LIBRARY UNIVERSITY OF MORATUWA, SRI LANKA MORATUWA

18/00+1/55/2013 MARTI 29

DEVELOPING A STRATEGY TO EVALUATE THE PRODUCTIVITY PERFORMANCE OF ACTIVE GARMENT MANUFACTURING

IN

SMALL AND MEDIUM ENTERPRISE SECTOR

A. B. Wickramaarachchi 08 / 10312

Dissertation submitted in partial fulfilment of the requirements for the Degree Master of Science in Operational Research

Department of Mathematics

51°13° 519.8 (0+3)

May 2013

105307

105307

DECLARATION OF THE CANDIDATE

"I declare that this is my own work and this thesis/dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any University or other institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another except where the acknowledgment is made in the text"

i

UOM Verified Signature

Date: 22/05/2013

A. B. Wickramaarachchi

DECLARATION OF THE SUPERVISOR

"I have supervised and accepted this thesis/dissertation for the award of the degree"

UOM Verified Signature

Date: 22 May 2013

Prof. T.S.G. Peiris Department of Mathematics Faculty of Engineering University of Moratuwa Sri Lanka.

7

This report is dedicated to my parents, wife and daughter

ACKNOWLEDGEMENT

It is with pleasure that I express my affectionate and deeply felt gratitude to Prof. T.S.G. Peiris, Head of the Department of Mathematics and the Course Coordinator of MSc. in Operational Research (2008 Batch), whose guidance, invaluable suggestions and constant inspiration I have received ever since I became his student and after he became my supervisor for the research. His invaluable feedback and deep interest shown in the research stimulated me in making this thesis a reality.

I am no less grateful to all professionals of apparel factories in SME sector including owners, Factory Managers, Production Managers, Quality Manager, Work Study Officers, etc. and their subordinates for the support, well directed advices and information I received in making this thesis a success. Without their help in providing data and information this study may not be succeeded.

And also I must gratitude to all lecturers of the MSc. in Operational Research for their knowledge, experience and support shared with us during the course of the MSc.

And also I offer my sincere appreciation to all my Collins of the MSc. who helped me very substantially with their invaluable moral and material support. I must acknowledge all non-academic staff of Mathematics Department that helped me in arrangements, services and other works.

Finally special thanks go to my wife, parents and family members for their dedication and patience shown last few months which I was engaged with the research.

ABSTRACT

Apparel industry is one of the largest contributors in Sri Lankan economy while Small and Medium Enterprises (SME) play an important role. With the elimination of the quotas SME sector had to face the challenge of producing garments where competition is primarily based on price. Most consideration factors that affect on the price are high production cost, low productivity level, lack of skilled man power and lack of adoption to new and efficient technology. Enhancing the productivity respective to manufacturing process of the garment had been identified as a solution to face these emerging challenges of SME sector. However, at present productivity performance is evaluated by considering five Key Performance Indicators (KPIs) separately and this method creates problems in evaluating. Thus this study was carried out to develop a common index using five indicators based on three months data. Principal Component Analysis (PCA) and Cluster Analysis (CA) were carried out separately for all three months and as well as pooled data to achieve the objective.

Results found that the indicator developed consists of a linear combination of three Key Performance Indicators (Factory Efficiency – EFF, Defects Per Hundred Units – DHU and Absenteeism – ABS) can be used to asses factories either monthly basis or quarterly basis, instead of using the five KPIs separately. This new method is more efficient than the old method used. The developed indicator is named as "Direct Productivity Performance Indicator" and it is defined as: $PC_{Q1} = 0.523Z_{EFF} - 0.531Z_{DHU} - 0.481Z_{ABS}$. This method can be used to compare different factories as well.

Key Words: Key Performance Indicator, Principal Component Analysis, Cluster Analysis and Productivity

TABLE OF CONTENTS

Page

v

10

Declaration of the candidate	i
Declaration of the Supervisor	ii
Dedication	ill
Acknowledgement	īv
Abstract	v
Table of Content	vī
List of Figures	x
List of Tables	xii
List of Abbreviations	xiv
CHAPTER 1. INTRODUCTION	1

1.1 Garment Industry in Sri Lanka	1
1.2 Present Situation of the industry	2
1.3 Significance of the study	5
1.4 Research Objectives	6
1.5 Chapter Outline of Thesis	6
CHAPTER 2: LITERATURE REVIEW	7
2.1 Apparel Industry and SME Sector	7
2.1.1 Contributions regarding improvement of Apparel Industry	7
2.1.2 Success and Failure of Apparel Entrepreneurs	8

2.1.3	Operational Effects in Apparel Firms	9
2.1.4	Management Practices and Performance	9

2.1.5 Small and Medium Enterprises Sector

2.2 Productivity Improvement and Performance Strategies	11
2.2.1 Potential for Productivity Improvement	11
2.2.2 Relationships of Company Performances	12
2.2.3 Relationships of Productivity to Utilization and Quality	12
2.2.4 Basics Productivity Techniques	13
2.2.5 Measurement of Productivity for Effectiveness	14
2.3 Key Performance Indicators	15
2.4 Summary of the Literature Review	16
CHAPTER 3: DATA AND METHODOLOGY	21
3.1 Data Used	17
3.1.1 Introduction	17
3.1.2 Identified Key Performance Indicators of Productivity (Variables)	17
3.1.2.1 Factory Efficiency	17
3.1.2.2 Defects per Hundred Units (DHU)	18
3.1.2.3 Absenteeism	19
3.1.2.4 Labour Turnover	19
3.1.2.5 Man to Machine Ratio	20
3.2 Principal Component Analysis (PCA)	21
3.2.1 Introduction	21
3.2.2 Geometric Rationale of PCA	22
3.2.3 Generalization to <i>p</i> -dimensions	23
3.2.4 Covariance vs Correlation	24
3.2.5 The Algebra of PCA	24
3.2.6 Selection of Axes	25
3.3 Cluster Analysis	26
3.4 Anderson – Darling Test	26

CHAPTER 4: DATA ANALYSIS AND RESULTS	28
4.1 Preliminary Analysis of Data for Month of January	28
4.1.1 Descriptive Statistics of Observed Variables	28
4.1.2 Correlations among variables	31
4.1.3 Principal Component Analysis: EFF, DHU, ABS, LT, MN: MC	32
4.1.4 Confirmation of the number of selected components	33
4.1.5 Clustering factories using PC1	34
4.1.6 Clustering factories using PC1 and PC2	35
4.1.7 Confirmation of the PCA to be used to evaluate factories in January	36
4.2 Preliminary Analysis of Data for Month of February	37
4.2.1 Descriptive Statistics of Observed Variables	37
4.2.2 Correlations among variables	40
4.2.3 Principal Component Analysis: EFF, DHU, ABS, LT, MN: MC	41
4.2.4 Confirmation of the number of selected components	42
4.2.5 Clustering factories using PC1	43
4.2.6 Clustering factories using PC1 and PC2	44
4.2.7 Confirmation of the PCA to be used to evaluate factories in February	45
4.2 Durlingingen Anglanis of Data for Month of March	16
4.3 Preliminary Analysis of Data for Month of March	46
4.3.1 Descriptive Statistics of Observed Variables	46
4.3.2 Correlations among variables	48
4.3.3 Principal Component Analysis: EFF, DHU, ABS, LT, MN: MC	49
4.3.4 Confirmation of the number of selected components	50
4.3.5 Clustering factories using PC1	51
4.3.6 Clustering factories using PC1 and PC2	52
4.3.7 Confirmation of the PCA to be used to evaluate factories in March	53

4.4 Preliminary Analysis of Average Data of first three months of the year	54
4.4.1 Descriptive Statistics of Observed Variables	54
4.4.2 Correlations among variables	57
4.4.3 Principal Component Analysis: EFF, DHU, ABS, LT, MN: MC	58
4.4.4 Confirmation of the number of selected components	59
4.4.5 Clustering factories using PC1	60
4.4.6 Clustering factories using PC1 and PC2	61
4.4.7 Confirmation of the PCA to be used to evaluate factories for Q1	62
4.4.8 Comparison of four results obtained	63
CHAPTER5: CONCLUTIONS AND RECOMMENDATIONS	65
5.1 Conclusions	65
5.2 Recommendations	65
REFERENCE LIST	66

ix

LIST OF FIGURES

Figure 1.1: Exports of Apparel per capita to the U.S. Market	3
Figure 4.1: Box Plot of Efficiency respective to January Month	29
Figure 4.2: Box Plot of DHU respective to January Month	29
Figure 4.3: Box Plot of ABS respective to January Month	30
Figure 4.4: Box Plot of LT respective to January Month	30
Figure 4.5: Box Plot of MN: MC respective to January Month	31
Figure 4.6: The scree plot for the variable of correlation matrix of January	33
Figure 4.7: Dendrogram of cluster observations of PC1 and PC2 – January	35
Figure 4.8: Box Plot of EFF respective to February Month	38
Figure 4.9: Box Plot of DHU respective to February Month	38
Figure 4.10: Box Plot of ABS respective to February Month	39
Figure 4.11: Box Plot of LT respective to February Month	39
Figure 4.12: Box Plot of MN: MC respective to February Month	40
Figure 4.13: The Scree Plot for the variable of correlation matrix of February	42
Figure 4.14: Dendrogram of cluster observations of PC1 and PC2 – February	44
Figure 4.15: Box Plot of EFF-March	47
Figure 4.16: Box Plot of DHU-March	47
Figure 4.17: Box Plot of LT-March	47
Figure 4.18: Box Plot of MN: MC-March	47
Fig 4.19: Box Plot of ABS-March	48
Figure 4.20: The Scree Plot for the variable of correlation matrix of March	50

Figure 4.21: Dendrogram of cluster observations of PC1 and PC2-March	52
Figure 4.22: Box Plot of Efficiency respective to Q1	55
Figure 4.23: Box Plot of DHU respective to Q1	55
Figure 4.24: Box Plot of ABS respective to Q1	56
Figure 4.25: Box Plot of LT respective to Q1	56
Figure 4.26: Box Plot of MN: MC respective to Q1	57
Figure 4.27: The scree plot for the variable of correlation matrix	59
Figure 4.28: Dendrogram of cluster observations of PC1 and PC2 -1 st Quarter	61

٠.

LIST OF TABLES

Table 1.1: Distributions of Factories - By Size (1999)	2
Table 4.1: Descriptive Statistics of Observed Variables of January	28
Table 4.2: Correlations among selected variables of January	31
Table 4.3 Eigen analysis of the Correlation Matrix for January	32
Table 4.4 Eigen Scores of the of the Principal Components for January	32
Table 4.5: Factories categorized as per the operational performance of January	34
Table 4.6: Factories categorized as per the cluster observations of January	35
Table 4.7: Factories categorized as per the similarity of January	36
Table 4.8: Descriptive Statistics of Observed Variables of February	37
Table 4.9: Correlations among selected variables of February	40
Table 4.10: Eigen analysis of the Correlation Matrix for February	41
Table 4.11: Eigen Scores of the of the Principal Components for February	41
Table 4.12: Factories categorized as per the operational performance of February	43
Table 4.13: Factories categorized as per the cluster observations of February	44
Table 4.14: Factories categorized as per the similarity of February	45
Table 4.15: Descriptive Statistics of Observed Variables of March	46
Table 4.16: Correlations among selected variables of March	48
Table 4.17: Eigen analysis of the Correlation Matrix for March	49
Table 4.18: Eigen Scores of the of the Principal Components for March	49
Table 4.19: Factories categorized as per the operational performance of March	51
Table 4.20: Factories categorized as per the cluster observations of March	52

Table 4.21: Factories categorized as per the similarity of March	53
Table 4.22: Descriptive Statistics of Observed Variables	54
Table 4.23: Correlations among selected variables	57
Table 4.24 Eigen analysis of the Correlation Matrix	58
Table 4.25: Eigen Scores of the of the Principal Components	58
Table 4.26: Factories categorized as per the operational performance	60
Table 4.27: Factories categorized as per the cluster observations	61
Table 4.28: Factories categorized as per the similarity	62

.

LIST OF ABBREVIATIONS

Abbreviation	Description
SD	Standard Deviation
PCA	Principle Component Analysis
CA	Cluster Analysis
SME	Small and Medium Enterprises
КРІ	Key Performance Indicators
EFF	Efficiency
DHU	Defects per Hundred Units
ABS	Absenteeism
LT	Labour Turn Over
MN: MC	Man to Machine Ratio
Q1	Quarter One
A-D	Anderson and Darling Test