INCURRED BUT NOT REPORTED CLAIMS RESERVES ESTIMATES METHODS FOR AUTO INSURANCE

B. C. Jeewantha 07/8512

Dissertation submitted in partial fulfillment of the requirements for the degree Master of Science in Financial Mathematics

Department of Mathematics

University of Moratuwa Sri Lanka

University of Moratuwa
105316

51"12" 336:51 (013)

November 2012

105316 † co-kon

DECLARATION OF THE CANDIDATE

I hereby certify that this dissertation does not incorporate acknowledgement of any material previously submitted for a degree or Diploma in any University, and to the best of my knowledge and belief it does not contain any material previously published or written by another person or myself expect where due reference is made in the next text.

UOM Verified Signature

30-11-2012

B. Chathura Jeewantha

(07/8512)

Date

DECLARATION OF THE SUPERVISOR

I have supervised and accepted this dissertation for	or the submission of the degree.
A.R.Dissanayake	Date
(Supervisor)	
Senior Lecturer	
Department of Mathematics,	
Faculty of Engineering,	
University of Mortuwa.	

ACKNOWLEDGEMENT

I wish to express my sincere gratitude to my supervisor, senior lecturer, Mr. A.R.Dissanayake, Department of Mathematics, University of Mortuwa, for providing me an opportunity to do my project work on "Incurred but Not Reported Claims Estimates Methods for Auto Insurance".

I sincerely thank to Mr. Stanley Perera, Head Actuarial Services - General Insurance, AVIVA NDB Insurance PLC, for guidance and encouragement in carrying out this project work. I also wish to express my gratitude to Mr. Indika Sidantha Karunaratne, the Manager- Reinsurance, Continental Insurance Lanka Limited, who rendered his help during the period of my project work. I would like to thank Mr. A.N. Jayasundara, the Manager - Surveys and Studies, Sri Lanka Business Development Center, for his friendship and supports.

Last but not least I wish to avail myself of this opportunity, express a sense of gratitude and love to my friends and my beloved parents for their manual support, strength, and help and for everything.

B.C.Jeewantha

November 2011

ABSTRACT

Due to unprecedented increase in motor insurance coverage, insurance companies are more focus on their financial reporting and general actuaries desire to incorporate more statistical concepts into their daily responsibilities, such as reserve estimates. Recognizing this increased financial oversight, this paper considers develop a model to estimates the Incurred But Not Reported Claims Reserves (IBNR) for Sri Lankan Auto Insurance Market, specifically geared for the work of general actuaries in auto insurance industry. Development factor method also known as completion factor method with the chain ladder approach used to derive the IBNR estimate as a deterministic approach and the regression approach used to develop a model to estimate IBNR for the most recent months. However, combining framework for both methods is important on the same problem. Using the both deterministic and statistical methods, identify the linear and log linear regression models to estimate the IBNR claims for the recent months and then the total estimates throughout the time period after comparing the estimated values with the values obtained from the completion factor method. The developed models will geared for the work of general actuaries in auto insurance in Sri Lankan insurance industry and this will serves to stimulate further research and development of innovative techniques for more accurate IBNR predictions.

TABLE OF CONTENTS

Declaration	of the c	candidate	i
Declaration	of the s	supervisor	ii
Acknowledg	ements	3	iii
Abstract			iv
Table of con	tent		v
List of Figur	es		vii
List of Table	s		viii
List of Form	ulas		x
Chapter 1:	Intro	duction	1
	1.1	Defining the Insurance	1
	1.2	Types of Insurance	1
	1.3	Insurance Operations	3
	1.4	General Insurance	7
	1.5	Background	9
	1.6	Objective	10
	1.7	Significance of Research	10
	1.8	Scope and Limitation	10
Chapter 2:	Litera	ature Review	11
Chapter 3:	Meth	odology	17
	3.1	Introduction	17
	3.2	Data Collection	17

	3.3	Defining Data Set	17
	3.4	Presentation of Data	18
	3.5	Methods and Theories Behind the Data Analysis	20
		3.5.1 Development Method	20
		3.5.2 Mechanics of Development Method	21
		3.5.3 Chain Ladder Development Approach	24
		3.5.4 Limitations of the Completion Factor Method	27
		3.5.5 Per Member Per Month Method	28
		3.5.6 Key Statistical Terms	28
Chapter 4:	Analysis of Data		44
	4.1	Introduction	44
	4.2	Determination of Outliers and Preparation of Data	44
	4.3	Development Factor Implementation	46
	4.4	Estimate Claims Reserves (IBNR)	49
	4.5	Model Identification	50
Chapter 5:	Discı	ussion, Conclusion and Further Research	65
	5.1	Discussion	65
	5.2	Conclusion	69
	5.3	Further Research	70
Reference Li	st		71

LIST OF FIGURES

		Page
Figure 1.3.1	Fluid Process of an Insurance Company	03
Figure 4.2.1	Outliers Plot	45
Figure 4.5.1	PMPM vs. MNTH Scater Plot	53
Figure 4.5.2	Actual, Fitted and Residual Plot	58
Figure 4.5.3	Jarque-Beratest Statistic for Best Fitted Model	59
Figure 4.5.4	Scatter Plot of Residuals for the Fitted Model	60
Figure 4.5.5	Actual, Fitted and Residual Plot for the Initial Model	61
Figure 4.5.6	Jarque-Bera Test Statistic for Initial Model	62
Figure 4.5.7	Scatter Plot of Residuals for the Initial Model	63

LIST OF TABLES

		Page
3.4.1	Sample Paid vs. Incurred Month Grid (Triangle)	19
3.4.2	Sample Data of the Membership Information	19
3.5.2 a	Claims Incurred, August 2010	21
3.5.2b	Derivation of Development and Completion Factors	22
3.5.2c	Claims Incurred August – December 2010, Paid Through Dec	22
3.5.2d	Claims Incurred August – December 2010, Paid Through Dec	23
3.5.2e	IBNR Claims Reserves as of December 2010	23
3.5.3 a	Cumulative Paid Claims by Incurred Month and Lag	25
3.5.3ъ	Chain Ladder Method Intermediate Cumulative Sums	25
3.5.3c	Development Factor Estimates	26
3.5.3d	Estimated Completion Factors	26
3.5.3e	Estimated IBNR	27
4.2.1	Sample Original Data Table	46
4.2.2	Paid vs. Incurred Month Grid (Triangle)	46
4.3.1	Month Lag vs. Incurred Month Grid	47
4.3.2	Intermediate Step of the Chain Ladder Approach	47
4.3.3	Calculating the Completion Factor Using Chain Ladder Method	48
4.3.4	Sample Completion Factor Table	48
4.4.1	Estimate Claims Reserves (IBNR) Using Completion Factor Method	49
4.5.1	Sample Data Table for Regression Analysis	51
4.5.2	Descriptive Statistics Results	52
4.5.3	Linear Regression Initial Model	54
4.5.4	Alternative Model Comparison Results Table	56
4.5.5	Regression Results of the Best Fitted Model	57
4.5.6	IBNR Calculated Summary Table	64
4.5.7	Total IBNR Figure	64
5.1.1	Calculate IBNR Using Completion Factor Method	66

		Page
5.1.2	Data Table for Regression Analysis	67
5.1.3	Estimated IBNR for the Lag Month 0 and 1	68
5.1.4	Total IBNR Figure	68
5.1.5	Results Comparison Table	69

LIST OF FORMULAS

		Page
3.5.2a	Development Factor	21
3.5.2b	Completion Factor	22
3.5.3a	Development Factor (Based on Incurred Months)	25
3.5.3b	Estimated Completion Factor	26
3.5.3c	Estimated Incurred	27
3.5.3d	Incurred But Not Reported Claims	27