DESIGN AND SIMULATION OF FUZZY INFERENCE BASED MULTIPLE PID CONTROLLERS FOR 6-DOF UNMANNED UNDERWATER VEHICLE

LIBRARY UNIVERSITY OF MORATUWA, SRI LANKA MORATUWA

Charita Darshana Makavita

(108407T)

Thesis submitted in partial fulfillment of the requirements for the degree Master of Science in Electronics and Automation

621.38 "4" 621.38+681.5(043)

Department of Electronics and Telecommunication Engineering

University of Moratuwa Sri Lanka

107115

January 2014

107115

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature: UOM Verified Signature

Date: 13/01/2014

The above candidate has carried out research for the Master's thesis under my supervision.

UOM Verified Signature

Signature of the supervisor:

Prof. Rohan Munasinghe PhD, CEng, MIE(SL), MIEEE Senior Lecturer Department of Electronic and Telecommunication Engineering University of Moratuwa.

20.01.2014 Date:

i

ABSTRACT

Design and Simulation of Fuzzy Inference Based Multiple PID Controllers for 6-DOF Unmanned Underwater Vehicle

Keywords: PID, fuzzy, inference, multiple controllers, UUV, unmanned, underwater vehicle

Unmanned underwater vehicles are currently being utilised for scientific, commercial and military underwater applications. These vehicles require autonomous guidance and control systems in order to perform underwater tasks. Modelling, simulation and control of these vehicles are still major active areas of research and development.

This thesis explores the design of a control system for a 6-Dof unmanned underwater vehicle. The thesis consists of two phases; the first involves the design of three single decoupled PID controllers for surge, yaw and depth. Then it is shown that it is not possible to cover the entire range of operations of UUV using only single controller by simulation using MATLAB SIMULINK. The second phase is concerned with the design of multiple PID controllers covering the entire range of UUV operation, as well as the fuzzy inference based supervisor design to switch between the different controllers as the operations conditions vary.

The design of the PID controllers are based on MATLAB PID tuning algorithms which is a robust response time tuning algorithms that allows for faster design process with robust gain values. It is shown that these new tuning methods as well as graphical tuning interface overcome the adhoc and time consuming process of finding the PID gains. Further it is shown that fuzzy gain scheduling using fuzzy inference mechanism is a valid method for controlling a UUV with nonlinear dynamics.

It can be concluded that new tools such as MATLAB tuning algorithms and Fuzzy toolbox allows for fast and accurate design of controllers for highly complex systems as well as the viability of fuzzy inference multiple controllers as a method for UUV control with desired response characteristics. Finally the author recommends an actual vehicle implementation and testing as future work to be carried out. To my parents and teachers

ACKNOWLEDGMENTS

The research project within the Master of Science degree program provides a great opportunity to apply the engineering knowledge gained through the taught modules to a real world scenario. During this period of research I gained vast amount of knowledge and practice with the support of numerous parties. Therefore I would like to thank them all for the successful completion of the project.

First and foremost I wish to convey my sincere gratitude to Prof. Rohan Munasinghe, course coordinator of the Master in Science in Electronics and Automation Engineering and my thesis supervisor. He gave the knowledge on control theories which encouraged me to pursue a research in control related area. As my supervisor he continuously encouraged and guided me to the successful, completion of the research project.

I would like to thank Dr. Ajith Pasqual, Head of the Department of Electronic and Telecommunication Engineering, for leading us with the supporting hand.

I would also thank Prof. Dev Ranmuthugala of Australian Maritime College who introduced me to the idea of unmanned underwater vehicles and encouraged me to pursue the master's thesis in relation to that field.

Finally I would like to thank all the members of the academic staff, for sharing their knowledge and previous experiences with us, in successful completion of the project, all the non-academic staff members and our batch mates for giving me support in numerous ways.

TABLE OF CONTENTS

De	clarati	on		i
Ab	astract	t		ii
Ac	knowl	edgmer	its	iv
Tał	ole of	Content	s	v
List of Figures vii				
List of Tables x				x
List of Abbraviations xi			xiii	
1.	1. Introduction 1			
2.	Modeling of Unmanned Underwater Vehicle (UUV)			5
	2.1	UUVI	Kinematics	5
		2.1.1 F	Reference frames	5
		2.1.2 5	Six-DOF kinematics equations	7
	2.2	UUVI	Dynamics	9
		2.2.1	Rigid body dynamics	9
		2.2.2	Longitudinal and lateral models	13
	2.3	The U	UV Model Used For Simulation	18
		2.3.1	Rational for model selection	19
		2.3.2	The 6-DOF model	19
		2.3.3	Problems in the model	22
		2.3.4	Linear state space dynamic equations of the NPS model	25
3.	UUV	Contro	oller Design	26
	3.1	Surge	Controller	26
	3.2	Headin	ng Controller	36
	3.3	Depth	Plane Controller	44
		3.3.1	Pitch loop controller	46
		3.3.2	Depth loop controller	49
4. Testing of Decoupled PID Controllers			coupled PID Controllers	57
	4.1	Testing Heading Controller		57
		4.1.17	Fest1: derivative gain of heading controller	57
		4.1.2	Fest 2: proportional gain of the heading controller	59
		4.1.3 5	Summary of heading controller test	60

4.2	Testing Depth/Pitch Controller	61
	4.2.1 Test3: proportional gain of depth controller	61
	4.2.2 Test 4: proportional gain of pitch controller	63
	4.2.3 Test 5: derivative gain of pitch controller	64
	4.2.4 Summary of results of depth controller test	66
4.3	Testing Surge Controller	66
	4.3.1 Test6: proportional and integral gains of surge controller	€6
4.4	Conclusion	71
5. Multi	ple PID Controller Design	69
5.1	Heading PID Controllers	69
	5.1.1 Gains of the multiple heading controllers	69
5.2	Depth PID Controllers	70
	5.2.1 Gains of multiple dive plane controllers	70
6. Fuzzy	Gain Scheduling Supervisor Design	71
6.1	Heading Fuzzy Supervisor Design	71
6.2	Depth Fuzzy Supervisor Design	76
7. GUI I	nterface Design and Final Testing	82
7.1 (GUI Interface Design	82
7.2	Testing of the Fuzzy Gain Scheduled PID Controller Performance	e 84
	7.2.1 Heading controller results	84
	7.2.2Depth controller results	86
8. Discu	ssion	88
9. Concl	usion	90
10. Futu	re Work	91
Referen	ce List	92

LIST OF FIGURES

	Page
Figure 1.1: Remotely Operated Vehicle	1
Figure 1.2: Autonomous Underwater Vehicle	1
Figure 2.1: Earth fixed and Body fixed reference frames	6
Figure 2.2: NPS AUV II	18
Figure 3.1: Step response of controller in equation 3.1	27
Figure 3.2: Step response of controller in equation 3.2 Figure 3.3: Step response of controller in equation 3.3	28 28
Figure 3.4: Controller effort of controller in equation 3.3 Figure 3.5: Step response of controller in equation 3.4 Figure 3.6: Controller effort of controller in equation 3.4 Figure 3.7: Simulink model of surge controller simulation	29 29 30 30
Figure 3.8: Speed (m/s) vs. time (s) for a unit step input	31
Figure 3.9: Propeller rate (RPM) vs. time(s) for a unit step input	31
Figure 3.10: Normalized speed (m/s) vs. time(s) for a unit step input	32
Figure 3.11: Normalized speed (m/s) vs. time(s) with anti windup Figure 3.12: Two step speed response (m/s) vs. time(s) without anti windup	33 33
Figure 3.13: Unit step response (m/s) vs. time(s) without anti windup	34
Figure 3.14: Full nonlinear simulink model for surge control	34
Figure 3.15: Normalized speed (m/s) vs. time(s) for nonlinear model	35
Figure 3.16: Propeller rate (RPM) vs. time(s) for nonlinear model	35
Figure 3.17 : Unit step response at different speeds	36
Figure 3.18: Unit step response for controller in equation 3.5	37
Figure 3.19: Unit step response for controller in equation 3.6	38
Figure 3.20: Unit step response for controller in equation 3.7	38
Figure 3.21: Initial simulink linear model for heading controller	39
Figure 3.22: 60 [°] response (in degrees) vs. time(s) of heading controller	39
Figure 3.23: Rudder deflection (degrees) vs. Time (s) for heading controller	40
Figure 3.24: New Simulink Model for Heading Controller	40
Figure 3.25: 60 [°] response (in degrees) vs. time(s) of heading controller	41
Figure 3.26: Rudder deflection (degrees) vs. time (s) for heading controller	41
Figure 3.27: Nonlinear simulink model for heading controller	42
Figure 3.28: 60 [°] response (in degrees) vs. time(s) of heading controller	42

Figure 3.29: Rudder deflection (degrees) vs. time (s) for heading controller	43
Figure 3.30: 60 [°] response at different speeds of heading controller	43
Figure 3.31: Normalized yaw response of heading controller	44
Figure 3.32: Block diagram of depth transfer function	44
Figure 3.33: Double loop depth control system	45
Figure 3.34: Block diagram of inner loop structure 1	46
Figure 3.35: Block diagram of inner loop structure 2	46
Figure 3.36: Step response of controller in equation 3.8	48
Figure 3.37: Step response of controller in equation 3.9	49
Figure 3.38: Block diagram of outer loop	49
Figure 3.39: Step response of controller in equation 3.10	50
Figure 3.40: Step response of controller in equation 3.11	51
Figure 3.41: Simulink linear model for depth plane controller	51
Figure 3.42: Unit response (m) vs. time(s) of depth controller	52
Figure 3.43: Pitch response (in degrees) vs. time(s) of depth controller	52
Figure 3.44: Stern plane deflection (degrees) vs. time(s) of depth controller	53
Figure 3.45: Nonlinear simulink model for depth controller	53
Figure 3.46: Unit response (in meters) vs. time(s) of depth controller	54
Figure 3.47: Pitch response (in degrees) vs. time(s) of depth controller	54
Figure 3.48: Stern plane deflection (degrees) vs. time(s) of depth controller	54
Figure 3.49: 1m dive at different speeds of depth controller	55
Figure 3.50: Normalized depth response at U0of depth controller	56
Figure 3.51: Normalized depth response at 3U0of depth controller	56
Figure 6.1: Membership function plots of speed variable	71
Figure 6.2: Membership function plots of yaw variable	72
Figure 6.3: Rule editor with rules added	75
Figure 6.4: Surface mapping inputs to output variable K_P	75
Figure 6.5: Surface mapping inputs to output variable K_D	76
Figure 6.6: Membership function plots of speed variable	76
Figure 6.7: Membership function plots of depth variable	77
Figure 6.8: Rule editor with rules added	80
Figure 6.9: Surface mapping inputs to output variable pitch K_P	80
Figure 6.10: Surface mapping inputs to output variable pitch K_D	81
Figure 6.11: Surface mapping inputs to output variable depth	81

Figure 7.1: GUI Interface with default	82
Figure 7.2: GUI interface with new values	83
Figure 7.3: GUI interface with speed and heading	83
Figure 7.4: GUI interface with speed and depth output	84

LIST OF TABLES

Pa	age
Table 4.1: Settling time in seconds for changes in K_D of heading controller	58
Table 4.2: Peak overshoot for changes in K_D of heading controller	58
Table 4.3: Speed hit in m/s for changes in K_D of heading controller	59
Table 4.4: Settling time in seconds for changes in K_p of heading controller	60
Table 4.5: Peak overshoot for changes in K_p of heading controller	60
Table 4.6: Speed hit in m/s for changes in K_p of heading controller	60
Table 4.7: Settling time in seconds for changes in K_P of depth controller	62
Table 4.8 : Peak overshoot for changes in K_P of depth controller	62
Table 4.9: Speed hit in m/s for changes in K_P of depth controller	63
Table 4.10: Settling time in seconds for changes in K_P of pitch controller	64
Table 4.11: Peak overshoot for changes in K_P of pitch controller	64
Table 4.12: Speed hit in m/s for changes in K_P of pitch controller	64
Table 4.13: Settling time in seconds for changes in K_D of pitch controller	65
Table 4.14 : Peak overshoot for changes in K_D of pitch controller	65
Table 4.15: Speed hit in m/s for changes in K_D of pitch controller	66
Table 4.16: Performance Criteria of Surge Controller	67
Table 5.1 : Proportional gain values of heading controllers	69
Table 5.2: Derivative gain values of heading controllers	70
Table 5.3 : Proportional gain values of pitch controllers	70
Table 5.4: Derivative gain values of pitch controllers	70
Table 5.5: Proportional gain values of depth controllers	70
Table 6.1 : Singletons of output variable K_P	72
Table 6.2: Singletons of output variable K _D	73
Table 6.3 : Singletons of output variable pitch K_P	77
Table 6.4: Singletons of output variable pitch K_D	78
Table 6.5 : Singletons of output variable depth K_P	78
Table 7.1: Settling time results for heading control of initial operating conditions	84
Table 7.2: Peak overshoot results for heading control of initial operating condition	85
Table 7.3: Speed hit results for heading control of initial operating conditions	85
Table 7.4: Settling time results for heading control of intermediate operating point	85

Table 7.5: Peak overshoot results for heading control of intermediate operating points	85
Table 7.6: Speed hit results for heading control of intermediate operating points	86
Table 7.7: Settling time results for depth control of initial operating conditions	86
Table 7.8: Peak overshoot results for depth control of initial operating conditions	86
Table 7.9: Speed hit results for depth control of initial operating conditions	86
Table 7.10: Settling time results for depth control of intermediate operating points	87
Table 7.11: Peak overshoot results for depth control of intermediate operating points	87
Table 7.12: Settling Speed hit Results for depth control of intermediate operating point	s87

LIST OF ABBREVIATIONS

Description AUV Automated Underwater Vehicle CB Centre of Buoyancy CG Centre of Gravity CGS Conventional Gain Scheduling DOF Degrees Of Freedom FGS Fuzzy Gain Scheduling GUI Graphical User Interface **GUIDE GUI Development Environment** NED North-East-Down NPS Naval Postgraduate School MSS Marine systems Simulator PD **Proportional Derivative** PI Proportional Integral PID Proportional Integral Derivative ROV **Remotely Operated Vehicle** Unmanned Aerial Vehicle UAV URV Underwater Recovery Vehicle UUV Unmanned Underwater Vehicle

Abbreviation