LIPRAPY UNIVERSITY OF MORATUMA, SEI LANKA RATUVIA

6,0 32

DEVELOPMENT OF AN ALGORITHM FOR OPTIMUM ALLOCATION OF MULTIPLE TEAMS TO BOREHOLE DRILLING SITES

U.N. Dilanthi

(08/10301)

Dissertation submitted in partial fulfillment of the requirements for the degree Master of Science in Operational Research

Department of Mathematics

University of Moratuwa

Sri Lanka

51"13" 519. 8(0+3)

105310

April 2013

105310

"I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any University or other institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text"

Totals

Dilanthi, UN (08/10301) 25 /0 4 / 2013 Date: "I have supervised and accepted this dissertation for the submission of the degree"

UOM Verified Signature Dr. Dissanayake, DMDOK Senior Lecturer Department of Earth Resources Engineering University of Moratuwa

24/04/2013 Date

То

Mining Engineers of GSMB, who are seeking ways to optimize their technical process

ACKNOWLEDGEMENT

I am heartily thankful to my supervisor, Dr. DMDOK Dissanayake - Senior Lecturer of Department of Earth Resources Engineering for his assistance and guidance in getting my postgraduate research related to mining/ geotechnical engineering. I appreciate his mentorship to achieve my long-term career goals.

I would also like to thank Dr. TSG Peiris - the course coordinator who made encourage completing and kept concern on time line of the research and I am grateful to Dr. MZM Malhardeen – the former Head of the Department of Mathematics for providing resource personnel and equipment throughout the post graduate degree program.

My special thank to Eng. M Rathnasiri – General Manager Engineering Laboratory Services Pvt. Ltd., Sri Lanka to providing me exposure to local geotechnical industry and Eng. (Ms.) NN Amarakoon - Assistant Manager Soil Investigation Division, Engineering Laboratory Services Pvt. Ltd., for making me aware up to date developments in the business management process of geotechnical investigation industry. I am very much grateful to Eng. IMCB Indisooriya for his continuous knowledge sharing on software programming part of the research.

Finally, and most importantly, I would like to thank my husband Marlon for his support and encouragement.

Dilanthi UN

ABSTRACT

Borehole drilling is one of the geotechnical investigations for foundation designing process of the construction industry. The growth of the construction industry requires an effective utilization of borehole drilling teams for the borehole drilling sites. It is similar to sending multiple travelling salesmen for multiple locations under the minimum over all travelling distance. In the borehole drilling, there are mainly two types of borehole drilling teams: wash boring teams and wash boring/ core drilling teams. And there are different accessible time periods for the sites. The service time of the locations are different and it can be predefined from the nature (number of holes, ground conditions, drilling length...etc.) of the drilling site job. It is expected that the difference of the total work duration among teams should be in an accepted level of difference.

The research outcome was an algorithm to provide a heuristic solution, answering which team does which job and when it is. Initially, filtering the job list was done, to group similar type of jobs together and, then groups the jobs, which require completion before the shutdown of the drilling teams. Clustering the two dimensional drilling sites to given number of teams were done to separate the jobs among the drilling teams. The outcome drilling site clusters total service time duration differences were minimized to a given accepted difference level by iteratively shifting jobs from the cluster, which has maximum total service time duration. This balancing was done with the minimum effect to the mean distance to the cluster centroids and avoiding oscillating between intermediate solutions of the iterations. The drilling site locations distance matrices were modified by adding the 'office location' and replacing 'big M' values for main diagonal distances of each outcome cluster and, sent through the Hungarian method, which is used for solving assignment problem in operational research. The outcome of the Hungarian method is the shortest path or set of sub routes. One of the distances of a respective two locations containing sub routes was replaced with 'big M' and rerunning through the Hungarian method was done. The graphical representations of given sub routes were taken as a guide for designing of the shortest path of each clustered drilling sites. When the number of drilling sites in a cluster is higher than ten, the given approach will become tedious, but in the geotechnical investigations industry it is not ranging higher than ten.

The above mentioned algorithm of allocation of drilling teams to multiple drilling sites, were shown better optimization over the traditional practice of 'instant team allocation for nearest location'.

TABLE OF CONTENTS

	Page
Declaration of the candidate	i
Declaration of the supervisor	ii
Dedication	iii
Acknowledgement	iv
Abstract	v
Table of contents	vi
List of Figures	ix
List of Tables	xi
List of abbreviations	xiii
List of annexure	xiv

C	HAPT	ER 1		1
ſŀ	ITROI	DUC	TION	1
	1.1	Geo	otechnical Investigation	2
	1.2	Bor	ehole Drilling	3
	1.3	Ар	proaches to Problem Domain	3
	1.3.	.1	Borehole Drilling Team	3
	1.3.	.2	Detailed List of Job Locations	4
	1.3.	.3	Inter Main Cities Distance Chart	4
	1.3.	.4	Cost Factors	5
	1.3.	.5	Borehole Drilling Process	5
	1.3	.6	Scheduling	5
	1.4	Esti	imation of Service Duration	6
	1.4	.1	Lithology Variation of the Sri Lankan Terrain	6
	1.5	Res	earch Problem	7
	1.6	Sig	nificance of the Research	

1.7	Data Used for the Algorithm Analysis	8
1.8	Outline of Thesis	8
CHAPT	ER 2	10
LITERA	TURE REVIEW	10
2.1	Introduction	10
2.2	Travelling Salesman Problem (TSP)	10
2.3	Multiple Travelling Salesman Problem (MTSP)	12
2.4	Practical Applications of MTSP	14
2.5	Multiple Vehicle Routing Problem (MVRP)	16
2.6	Mathematical Formulations of MTSP	16
2.7	Heuristic Solution Approaches for MTSP	17
2.8	Clustering For MTSP	18
2.9	The Enhancements of MTSP	21
CHAPT	ER 3	24
METHO	DOLOGY	24
3.1	Introduction	24
3.2	Identification of Parameters	26
3.2	.1 Input data	26
3.2	.2 Output Information	27
3.3	Pre-processing of Geotechnical Investigations Company Data	27
3.3	.1 Input Data of Massive Projects	28
3.4	Mathematical Representation of the Research Problem	28
3.4	.1 Input Data Representation	28
3.4	.2 Process Representation	29
3.5	Application of the Concepts of Operational Research Techniques	29
3.5	.1 K-means Clustering	29
3.5	.2 Hungarian Algorithm	31
3.6	.1 The Detailed Operation of the Proposed Algorithm	32
3.7	Psudocode for the Proposed Algorithm	38
3.8	The Code of the Developed Algorithm	39
3.9	Evaluation of the Algorithm in Financial Aspect	39
CHAPT	`ER 4	40
TEST A	ND ANALYSIS OF ALGORITHM	40

4.1	Introduction	40
4.2	Details of "Geo-Data set"	40
4.2	2.1 Lithology of the Geo-Data set drilling locations	43
4.3	Numerical Results and Answering Process for the Real Problem	43
4.3	8.1 Results from the Developed Algorithm	43
4.3	8.2 Results from the Existed Algorithm	68
4.4	Comparison of the Existed and Developed Algorithms	76
4.5	Comparison with Total Service Time Adjusted Allocations	78
4.6	Comparison with Improved Total Service Time Adjusted Allocations	83
4.7	Comparison of the Algorithms	92
4.8	Financial Benefit by the Developed Algorithm	92
4.9	Efficiency of the Developed Algorithm	92
СНАРТ	TER 5	94
DISCU	SSION AND CONCLUSION	94
5.1	Discussion	94
5.2	Conclusion	96
5.3	Future Works	97
ANNE	XURE - A: The Code of the Developed Algorithm	98
REFER	ENCES	127

LIST OF FIGURES

	Page
Figure 3.1: Three main phases of the research	25
Figure 4.1: 2D graphical representation of Geo dataset job locations	42
Figure 4.2: Graphical representation of Hungarian Algorithm output for Team 1	58
Figure 4.3: Graphical representation of Team 1 path after removing sub-tours	58
Figure 4.4: Graphical representation of Hungarian Algorithm output for Team 2	59
Figure 4.5: Graphical representation of Team-2 path after removing sub-tours	59
Figure 4.6: Graphical representation of Hungarian Algorithm output for Team 3	60
Figure 4.7: Graphical representation of Team-3 path after removing sub-tours	60
Figure 4.8: Graphical representation of Hungarian Algorithm output for Team 4	61
Figure 4.9: Graphical representation of Team-4 path after removing sub-tours	61
Figure 4.10: Graphical representation of Hungarian Algorithm output for Team 5	62
Figure 4.11: Graphical representation of Team-5 path after removing sub-tours	62
Figure 4.12: Path of the Team 1 by the existed method	68
Figure 4.13: Path of the Team 2 by the existed method	68
Figure 4.14: Path of the Team 3 by the existed method	69
Figure 4.15: Path of the Team 4 by the existed method	69
Figure 4.16: Path of the Team 5 by the existed method	70
Figure 4.17: Travelling distance for Geo data set given by the developed algorithm	76
Figure 4.18: Travelling distance for Geo data set given by the existed method	76
Figure 4.19: Travelling distance between job locations for Geo data set given by the	
developed algorithm	77
Figure 4.20: Travelling distance between job locations for Geo data set given by the e	xisted
algorithm	77
Figure 4.21: Path of the Team 2 by the existed method after service time adjustment	78
Figure 4.22: Path of the Team 4 by the existed method after service time adjustment	80
Figure 4.23: Travelling distance for Geo data set given by the existed method after to	tal
service time adjustment	82
Figure 4.24: Travelling distance of the job locations given by the existed method after	r total
service time adjustment	82
Figure 4.25: Improved existed method solution for the Team-1	83

Figure 4.26: Improved solution for the Team-2	84
Figure 4.27: Improved solution for the Team-3	84
Figure 4.28: Improved solution for the Team-4	85
Figure 4.29: Improved solution for the Team-5	85
Figure 4.30: Travelling distance for Geo data set given by the existed method after total	
service time adjustment and improvement	91
Figure 4.31: Travelling distance for inter job locations given by the existed method after	
total service time adjustment and improvement	91
Figure 5.1: Stages of the process of job locations list to the balanced clusters	95
Figure 5.2: Optimum balancing of total service time of clusters	

LIST OF TABLES

	Page
Table 4.1: Geo data set	41
Table 4.2: Initial cluster centroids	42
Table 4.3: Cluster centroids of iteration 1	43
Table 4.4: Cluster centroids of iteration 2	<mark>43</mark>
Table 4.5: Cluster centroids of iteration 3	44
Table 4.6: Cluster centroids of iteration 4	44
Table 4.7: Initial input for working group service time balancing process	45
Table 4.8: Iteration 1 output of working group service time balancing process	46
Table 4.9: Iteration 2 output of working group service time balancing process	47
Table 4.10: Iteration 3 output of working group service time balancing process	48
Table 4.11: Iteration 4 output of working group service time balancing process	49
Table 4.12: Iteration 5 output of working group service time balancing process	50
Table 4.13: Iteration 6 output of working group service time balancing process	51
Table 4.14: Iteration 7 output of working group service time balancing process	52
Table 4.15: Iteration 8 output of working group service time balancing process	53
Table4.16: Summary of the service time balancing process by the developed al	gorithm
	54
Table 4.17: The shortest path guide for Team 1 by Hungarian algorithm	55
Table 4.18: The shortest path guide for Team 2 by Hungarian algorithm	55

56 Table 4.19: The shortest path guide for Team 3 by Hungarian algorithm Table 4.20: The shortest path guide for Team 4 by Hungarian algorithm 56 Table 4.21: The shortest path guide for Team 5 by Hungarian algorithm 57 63 Table 4.22: Optimum solution by the developed algorithm for Team 1 Table 4.23: Optimum solution by the developed algorithm for Team 2 64 Table 4.24: Optimum solution by the developed algorithm for Team 3 65 Table 4.25: Optimum solution by the developed algorithm for Team 4 66 Table 4.26: Optimum solution by the developed algorithm for Team 5 67 Table 4.27: Allocation of Team-1 by the existed method 71 Table 4.28: Allocation of Team-2 by the existed method 72

Table 4.29: Allocation of Team-3 by the existed method	73
Table 4.30: Allocation of Team-4 by the existed method	74
Table 4.31: Allocation of Team-5 by the existed method	75
Table4.32: Allocation of Team-2 by the existed method after total service time	adjustment
	79
Table4.33: Allocation of Team-4 by the existed method after total service time	adjustment
	81
Table 4.34: Allocation of Team-1 by the improved existed method	86
Table 4.35: Allocation of Team-2 by the improved existed method	87
Table 4.36: Allocation of Team-3 by the improved existed method	88
Table 4.37: Allocation of Team-4 by the improved existed method	89
Table 4.38: Allocation of Team-5 by the improved existed method	90
Table 4.39: Comparison of the algorithms	92
Table 4.40: Processing time variation for the different accepted total service	time
differences	93

LIST OF ABBREVIATIONS

Abbreviation	Description
2D	Two Dimensional
ACO	Ant Colony Optimization
ATSP	Asymmetric Travelling Salesman Problem
CDWB	Core Drilling and Wash Boring
CTSP	Competitive Travelling Salesman Problem
GA	Genetic Algorithm
GTSP	Generalized Travelling Salesman Problem
HRL	Hierarchical Reinforcement Learning
IP	Integer Programming
MTSP	Multiple Travelling Salesman Problem
MTSPTW	Multiple Travelling Salesman Problem with Time Window
MVRP	Multiple Vehicle Routing Problem
NN	Neural Network
PDP	Pickup and Delivery Problem
SEC	Sub-tour Elimination Constraint
STSP	Symmetric Travelling Salesman Problem
TSP	Travelling Salesman Problem
TSPPC	Travelling Salesman Problem with Precedence Constraints
VRP	Vehicle Routing Problem
VRPTW	Vehicle Routing Problem with Time Window
WB	Wash Boring

LIST OF ANNEXURE

Annexure

Description

Page

Annexure - A

The Code of the Developed Algorithm

98