LB/DON/85/06

COLOUR REMOVAL FROM TEXTILE EFFLUENT USING AGRICULTURAL WASTE AS ADSORBENTS

MASTER OF SCIENCE

P.A.JAYASINGHE

UNIVERSITY OF MORATUWA

MARCH 2006

85386

85386

COLOUR REMOVAL FROM TEXTILE EFFLUENT USING AGRICULTURAL WASTE AS ADSORBENTS

a

By

P.A.JAYASINGHE

THIS THESIS WAS SUBMITTED TO THE DEPARTMENT OF CHEMICAL AND PROCESS ENGINEERING OF THE UNIVERSITY OF MORATUWA IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF CHEMICAL AND PROCESS ENGINEERING UNIVERSITY OF MORATUWA MORATUWA SRI LANKA

66 °06 66 (043)

MARCH 2006

DECLARATION

I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any university and to the best of my knowledge and belief it does not contain any material previously published, written or orally communicated by another person except, where due reference is made in the text.

UOM Verified Signature

P.A.Jayasinghe

٦

4

Certified by UOM Verified Signature Supervisor

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

ACKNOWLEDGEMENT

د.

From the very beginning I would like to offer my grateful thanks to Dr. (Mrs). Padma Amarasinghe, Senior Lecturer, Department of Chemical & Process Engineering, University of Moratuwa, who guided and supervised me as my supervisor an excellent way through out the research. Then I must offer my sincere thanks to Dr. (Ms).Maneesha Gunesekara, Senior Lecturer, Department of Chemical & Process Engineering, University of Moratuwa, who guided me in all respect being my co supervisor.

Special thank goes to the Dr. Suren Wijekoon and Dr. Shantha Walpolage, Senior Lecturer, Department of Chemical & Process Engineering, University of Moratuwa, for the valuable comments and suggestions given, as my progress review committee members. Prof. Ajith De Alwis, Head of the Chemical & Process Department and all the lecturers of the Department of Chemical & Process Engineering, University of Moratuwa, who helped me in various ways to complete this successfully, must be specially mentioned.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Then I am very much grateful to the University Research Grants for funding my research project.

Non academic staffs of the Environmental Engineering and Energy Engineering lab, Department of Chemical & Process Engineering, specially Dinusha, Saranelis and Lalith and reminded with heartful of thanks for their support given me in various occasions.

I warmly remind my beloved parents, sister, brother and Aruna for all the encouragement and the support given me as usual. Without their help this effect would have not been success.

Finally, I would like to thanks all postgraduate students of the Department of Chemical & Process Engineering, specially Malka, Oshadi, Gayan, Yashodini, Savitha, Thanuja and Chinthaka who were with me and gave the best support me to successful this event by making the research period pleasant and enjoyable.

i

CONTENTS

Acknowledgement	i
List of Tables	v
List of Figures	vi
List of Annexures	viii
Abbreviations	viii
Abstract	ix

CHAPTER 1: INTRODUCTION

4

Þ

4

1.1 Introduction	01
1.2 Problems of textile effluents	01
1.3 Textile effluent treatments	02
1.4 Objectives of the research	03

CHAPTER 2: LITERATURE REVIEW

2.1 Methods of dye house effluent treatment	05
2.2 Adsorption as the best option	06
2.3 Production techniques of adsorbents	08
2.3.1 Chemical activation	08
2.3.2 Steam activation	08
2.4 History of adsorption	09
2.5 Theory of adsorption	09
2.5.1 Adsorption kinetics	10
2.5.2 Adsorption equilibria	10
2.5.2.1 Langmuir adsorption isotherm	11
2.5.2.2 Freundlich adsorption isotherm	12
2.5.3 Adsorption VS other separation processes	13
2.5.4 Modes of operations	13
2.5.4.1 Single stage operation	14
2.5.4.2 Multistage crosscurrent operation	15
2.5.4.3 Multistage countercurrent operation	17
2.5.4.4 Fixed bed adsorption operation	18
2.6 Bed depth service time (BDST) model	22
2.7 Previous literature on adsorption	23

2.7.1 Effect of surface area on adsorption	25
2.7.2 Effect of pH on adsorption	26
2.7.3 Effect of other properties on adsorption	27
2.7.4 Adsorption isotherms	28
2.7.5 Batch processes Vs fixed bed processes	29
2.7.6 BDST model	30

CHAPTER 3: METHODOLOGY

۲

-4

٨

3.1 Adsorbates	37
3.2 Adsorbents	37
3.3 Analysis	38
3.4 Batch experiments	39
3.4.1 Effect of adsorbent dosage	39
3.4.2 Effect of pH	40
3.4.3 Adsorption kinetics	40
3.4.4 Effect of particle size	40
3.4.5 Effect of temperature	40
3.4.6 Adsorption isotherms one these & Discritions	40
3.5 Packed bed experiments	41
3.6 Real textile effluent treatments	43

CHAPTER 4: RESULTS AND DISCUSSION

4.1 Effect of adsorbent dosage	44
4.2 Effect of pH	48
4.3 Effect of particle size	49
4.4 Adsorption kinetics	51
4.5 Effect of temperature	54
4.6 Adsorption isotherms	55
4.7 Packed bed studies	58
4.8 Effect of the initial dye concentration on the breakthrough curves	62
4.9 Effect of the flow rate on the breakthrough curves	63
4.10 Effect of bed height on breakthrough curve	64
4.11 Effect of adsorbent particle size on breakthrough curve	66
4.12 Adsorption models	67

4.12.1 BDST with variation in flow rate	67
4.12.2 BDST with variation in dye concentration	68
4.13 Real textile wastewater treatment	70
CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS	
5.1 Conclusions	71
5.2 Recommendations	72

REFERENCES

*

۲

∢

.4

٨

74

ANNEXURES

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF TABLES

*

Table 2.1 Comparison of low cost adsorbent performance with GAC	24
Table 2.2 BET surface area for Rice Husk based Activated carbon prepared	
by steam treatment	25
Table 2.3 Surface area of the pyrolysed, activated and raw guava seeds	25
Table 2.4 Effect of temperature on the adsorption capacity	27
Table 2.5 Types of isotherms	28
Table 2.6 Previous literature on adsorption	31
Table 3.1 Chemical Properties of adsorbents	38
Table 3.2 Experimental conditions of the packed bed column tests	42
Table 4.1 Colour removal Efficiencies of various adsorbents	46
Table 4.2 Comparison of the First order and Second order adsorption rate	
constants, Cibacron Blue dye concentration 50 mg/l, pH 2-3,	
equilibrium time 4 hrs at 30 0 C	53
Table 4.3 Linear regression data for Freundlich and Langmuir isotherms	
on dye removal using various types of adsorbents	56
Table 4.4 Comparison of bed and batch adsorption capacity	61
Table 4.5 BDST plots data for various flow rates	68
Table 4.6 BDST plots data for various initial dye concentrations	69
Table 4.7 Qualities of wastewater and treated water	70

LIST OF FIGURES

*

4

Figure (2.1) Single stage adsorption	14
Figure (2.2) Two stage crosscurrent adsorption	16
Figure (2.3) Countercurrent multistage adsorption	18
Figure (2.4) The adsorption wave	19
Figure (2.5) Breakthrough curves	21
Figure (2.6) pH studies on Acid Blue 29	26
Figure (2.7) pH studies on Basic Blue 9	26
Figure (2.8) Adsorption kinetics of AWC-Dye	27
Figure (2.9) BDST plot for various flow rates for	
steamed activated carbon by saw dust	30
Figure (2.10) BDST plot for various dye concentrations for	
steamed activated carbon by saw dust	30
Figure (3.1) Molecular structure of Cibacron Blue FR Dye	37
Figure (3.2) Batch experimental setup	39
Figure (3.3) Schematic presentation of the packed bed adsorption setup	41
Figure (3.4) Experimental packed bed adsorption unit	41
Figure (4.1) Effect of HCl treated adsorbent dosage on the adsorption	
of cibacron blue Co 50 mg/l, pH 2-3, Particle size 710 Micron	45
Figure (4.2) Effect of $ZnCl_2$ treated adsorbent dosage on the adsorption	
of cibacron blue Co 50 mg/l, pH 2-3, Particle size 710 micron	45
Figure (4.3) Change of microscopic structure due to chemical activation	47
Figure (4.4) Effect of pH on % removal of Cibacron blue adsorbed on	
various HCl treated adsorbents	48
Figure (4.5) Effect of pH on % removal of Cibacron blue adsorbed on	
various ZnCl ₂ treated adsorbents	48
Figure (4.6) Kinetic studies for various Particle sizes of HCl treated coir dust	
at 30 °C, Co 50 mg/l, pH 2-3	50
Figure (4.7) Kinetic studies for various Particle sizes of HCl treated tea waste	
at 30 °C, Co 50 mg/l, pH 2-3	50
Figure (4.8) Kinetic studies for various types of HCl treated adsorbents	
at 30 °C, Co 50 mg/l, pH 2-3, Particle size 710 micron	51
Figure (4.9) First order kinetic plot for adsorption of Cibacron Blue dye on	
various adsorbents at 30 °C, Co 50 mg/l, pH 2-3, Particle size 710 micron	53

Figure (4.10) Effect of contact time for the dye removal on HCl treated coir dust	
at different temperatures. Co 50 mg/l, pH 2-3, Particle size 710 micron	54
Figure (4.11) Linear Freundlich adsorption isotherms for various types of HCl	
treated adsorbents at 30 °C. Co 50 mg/l, pH 2-3, particle size 710 micron	58
Figure (4.12) Linear Langmuir adsorption isotherms for various types of HCl	
treated adsorbents at 30 °C. Co 50 mg/l, pH 2-3, particle size 710 micron	58
Figure (4.13) Breakthrough curves for various types of HCl treated adsorbents	
at 30 °C, Co 50 mg/l, pH 2-3, Particle size 710 micron, Bed height10 cm,	
Flow rate 20 ml/min	59
Figure (4.14) Breakthrough curves for various types of ZnCl ₂ treated adsorbents	
at 30 °C Co 50 mg/l, pH 2-3, Particle size 710 micron, Bed height 10 cm,	
Flow rate 20 ml/min	59
Figure (4.15) Normal and Ideal breakthrough curve for HCl treated Coir Dust	60
Figure (4.16) Normal and Ideal breakthrough curve for HCl treated Rice Husk	61
Figure (4.17) Effect of various initial dye concentrations Co, for the system;	
packed bed height 10 cm, Flow rate 20 ml/min, HCl treated Coir Dust	
particle size 710 micron, pH 2-3	62
Figure (4.18) Effect of various initial dye concentrations Co, for the system;	
packed bed height 10 cm, Flow rate 20 ml/min, HCl treated Rice Husk	
particle size 710 micron, pH 2-3	63
Figure (4.19) Effect of various flow rates at a bed height 10 cm, pH 2-3,	
Co 50 mg/l, HCl treated Coir Dust particle size 710 micron	64
Figure (4.20) Effect of various flow rates at a bed height 10 cm, pH 2-3,	
Co 50 mg/l, HCl treated Rice Husk particle size 710 micron	64
Figure (4.21) Effect of various bed heights at a Flow rate 20 ml/min, pH 2-3,	
Co 50 mg/l, HCl treated Coir Dust particle size 710 micron	65
Figure (4.22) Effect of various bed heights at a Flow rate 20 ml/min, pH 2-3,	
Co 50 mg/l, HCl treated Rice Husk particle size 710 micron	65
Figure (4.23) Effect of various particle sizes at pH 2-3, Co 50 mg/l,	
Flow rate 20 ml/min, Bed height 10 cm	66
Figure (4.24) BDST plots for various flow rates	68
Figure (4.25) BDST plots for various dye concentrations	69

*

ÿ

¥

1

LIST OF ANNEXURES

1. Calibration curves	i
2. Other figures	i
3. Experimental data tables	iv
3.1 Data tables for HCl treated Coir Dust	iv
3.2 Data tables for HCl treated Rice Husk	iiiv
3.3 Data tables for HCl treated Saw Dust	ix
3.4 Data tables for HCl treated Tea Waste	x
4. Standard limits for the textile effluents	xi

ABBREVIATIONS

CD	Coir Dust
RH	Rice Husk
SD	Saw Dust
TW	Tea Waste
GAC	Granular Activated Carbon
PAC	Powdered Activated Carbon
CB	Cibacron Blue FR. w lib mrt ac lk
LB	Lenazan Blue CF
COD	Chemical Oxygen Demand
LUB	Length of the Unused Bed
BDST	Bed Depth Service Time
CEA	Central Environmental Authority

*

7

#.

4

۸.

viii

ABSTRACT

>

The adsorption process is considered as one of the effective methods for colour removal from wastewater. In this study a number of low cost adsorbents were investigated in search of an alternative to commercial Granular Activated Carbon (GAC) which is an expensive material. Utilization of Coir dust, Rice husk, Saw Dust and Tea Waste has been investigated for its ability to adsorb dyes from aqueous solutions. The results showed high removals over 80% of Cibacron Blue dye by all four chemically treated adsorbents. The ground and sieved adsorbents were activated chemically by impregnating with an activation agent. The use of hydrochloric acid and zinc chloride were studied as chemical activation agents in this work. A hundred percent colour removal efficiency was observed for the system of HCl treated Coir Dust-Cibacron Blue and Coir Dust was identified as the best substitute for GAC.

The batch experiments showed that the adsorption of dyes increased with the increase in contact time and adsorbent dose. Maximum decolourisation of all the dyes was observed at acidic pH. It was observed that contact time up to 4 hrs was required for the every adsorbentdye system used in this study to attain equilibrium. The adsorption isotherm studies were performed on a laboratory scale setup with two different synthetic dye solutions made up of two different commercial grade dyes namely. Cibacron Blue and Lenazan Blue. The adsorption capacity for coir dust from this study was found to be 65 mg/g. This was as effective as GAC while others were less effective than GAC. The Langmuir & Freundlich adsorption models were applied to describe the equilibrium isotherms and both these models agreed very well with the experimental data obtained in this work. The kinetics of the process was also evaluated by the pseudo first order and second order kinetic models. The results gathered from these experiments agreed very well with the first order kinetic model.

Typical S shape breakthrough curves were obtained from packed bed adsorption experiments and 92-100% removal of the adsorbate was observed. The column experiments showed that decrease in initial concentration of dye solution, adsorbent particle size, flow rate and increase in bed depth produced higher breakthrough time with better bed performance. The Bed Depth Service Time (BDST) analysis carried out for the dye indicated a linear relationship between bed depth and service time.

An 83% of colour removal and 72% of Chemical Oxygen Demand (COD) removal efficiencies were achieved using HCl treated Coir Dust for the textile wastewater samples containing a mixture of various dyes collected from and industrial establishment.