30

IDENTIFY THE FACTORS INFLUENCING ON GRANTING CREDIT IN LENDING INSTITUTIONS

WALHD Weliwita

(08/10311)

Dissertation submitted in partial fulfillment of the requirements for the Degree

Master of Science in Operational Research

Department of Mathematics

80 880 M

University of Moratuwa

Sri Lanka

University of Moratuwa
105308

May 2013

51"13" 519.8 (043)

105308

Declaration of the Candidate

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any University or other institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another except where the acknowledgment is made in the text.

Signature: Hillwill

Date: 22/05/2013...

W. A. L. H. D. Weliwita

Declaration of the Supervisor

I have supervised and accepted this thesis/dissertation for the award of the degree.

UOM Verified Signature

Prof. T. S. G. Peiris,

Department of Mathematics

Faculty of Engineering

University of Moratuwa

Date: 23 Hay 2013

To my Parents and Husband

ACKNOWLEDGEMENT

Firstly, I would like to express my greatest appreciation and gratitude to my supervisor Prof. T. S. G. Peiris, Prof in Applied Statistics and the Head of the Department of Mathematics, University of Moratuwa for his continuous support, encouragement and precious guidance throughout the research. I could not have completed this thesis without his invaluable help in supervising my thesis with prompt and timely guidance.

Then I would like to thank all of my colleagues with whom I studied at the University of Moratuwa for their encouragement and assistant passed on to me throughout my M.Sc academic period are immense and highly appreciated. Last but not least, I would like to deeply thank my parents and my husband who always stand by me and they were the driving force on me during all the hardships toward the successful completion of the research.

ABSTRACT

Credit scoring system based on various criteria is widely used analysis technique of measuring customer credit worthiness by the Credit Information Bureaus (CIB) in many developed countries. However, such a system is not available in Sri Lanka. The aim of this study is therefore to identify the factors that influencing on granting credit in lending institutions in Sri Lanka and to recommend a criteria to identify potential borrowers. The required variables for the study were identified from the Bureau point of view and secondary data were collected from customer credit reports. Further, 75 customers who obtained credit were selected randomly and based on their credit profile eight important variables were derived.

The combination of Principal Component Analysis (PCA) and Factor Analysis (FA) was carried out to develop factors. The suitability of data for PCA was confirmed using Bartlett's Test ($X^2 = 206.092$, p= 0.000) and suitability for FA was confirmed by KMO statistic (KMO=0.532). The results of FA showed that the initial system of 8 variables can be reduced to 2-D system which account for nearly 52% of the initial variability. Of the identified two principal components, first component came from the, "own credit history" and the second was came from "guaranteed credit history". In order to have better interpretation the results obtained from PCA were rotated using orthogonal factors namely Varimax, Equimax and Quatimax and found that the results obtained were invariant on the type of rotation. Thus it can be concluded that, own credit history and the guaranteed credit history are the influential factors Depending on the variance representing by each factor, it can be concluded granting. that the own credit culture component is more significantly influence on the credit evaluation process than the guarantee component. However, in order to have the accurate credit decision on granting credit, it is required to consider both factors together by indentifying the importance depending on the representing variance. The finding in this study could be effectively employed to develop a suitable credit scoring system for the lending institutions. The study further showed the benefit of using multivariate techniques to solve some problems in lending institutes.

Key words: Principal Component Analysis, Factor analysis, Orthogonal rotations

TABLE OF CONTENTS

	Page
Declaration of the candidate	Ĩ
Declaration of the Supervisor	ii
Dedication	iti
Acknowledgement	iv
Abstract	v
Table of Contents	vi
List of Figures	ix
List of Tables	ix
List of Abbreviations	x
Chapter 1: Introduction	1
1.1 Back Ground of the Study	1
1.2 Role of Credit Information Bureau of Sri Lanka (CRIB)	2
1.3 Contend of the Credit Report	3
1.4 Current Procedure of Credit Evaluating	6
1.5 Importance of Identifying the Factors for Customer Credibility	6
1.6 Objective	8
1.7 Limitation of the Study	8
Chapter 2: Statistical Methodology	9
2.1 Overview	9
2.2 Standardized the Data	9
2.3 Principal Component Analysis (PCA)	9
2.3.1 Eigen value one criteria	11
2.3.2 The scree plot	11
2.3.3 Proportion of variance account for	12

2.3.4 The interpretability criteria	12
2.4 Mathematical Frame of the PCA	12
2.5 Factor Analysis (FA)	13
2.5.1 Factor extraction method	14
2.5.2 Factor rotation methods	14
2.5.3 Mathematical frame of factor analysis	15
2.5.4 Determining the number of factors	16
2.5.5 Criteria for selecting items	16
2.5.6 Bartlett's test of Sphericity	17
2.5.7 Kaiser-Mayer-Olkin(KMO) measure of sample adequacy	17
2.6 Selection of Variables	18
2.7 Gathering the Data for the Selected Variables	20
2.8 Data Analysis	21
Chapter 3: Results and Discussion	22
3.1 Preliminary Analysis of Data	22
3.1.1 Descriptive analysis	22
3.1.2 Test for normality	23
3.1.3 Association between variables	24
3.1.4 Test of correlation matrix	25
3.2 Identification of Principal Components to Retain	25
3.2.1 Eigen value one criteria	25
3.2.2 The scree plot	26
3.2.3 Proportion of variance account for	27
3.3 Eigen Scores of Selected Principal Components	27
3.4 Conformity for the Factor Analysis	28
3.5 Factor Extraction Using Principal Component Analysis (PCA)	29
3.6 Identify the Weights for Factors	32

3.7 Discussion	34
Chapter 4: Conclusions and Recommendations	36
4.1 Conclusions	36
4.2 Recommendations	37
References	38
Appendix	39
1.1 The Secondary Data	39
1.2 Probability Plots of the Selected Variables	42

LIST OF FIGURES

		Page
Figure 2.1	Steps of Principal Component Analysis	10
Figure 2.2	Geometric representation of PCA	12
Figure 2.3	Geometric representation of q- Factor Model	15
Figure 3.2	Scree plot	26

LIST OF TABLES

		Page
Table 2.1	Description of the variables	20
Table 3.1	Descriptive statistics of observed variables	22
Table 3.2	P-Values of Anderson- Darling Test	23
Table 3.3	Correlation matrix among the selected variables	24
Table 3.4	Results of Bartlett's Test	25
Table 3.5	Eigen value analysis of the correlation matrix	26
Table 3.6	Eigen scores of the selected Principal Components	27
Table 3.7	Results of KMO Test	28
Table 3.8	Rotated Factor loading and Communalities via Varimax	29
	Rotation of 3- Factor Model	
Table 3.9	Rotated Factor loading and Communalities via Equimax	31
	Rotation of 3- Factor Model	
Table 3.10	Rotated Factor loading and Communalities via Quartimax	31
	Rotation of 3- Factor Model	
Table 3.11	Identified variables for the selected 3- Factor model	32
Table 3.12	Factor Score Coefficients via Varimax Rotation of	33
	3- Factor model	

LIST OF ABBREVIATIONS

Abbreviation Description

CF Credit Facility

CRIB Credit Information Bureau

FA Factor Analysis

GRT Guaranteed

KMO Kaiser-Mayer-Olkin

NDIA Number of Days In Arrears

NIC National Identity Card

PCA Principle Component Analysis

SD Standard Deviation

SPSS Statistical Package for the Social Sciences