EN 63/19

1B/DON/82/2015

UNIVERSITY OF MORATUWA

LIBRARY UNIVERSITY OF MORATUWA, SRI LANKA MORATUWA

AN MMSE-BASED MCI AND MAI CANCELLATION RECEIVER FOR MIMO OVSF-OFCDMA SYSTEMS

By

Nuwan Kithsiri Kumara

A DISSERTATION

621.38 12"

Submitted to the Faculty of Engineering of the University of Moratuwa in partial fulfillment of the requirements for the degree of Master of Science in Telecommunications

> Moratuwa, Sri Lanka April, 2012 University of Moratuwa I 09286

> > - 109286

109286

TH2935

UNIVERSITY OF MORATUWA

A dissertation submitted in partial fulfillment of the requirements for the degree of Master of Science in Telecommunications

AN MMSE-BASED MCI AND MAI CANCELLATION RECEIVER FOR MIMO OVSF-OFCDMA SYSTEMS

Nuwan Kithsiri Kumara

Approved:

UOM Verified Signature

Dr. K.C.B. Wavegedara Research Supervisor, Senior Lecturer, Electronics and Telecommunications Engineering Faculty of Engineering University of Moratuwa

Declaration

This thesis to the best of my knowledge and belief, contains no material that has been accepted for the award of any other degree or recognized qualification by a university or institute of higher learning and it contains no material previously published or written by another person, except where due reference is made in the text of the thesis. I also hereby give consent for my dissertation, if accepted, to be made available for photocopying and for inter-library loans, and for the title and summary to be made available to outside organizations.

UOM Verified Signature

P.D.N.K.Kumara July 2010 (Signature of the student)

This is to certify that the above statement made by the student is correct to the best of my knowledge.

UOM Verified Signature

Dr. K.C.B. Wavegedara Senior Lecturer

Dept. of Electronic & Telecommuni-

cation Engineering

Faculty of Engineering

University of Moratuwa

(Signature of the supervisor)

Abstract

Kumara, Nuwan Kithsiri

(Master of Science in Telecommunications)

AN MMSE-BASED MCI AND ISSI CANCELLATION RECEIVER FOR MIMO OVSF-OFCDMA SYSTEMS

(April, 2012)

Abstract of a dissertation at the University of Moratuwa. Dissertation supervised by Dr. K.C.B. Wavegedara

Broadband orthogonal frequency code division multiple access (OFCDMA) with two dimensional spreading is a promising candidate for Beyond fourth Generation (B4G) networks. Since wideband channels are highly frequency-selective, orthogonality among orthogonal spreading codes are no longer maintained. Therefore, multiple code interference (MCI) is inevitable in OFCDMA-based systems. Multiple-Input Multiple-Output (MIMO) will be a key technology of future wireless communication systems. In MIMO-OFCDMA systems, in addition to MCI, inter-spatial stream interference (ISSI) will also exist. Even though maximum a posteriori probability (MAP)-based detectors provide the best performance, their computational complexity is high. Alternatively, minimum mean-square error (MMSE) detectors can be used to obtain a better tradeoff between the complexity and the performance.

Several interference cancellation techniques were proposed under LTE Advanced, B4G standardizations and corresponding literature. One such technique is zero-forcing MAI nulling and cancellation based on QR decomposition (ZF-QRD). That can be used to cancel the MAI separately. But we are proposing a combined ISSI and MCI cancellation technique. We also compare the performance of MIMO VSF-OFCDMA recursive ISSI and MCI cancellation scheme with conventional MC-CDMA, MC-DS-CDMA, MT-CDMA and OFCDMA.

i

To my parents ...

Acknowledgments

First and foremost, I wish to express my heartfelt sincere gratitude to my research supervisor, Dr. K.C.B. Wavegedara, Senior Lecturer, Department of Electronic and Telecommunication Engineering, University of Moratuwa. I am very much indebted to you sir, for all your assistance given to me during my research. I must admit that your advice as well as your criticism kept me on track and helped me immensely in achieving my goals.

I would also like to thank Dr. A. Pasqual for the guidance and support shown as our PG coordinator making it all possible.

On a more personal note, I am extremely indebted to my beloved parents and my dearest wife Gayathri for being a constant source of inspiration, strength and encouragement throughout this endeavor. As the adage goes "last but not the least", I would like to thank all my colleagues who made every minute of this course a memorable one, unforgettable for many a life time.

Contents

List of	Figures	vi
List of	Tables	viii
CHAP	TER 1 Introduction	1
1.1	Background	1
1.2	Multicarrier Modulation	2
1.3	Motivation	3
1.4	Objectives and Scope	4
	1.4.1 Objectives	4
	1.4.2 Scope	4
1.5	Definitions	4
1.6	Notations	5
CHAP	TER 2 Multicarrier Code Division Multiple Access	6
2.1	MC-CDMA	6
2.2	CDMA/OFDM	10
2.3	MC-DS-CDMA	12
2.4	MT-CDMA	13
2.5	OFCDM	15
2.6	Summary	15
CILAD	TED 2 Orthogonal Frequency Code Division Multiple Access	177
CHAP	TER 5 Orthogonal frequency Code Division Multiple Access	17
3.1	Frequency and Time domain spreading	17
3.2	Transceiver Structure	19
3.3	Pilot Signal and Channel estimation	19
3.4	MCI Cancellation with MMSE detection	19

CHAPTER 4 Turbo-Coded OFCDMA	25
4.1 Structure of Turbo Encoder and Decoder	25
4.1.1 Solution for forward, backward and transition probabilities	28
4.1.2 Turbo Iterative decoding	30
4.1.3 Extrinsic Information	32
4.2 OFCDMA with Turbo Coding	33
CHAPTER 5 System Model	35
5.1 Conventional OFCDM transceiver	35
5.1.1 Channel estimation at the Receiver	36
5.1.2 Time and Frequency despreading with MMSE Detection	37
5.2 MIMO OFCDMA	38
CHAPTER 6 Proposed Receiver Scheme	40
6.1 Adaptive MMSE Weights for ISSI/MCI Mitigation	40
6.1.1 MMSE Weights for combined ISSI and MCI cancellation	48
6.2 Hybrid ISSI and MCI cancellation with MMSE detection	50
CHAPTER 7 Results and Discussions	55
CHAPTER 8 Conclusion and Further Research	59
Bibliography	60

v

List of Figures

2.1	Original MC-CDMA system adapted from [1]	7
2.2	MC-CDMA scheme adapted from [2]	8
2.3	MC-CDMA scheme for downlink	9
2.4	First MC-CDMA scheme adapted from [3]	11
2.5	Second MC-CDMA scheme adapted from [3]	12
2.6	MC-DS-CDMA scheme adapted from [4]	13
2.7	MC-DS-CDMA scheme adapted from [5]	14
2.8	MT-CDMA scheme adapted from [6]	14
3.1	OFCDM Code Spreading for Code 1, Code 2, Code 3 and Code 4	18
3.2	Simple OFCDM Transmitter	20
3.3	Simple OFCDM Receiver	21
3.4	MCI Cancellation With MMSE	22
3.5	OFCDM Code Spreading in frequency and time domain	23
4.1	A classical NSC encoder	26
4.2	A classical RSC encoder	26
4.3	Recursive Systematic codes with Parallel Concatenation	27
4.4	Structure of Turbo Decoder	31
4.5	Structure of Turbo Decoder with proper Extrinsic Information	32
5.1	Channel Response Function	37
6.1	Turbo Coded OFCDMA Transmitter	41
6.2	OFCDM with MIMO Transmitter Model	45
6.3	OFCDM with MIMO Receiver Model	46
6.4	Spreading Code Sets	47

7.1	BER performance of hybrid MCI cancellation with MMSE detection With proper	
	channel estimation and channel model	56
7.2	Hybrid ISSI and MCI cancellation with modified MMSE	57
7.3	Hybrid MAI and MCI cancellation with modified MMSE	58

List of Tables

2.1 MC CDMA Proposals

. . . 16

. .

. . .

. . .

.

