.742 Rape + 0.833 Assault

PCI =0.614 Robbery

PC2

36



3.3 Factor Extract!ion using Maximum Likelihood Factoring (ML)

3.3.1 Preliminary analysis of ML

Results of preliminary analysis of ML is shown in table 3.3.1 

Table 3.3.1: Results of eigen values of the correlation matrix using ML

Initial Eigen values Extraction Sums of Squared
% of 

Variance
Cumulative %of

Variance
CumulativeFactor Total Total% %

1 4.115 58.79 58.79 3.804 54.34 54.34
2 1.239 17.70 76.48 0.962 13.75 68.09

The table 3.3.1 indicates the difference between the percentage variances of initial 

and after extraction. The amount of percentage variance when extract by Principal 

Component method was remaining the same value with the initial Eigen values in the 

left panel of the Table 3.2.1 (pg 32). But in Maximum Likelihood amount of 

extracted variance getting less. This effect is because in Common Factor Analysis 

methods, only the common variance is concerned rather than considering the total 

variance consisting with the unique variance.

Summary results of factor extraction using Maximum Likelihood Factoring is shown 

with the factor loadings without rotation and Communalities ofin table 3.3.2

manifest variables.
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Table 3.3.2 : Factor loadin 

data by ML
gs and communality estimates for 2 factor model fitted to

Manifest Factor Loadings Communality
Variable Factor 1 Factor 2 Initial Final
Murder .578 .685 .609 .803
Rape .852 .156 .730 .751
Robbery .712 .086 .595 .514
Assault .763 .329 .645 .691
Burglary .908 -.218 .795 .871
Larceny .753 -.474 .727 .793

.513Auto -.284 .486 .343

Eigen value 3.804 0.962 4.766

While in PCA it built PCs consisting linear combinations of observed variables, in 

ML as an EFA method 2- factor model for each variable can be written as follows 

illustrating the different approaches of two methods.

+ Ui= 0.578 FI + 0.685 F2Murder

+ U2= 0.852 FI + 0.156 F2Rape

+ U3= 0.712 FI + 0.086 F2Robbery

+ U4= 0.763 FI + 0.329 F2Assault

+ U5= 0.908 FI - 0.218 F2Burglary

+ U6= 0.753 FI - 0.474 F2 

= 0.513 FI - 0.284 F2

Larceny

+ U7Auto
of each observed variable.,.. .,7) is the unique varianceWhere Ui (i = 1*2
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Considering the factor loadings for each variable 

explained by the selected two factors that h 

shown below. But note that these 

variables as the factor rotation

in table 3.3.2, new variances 

ave been extracted from ML method is 

are not the exact factor models for the observed

yet to be done. Therefore with the purpose of 
calculating the new eigen values (variances of factors after extraction or the sums of 

squared loadings on Factors), consider the general formulas for factor model of each
variable.

Contribution of FI explaining sums of squared observed variance (eigen value): 

= (0.578)2 + (0.852)2 + (0.712)2 + (0.763)2 + (0.908)2 + (0.753)2 + (0.513)2 

= 3.804

Contribution of F2 explaining sums of squared observed variance (eigen value): 

= (0.685)2 + (0.156)2 + (0.086)2 + (0.329)2 + (-0.218)2 + (-0.474)2 + (-0.284)2

= 0.962

The percentage variances accounted for factorl and factor2 are 54.34% (2^21 * lOo)

IQOj respectively. It should be noted that the models illustrate

the variances which explained by the unique factors are not accounted by any of 

these two factors. Although the computation is same as in PCA, in ML the factor 

variance with the extraction is different since the values are based only on common 

or shared variance. As a result the total variance accounted for 2 factors under ML is 

less than that for 2 factors under PCA as showed in table 3.3.1.

and 13.75%

the squared multiple correlations (SMC) ofThe initial communalities were taken as

the variable with the other v
in Principal Component Analysis (table 3.2.2, pg 33). Ca,abating the communal,« 

after extraction is mom apprise in EFA methods. We - interpret dre proportion

ariables in contrast initial communalities are taken as one
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of each variable's ,ari»nce whidt js exp)abed b> ^ ^ ^ M

(he acto. models built. For example common,111, for Murder is calculated as the
sum of squared loadings on each factor (0,5782 + 0.685’) resulting 0.803, indicating

a tg er representation of that variable in factor space. Further for all the manifest 
variables final communalities extracted using ML is smaller than those extracted 
using PCA except in larceny in Burglary. The difference i
auto (0.671 and 0.343) and followed by Robbery (0.650 

(0.794 and 0.691). But the extracted communalities

is highly substantial for 

and 0.514) and Assault
in ML itself has a higher value 

extraction is wellexcept in Auto (0.343) and Robbery (0.514), implying that the
defined the model.

The Chi- Square goodness- of- fit test (X82 = 18.784, p = 0.016) of ML factoring 

indicates that there is no systematic variance in the reduced model after two factors 

been extracted confirming 2 - factor model is sufficient.

Results in table 3.3.2 also indicate the necessity of conducting rotations on factor 
loadings in order to a clear interpretation. As it is shown in table 3.3.2, the variables 

number of rapes (Rape), number of robberies (Robbery) , number of assaults ( 
Assault), number of burglaries ( Burglary) and number of larcenies (Larceny) are 

highly loaded on factor 1 having loadings greater than 0.7. Only for number of 

murders (Murder) it has a slightly high loading (0.685) on factor 2. Therefore it is 

clear that it is not possible to classify meaningful factors without applying a rotation

method.

factor loadings after applying orthogonal rotations namely Varimax,The final
Equamax and Quartimax for 2 factor model can be shown in section 3.3.3.
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3.3.2 Use of Orthogonal rotations

Factor loadings for 2- factor 

Quartimax rotations are shown bel
model using ML with Varimax, Equamax and
ow.

Table 3.3.4 . ^^mgs for 2 factor model using ML with Varimax and

Rotation methodManifest
Variable Varimax Equamax

Factor 1 Factor 2 Factor 1 Factor 2
Murder -.003 .896 -.003 .896

.548Rape .671 .548 .671

.486Robbery .526 .486 .526

.369Assault .745 .369 .745

.833Burglary .422 .833 .422

.881 .127 .881Larceny .127

.574 .116 .116.574Auto
2.47 2.292.292.47Variability

4.764.76Total

As it resulted in PCA (table 3.2.4, pg35), in ML also the variance accounted by each

variable separately were almost same for both methods. Further those rotations have 

lead for a meaningful interpretation of selected two factors 

for by the two factors remains the same (4.76; 68.09%). Accoriing to Varimax and

the variables with greater than 0.5 loadings ,

. The variance accounted

Equamax rotations when selecting 
number of murders (0.896). number of rapes (0.671). numb., of robberies (0.526)

on Factor 2, while number ofof assaults (0.745) have loaded highlyand number 

burglaries (0.833), number of larcenies
ies (0.881) and number of autos (0.574) loaded

on Factor 1.
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Table 3.3.5 : Factor loadings for 2
aCt°r mo^el using ML with Quartimax rotation

Manifest
Variables

Quartimax Rotation
Factor 1 Factor 2

Murder .320 .837
Rape .753 .429
Robbery .643 .316
Assault .612 .562
Burglary .929 .093
Larceny .868 -.200
Auto .578 -.099

3.42 1.36Variability

4.78Total

In contrast with Varimax and Equamax rotations the variance encountered by each 

variable has been maximized except in number of robberies (0.712 and 0.643) and 

number of assaults (0.763 and 0.612). Thus it is still difficult to interpret the results 

after the Quartimax rotation Further the variance accounted for by the two factors has 

increased to 68.28%.

Therefore using the Quartimax rotation in ML factoring has become ineffective.

Summary of Maximum Likelihood factoring3.3.3

of the initial system has been reduced to 68.1% « 76.48%) after 

According to the final communalities, the selected two factors 

ortion of variance (>0.6) of each of the variables except 

of robbery (0.514). Number of burglaries

The total variance

extracting the factors

are explaining a higher prop 

in number of autos (0.343) and number
iabie by the two factors. Factors extracted using

(0.871) is the highest explaining 

ML were rotated using 

equamax rotations given

var
rotation methods. Both varimax andthe three Orthogonal

clear interpretation of two factorsresult with athe same
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while Quartimax rotation was not effective for r ,
2 factor modes for each variable cm be wrihen M tia0n”8' ““

Murder - 0.003 FI + 0.896 F2 + U, 

0.548 FI + 0.671 F2 + U2 

0.486 FI + 0.526 F2 + U3 

0.369 FI + 0.745 F2 + U4 

0.833 FI + 0.422 F2 + U3 

0.881 FI +0.127 F2 + U6 

0.574 FI+O.II6F2 + U7

Rape

Robbery

Assault

Burglary

Larceny

Auto

Where Uj (i = 1,2,.. .,7) is the unique variance of each observed variable.
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Factor Extraction using Principal Axis Factoring (PAF)3.4

3.4.1 Preliminary analysis of PAF

Results of preliminary analysis of PAF is shown in table 3.4.1 

Table 3.4.1 Results of the eigen values of the correlatiion matrix using PAF

Initial Eigen values Extraction Sums of Squared
%of

Variance
CumulativeFactor Total %of

Variance
CumulativeTotal

%
1 4.115 58.79 58.79 3.822 54.601 54.601
2 1.239 17.70 76.48 0.955 13.639 68.240

The variance accounted for by the remaining two factors is less than that of the PCA 

(76.5%) but approximately same with ML factoring (68.09%). Principal Axis 

factoring also accounts only the common variance as it described in ML factoring.

Summary results of factor extraction using Principal Axis factoring is shown in table 

3.4.2 with the factor loadings before rotation and communalities of manifest 

variables.

Table 3.4.2 : Factor loading and communality estimates for 2 factor model fitted to 

data by PAF

CommunalityFactor LoadingsManifest

Variable FinalInitialFactor 2Factor 1
.852.609.688.616Murder
.746.730.123.855Rape .551.595-.026.742Robbery
.681.645.287.774Assault .891.795-.282.901Burglary .658.727-.429.689Larceny .397.486-.347.526Auto
4.770.9553.82Eigen value
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Factor loadings for each variable arp 
ML before rotation. The method of catcall' 1^^“" 

extraction ,s discussed under tire ML in table 3.3.2. Therefore the 

accounted for factor 1 and factor 2
percentage

54.6% * loo) and 13.64%
lOO) respectively. Thus the 2-factor models for each variable

variances are
^0.955

in PAF also
can be written with this general formula of Exploratory Factor Analysis.

Xi = bil Fi + bi2 F2 + Ui

Where by is the factor loading on i1*1 variable from j1*1 factor. However when 

comparing these factor loadings it is not possible to isolate some variables which 

load more on the first factor than the other variables.

Furthermore notice that the initial communalities of both PAF and ML are same
values. Hence in PAJF also the initial values of the diagonal of the correlation matrix 

changing by inserting the values of squared multiple correlation (SMC) of the 

variable with the other variables. The final communalities of each manifest variable 

computed by PAF is approximately equal with the ML. When comparing the final 
communalities of PCA (table 3.2.2, pg 33) , it is shown that all the communalities in

in number of burglaries (Burglary).

are

PAF is higher than that of the PAF except 

However the remaining two factors explaining a higher proportion of variance
nifest variable except in number of autos (0.397) and number of 

that the extraction is well defined the model.
( > 0.65) of each ma 

robberies (0.551) indicating

loadings should be improved for a clear interpretation , the 2 

are transformed by applying orthogonal rotations namely Varimax,Since the factor 

common factors 

Equamax and Quartimax.
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3.4.2 Use of Orthogonal Rotations

Factor loadings for 2-factor model
Quartimax rotations are shown below.

using PAF with Varimax , Equamax and

Table 3.4.3: Factor loadings for 2-facto 

Equamax rotations
r model using PAF with Varimax and

Rotation methodManifest
Variable Varimax Equamax

Factor 1 Factor 2 Factor 1 Factor 2
Murder .007 .923 .007 .923
Rape .560 .658 .560 .658
Robbery .574 .471 .574 .471
Assault .391 .727 .391 .727
Burglary .862 .385 .862 .385
Larceny .800 .134 .800 .134

.624.624 .088 .088Auto
Variability 2.57 2.572.212.57

4.784.78Total

As so far in PCA and ML, in PAF also there is no any significant difference between
. The variance accounted forfactor loadings in Varimax and Equamax rotationsthe

remaining approximately the same (4.78, 68.28%).by the selected two factors
the rotated loadings when consider the loadings greater than 0.5,

According to
number of murders (0.923,, number of rupee <0.058, end number offaults (0.727, 

loaded Highly on fae.or 2. Fr^er number of robberies ( 0,74, number of bu,g„,,es 

(0.862) , number of larcenies ( 0.800) and number of a«,os( 0.624,

highly on factor 1.

have loaded
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Table 3.4.4 : Factor loadings for 2-fact
or model using PAF with Quartimax rotation

Manifest
Variables

Quartimax Rotation
Factor 1 Factor 2

Murder .315 .868
Rape .748 .433
Robbery .698 .252
Assault .611 .554
Burglary .941 .074
Larceny
Auto

.799 141

.617 -.126
Variability 3.42 1.35

Total 4.77

The factor loading of each variables after the Quartimax rotation, has maximized 

except in number of robberies (0.698) and number of assaults (0.611). Therefore it is 

not easy to interpret the 2 factor model. As also resulted in ML, Quartimax rotation is 

not effective for the factor rotation followed by PAF.

3.4.3 Summary of Principal Axis Factoring

accounts the common variance of the variables for thePrincipal Axis factoring 
extraction. Therefore the cumulative variance explained by the two extracted factors 

that of Principal Component Analysis. But it is slightly higher than that 
extracted high amount of common variance of

is lower than
of ML, indicating that PAF has 
observed variables Can in Maximum Likelihood (08.24% and 60.09* respectively). 

The proportion of variance iha. is expiring by the remaining ,wo factors are high in 

ore variable types of number of burglaries (0.89.), number of murders (0.852, and

number of rapes (0.746).
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The factors extracted using py\p 

Quartimax rotations.
were rotated usi 

Similar with ML factori
using Varimax, Equamax and

oring, Varimax and Equamax rotations
over the two factors. Further Quartimax 

not relevant for the rotation. However,

a linear combination of the resulted fact

given meaningful factor loadings
rotation

each observed variable can be written as
was

ors and with its’ unique factor with the factor 
rotation as follows.loadings followed by Varimax or Equamax

Murder 0.007 FI + 0.923 F2 + Ui 

0.560 FI + 0.658 F2 + U2 

0.574 FI +0.471 F2 + U3

Rape

Robbery

Assault 0.391 FI + 0.727 F2 + U4

Burglary 0.862 FI + 0.385 F2 + U5

Larceny 0.800 FI + 0.134 F2 + U6

0.624 FI + 0.088 F2 + U7Auto

Where Uj (i = 1,2,.. .,7) is the unique variance of each observed variable.
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Factor Extraction using Generali3.5
ized Least Squares (GLS)

3.5.1 Preliminary analysis of GLS

Table 3.5.1: Results of the Eigen values of the correlati
ion matrix using GLS

Initial Eigen values Extraction Sums of Squared
%of

Variance
Cumulative %of

Variance
CumulativeFactor Total Total

%
1 4.115 58.79 58.79 3.577 51.097 51.097
2 1.239 17.70 76.48 1.237 17.668 68.765

According to the Kaiser criterion two factors were extracted. The factors have 

extracted based on the common variance of the observed variables. Cumulative 

percentage of variance of extracted two factors (68.77%) is larger than that of 

occurred in Maximum Likelihood Factoring (68.09%) and Principle Axis Factoring 

(68.24%).

The results of communalities has encountered a “Heywood case” meaning one or 

more
http ://w w w. sfu. ca/sasdoc/sashtml/stat/chap26/sect21 .htm 

causes for this “Heywood case”. Among those following are special.

communalities have become greater than 1 in that specific iteration. As sited in
, there are several possible

- B ad prior communality estimates

Too many common factors 

Too few common factors 
Not enough data to provide stable estimates

del is not an appropriate model for the data
The common factor mo

urred SPSS will display the communalities based on the 

'teration Therefore with this different situation, it is
table 3.5.2 shows the

When the Heywood case

solution from the previous 

to interpret
carefully. The following 

factors extracted.
the results

important 
communalities and the

factor loadings for 2-
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Table 3.5.2 : Factor Loadi 

data by GLS
“8 ““""“tty for 2 factor model fitted to

Manifest

Variable
Factor Loadings 

Factor 1
Communality

Factor 2 Initial Final
Murder

Rape
.390 .768 .609 .772
.801 .359 .730 .796Robbery .657 .337 .595 .690

Assault .650 .531 .645 .725
Burglary .908 .051 .795 .845
Larceny .901 -.342 .727 .937
Auto .541 -.046 .486 .630
Eigen value 3.58 1.26 5.395

Same as in the previous Exploratory Factor extraction methods, the initial 

communality is the squared multiple correlation (SMC) of the variable with the other 

variables. The communalities after extraction is lower than that of in PCA since GLS 

also form in common variance of observed variables. The proportion of variance 

explained by the extracted two factors are high in Larceny (0.937), Burglary (0.845) 

and in Rape (0.796).

Testing the adequacy of number of factors3.5.2

Likelihood Factoring, Generalized Least Squares also generates a 

chi-square goodness-of-fi. measure to test whether the estracted number of factors is 

inn the factor structure of the observed variables.

of the reduced model after two factors extracted.

Like in Maximum

adequate in representing

There is a systematic variance
H0 =

Vs of the reduced model after two factors extracted.ic varianceH1= There is no systematic
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Chi-Square Goodness-of-fit test (y/
(a = 0.05 < 0.109) level „f 5ignifican‘e 

hypothesis. Hence there i

13. 071, p = 0.109) indicates that at 0.05 

no evidence to reject the null 
variance of the reduced mode] after 

are not enough to represent the model.

To implement the factor model the researcher can increase the number of factors

at 3 tlmS 1111111 a satisfactory goodness of fit is obtained. Therefore the number of 

factors to be extracted was increased up to 3 and the results of goodness-of-fit test

0.646) indicated again the acceptance of null hypothesis. Further 
increase of factors lead to unable of computing the goodness-of-fit test as the degrees 

of freedom become negative. Therefore it is not possible to conduct Generalized 

Least Square method for this set of data.

we have
ls a systematic vari

factors extracted .Therefore two factors two

one

(X32 = 1.658, p =

3.5.3 Summary of Generalized Least Squares

Factors were extracted based on the common variance of the observed variables.
However Heywood case occurred with the communalities in 2-factors model. Further

2Chi- Square Goodness-of-fit test (%s 
number of factors are not enough to interpret the factor model. Although the number 

increased up to 3 and 4 respectively, each stage rejected the model 
implying that the Generalized Least Squares method is not appropriate to identify the 

underlying factors of this data set.

= 13. 071, p = 0.109), confirmed that the

of factors was

According to the descriptive statistics of die data it revealed that number of robberies
deviate from the normal distribution. Therefore it is clear 

normality has violated with this set of data, 
of GLS have occurred to this unsatisfactory

and number of autos are
that the assumption of multivaiiate

- that the problems 
it is not appropriate to apply General 

ultivariate normal distribution.

Hence we can assume 

condition. Therefore 

the data which is not having m
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Summary of 2 Factor3.6
models Vs Method of Extraction

summary of the variances of selected two factors in
The following table shows the 

each extraction method.

Table 3.6.1: Summary of 2 - Factors with the method
of extraction

Method of 
extraction

Component/Factor Eigen value % Variance 
after

extraction

Cumulative % 
of variance in 

the system
PCI 4.115 58.79PCA 76.48
PC2 1.239 17.70

Factor 1 3.804 54.34
ML 68.09

Factor 2 0.962 13.75

3.822 54.60Factor 1
68.24PAF

13.640.955Factor 2

3.577Factor 1
2 -factor model was rejectedGLS

1.237Factor 2
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CHAPTER 4
CONCLUSIONS AND RECOMMENDATIONS

Apphcation of Principal Component Analysis (PGA) and Exploratory Factor

Analysis (EFA) has been inextricably linked and thus much confusion has arisen to 

identify which one to be used. Once decided that EFA to be used, there are various
types of factor extraction methods and factor rotation methods to make the factor 
loadings simpler and more meaningful. One method of component extraction is use

of PCA technique. Almost all the text books on multivariate analysis are generally 

difficult to understand and do not clearly recommend to use a specific method on 

EFA for a given set of data. The study is therefore carried out to compare results of

different extraction methods (including PCA) and factor rotations using set of real 
data.

If there is a large number of observed variables and wish to build a smaller number 

of components accounting the maximum variability of the initial system then it is 

appropriate to apply the Principal Component Analysis.

EFA consider only the common variance of the observed variables, since the 

is due to the underlying factor structure of the observed variables. 

Hence contrasting with PCA, the ultimate goal of EFA is to explore those variables 

or factors which cannot be measured directly.

common variance

methods used in this study: Maximum Likelihood, Principal

reproduced the correlation matrix 

Likelihood and Generalized Least 

ion of multivariate normal distribution of the 

distributional assumption is required. In

Of all factor extraction
Axis Factoring and Generalized Least Square are

before the factor extraction. Only Maximum

Square methods consider the assumption 

variables. For Principal Axis Factoring no
of number of robberies and number of autos

Multivariate
the analyzed data set the variables types

distribution and consequently no
in Maximum Likelihood factoring

from the normal
bserved variables. Although in

were away 

distribution in the o
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'-prob,em * f“s - -—«—
not compute a significant factor structure.

In that case it is recommended to use Principal Axis Fa 

distributions 

suitable if there is

ctoring irrespective of normal
of each observed variable while Generalized

Least Squares is only
a multivariate distribution of the original system.

Application of rotation methods in PCA did not differentiate the rotated factor 

loadings in three orthogonal methods, Varimax, Equamax and Quartimax hence 

Orthogonal rotations can be applied for PCA regardless the method at the time 

needed a meaningful interpretation.

In contrast, Quartimax rotation is not appropriate for any of these considered 

Exploratory Factor extraction method while Varimax rotation gave a comparatively 

clear interpretable outcome. Therefore it is recommended to use Varimax rotation 

method followed by any of these extraction methods of Maximum Likelihood 

factoring , Generalized Least Square and Principal Axis Factoring.

It should be noted that the above recommendations were based on the data set used. 

However, the results obtained were confirmed using jackknife validation. Similar 

results were obtained when outliers of the data set were removed.

noted the researchers have hardly used Un weighted Least Squares,It should be
Image Factoring and Alpha Factoring, may be due to lack of theoretical information.
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APPENDICES

Appendix 1.1 : Rate of different crimes per 100,000 in various states in USA

No State Murder Rape Robbery Assault Burglary

1135.5
1331.7
2346.1
972.6

Larceny AutoALABAMA1 14.2 25.2 96.8 278.3 1881.9
3369.8
4467.4
1862.1

280.7ALASKA2 10.8 51.6 96.8 284 753.3ARIZONA3 9.5 34.2 138.2 312.3 439.5ARKANSAS4 8.8 27.6 83.2 203.4 183.4CALIFORN5 11.5 49.4 287 358 2139.4 3499.8 663.5COLORADO6 6.3 42 170.7 292.9 1935.2 3903.2 477.1CONNECTI7 4.2 16.8 129.5 131.8 1346 2620.7 593.2
DELAWARE8 6 24.9 157 194.2 1682.6 3678.4 467
FLORIDA9 10.2 39.6 187.9 449.1 1859.9 3840.5 351.4
GEORGIA10 11.7 31.1 140.5 256.5 1351.1 2170.2 297.9
HAWAII11 7.2 25.5 128 64.1 1911.5 3920.4 489.4
IDAHO12 5.5 19.4 39.6 172.5 1050.8 2599.6 237.6
ILLINOIS13 9.9 21.8 211.3 209 1085 2828.5 528.6
INDIANA 1086.2 2498.7 377.426.5 123.2 153.57.414

219.92685.1IOWA 812.589.810.6 41.22.315
2739.3 244.31270.4180.5KANSAS 100.7226.616
1662.1 245.4872.2123.381.1KENTUCKY 19.110.117

337.72469.91165.5335.5142.930.9LOUISIAN 15.518
246.92350.71253.117038.713.5MAINE 2.419
428.53177.71400358.9292.134.8MARYLAND 820
1140.12311.31532.2231.6169.120.8MASSACHU 3.121 545.531591522.7274.6261.938.9MICHIGAN 9.322 343.12559.3

1239.9
2424.2
2773.2 

2316.1 

4212.6
2343.9 

2774.5

1134.7
915.6
1318.3

85.885.919.52.7MINNESOT

MISSISSI
MISSOURI
MONTANA

23 144.4189.165.719.614.324 378.4233.518928.3. 9.625 309.2804.9156.839.216.75.426 249.1760112.764.718.13.9NEBRASKA
NEVADA
NEWHAMPS
NEWJERSE

27 559.22453.1
1041.7
1435.8

355323.149.115.8 293.428 7623.210.73.2 511.529 185.1180.4215.630
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No State Murder Rape Robbery Assault Burglary

1418.7

Larceny AutoNEWMEXIC

NEWYORK

31 8.8 39.1 109.6 343.4 3008.6 259.532 10.7 29.4 472.6 319.1 1728 2782NORTHCAR

northdak
OHIO

745.833 10.6 17 318.3 1154.1 2037.8 192.134 0.9 9 13.3 43.8 446.1 1843 144.7

400.4
35 7.8 27.3 190.5 181.1 1216 2696.8

2228.1
OKLAHOMA

OREGON
36 8.6 29.2 73.8 205 1288.2

1636.4
326.837 4.9 39.9 124.1 286.9 3506.1 388.9PENNSYLV38 5.6 19 130.3 128 877.5 1624.1 333.2RHODEISL39 3.6 10.5 86.5 201 1489.5 2844.1 791.4

SOUTHCAR40 11.9 33 105.9 485.3 1613.6 2342.4 245.1
SOUTHDAK41 2 13.5 17.9 155.7 570.5 1704.4 147.5
TENNESSE42 10.1 29.7 145.8 203.9 1259.7 1776.5 314
TEXAS43 13.3 33.8 152.4 208.2 1603.1 2988.7 397.6
UTAH44 3.5 20.3 68.8 147.3 1171.6 3004.6 334.5
VERMONT45 1.4 15.9 30.8 101.2 1348.2 2201 265.2
VIRGINIA46 9 23.3 92.1 165.7 986.2 2521.2 226.7
WASHINGT47 4.3 39.6 106.2 224.8 1605.6 3386.9 360.3
WESTVIRG 163.36 13.2 42.2 90.9 597.4 1341.748
WISCONSI 846.9 2614.2 220.763.752.22.8 12.949

282811.6 2772.2173.9WYOMING 39.721.95.450
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Appendix 1.2: Computed tables i
es 111 Jackknife validation

Turn 1; With 49 observations holding Is' observation

Initial Eigen values 

% of 

Variance

Extraction Sums of Squared Loadings

% of 
Variance

Component Total Cumulative % Total Cumulative %
1 4.076 58.228 58.228 4.165 59.501 59.501
2 1.262 18.022 76.250 1.185 16.933 76.435
3 0.730 10.424 86.674
4 0.321 4.586 91,261
5 0.267 3.817 95.077
6 0.228 3.252 98.329
7 0.117 1.671 100.000

Turn 2 : With 49 Observations holding 2nd observation

Extraction Sums of Squared LoadingsInitial Eigen values
% of 

Variance
Component % of 

Variance Cumulative %TotalCumulative %Total
59.16559.1654.14257.17157.1714.0021
77.51018.3451.28475.50518.3331.2832

86.26610.7620.7533
90.9794.7120.3304
94.8753.8960.2735
98.2393.3640.235

100.0001.7610.1237
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Turn 3 : With 49 Observations holding 3rd observation

Initial Eigen values

% of 

Variance

Extraction Sums of Squared Loadings 

% of
Variance Cumulative %

Component

Total Cumulative % Total
1 4.039 57.700 57.700 4.121 58.876 58.876
2 1.287 18.381 76.080 1.264 18.062 76.938
3 0.722 10.308 86.388
4 0.330 4.718 91.106
5 0.274 3.921 95.027
6 0.227 3.248 98.275
7 0.121 1.725 100.000

Turn 4: With 49 Observations holding 4th observation

Extraction Sums of Squared LoadingsInitial Eigen values
% of 

Variance
Component %of

Variance Cumulative %TotalCumulative %Total
57.69257.6924.03857.70057.7004.0391
74.54516.8531.18076.08018.3811.2872

86.38810.3080.7223
91.1064.7180.3304
95.0273.9210.2745
98.2753.2480.2276

100.0001.7250.1217
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Turn 5 : With 49 observations holding 50th observation

Initial Eigen values Extraction Sums of Squared Loadings

% of 
Variance

58.767

Component %of
Variance

Cumulative CumulativeTotal % Total %
1 4.114 58.767 58.767 4.114 58.767
2 1.245 17.787 76.554 1.245 17.787 76.554
3 0.725 10.355 86.909
4 0.318 4.545 91.454
5 0.260 3.717 95.171
6 0.221 3.160 98.331
7 0.117 1.669 100.000
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