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Abstract 

Inviscid analytical-numerical model for predicting unsteady forces on two aerofoil 

configurations is developed and validated with the past literature. First the unsteady inviscid, 

incompressible and irrotational, except the logarithmic singularities at vortex points, flow field 

around the doubly connected domain is evaluated using a conformal mapping method. A discrete 

vortex shedding mechanism is incorporated to model the free shear layers of the real fluid flow. 

The complex potential associated with uniform flow and the vortex motion is obtained using 

elliptic functions and the modified Green’s function respectively. The strengths of the vortices 

are evaluated using Kutta condition which keeps the regularity of the flow field. Circulation 

development around the aerofoils is quantified by utilizing Kelvin’s circulation theorem. The 

unsteady forces are obtained using the unsteady version of the Blasius equation. Both trapezoidal 

rule and finite difference method are incorporated to solve the unsteady Blasius equation. The 

developed inviscid model is applied to various aerofoil configurations to predict the unsteady 

forces on the aerofoils. The results obtained were validated to the past relevant literature. Results 

showed a good agreement with the past literature.   

Keywords: unsteady, forces, plunging, analytical-numerical, doubly 
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1. INTRODUCTION 

1.1. Background 

Aerodynamics of wing configurations in aircrafts has been a field of increasing interest 

since the first powered flight with a canard biplane wing configuration, designed by 

Wright brothers in 1903. A vast improvement of the aircraft designs over the last century 

can be observed due to the improvements of the aerodynamic analyses of different types 

of aerofoil adaptations for the wing configurations. Scientists have paid their attention to 

the investigations of multi element wing systems, especially different types of biplane 

wing configurations, to improve the aerodynamic performance of the manned/ 

unmanned flights rather than only relying on the monoplane wing configurations. 

Investigations of the aerodynamic performance of the aerofoils in tandem biplane 

configuration date back since Prandtl work on biplane theory [1]. Indeed, many studies 

have demonstrated high aerodynamic performances of the biplane wing configuration 

over monoplane configuration [2]. Tandem biplane configurations provide many 

aerodynamic advantages for the aircrafts especially when it comes to military 

applications where there’s a requirement of long range and endurance due to the low 

induced drag [3]. Also some of the analyses on dual wing systems for high performance 

business airplanes concluded that those systems provide more fuel efficiency compared 

with the monoplane systems since they experience lower induced drag than monoplanes 

due to a combination of two and three dimensional drag reduction and the structural 

advantage of the biplane wing configuration over the mono plane wing configuration. 

These studies also showed that tandem and unstaggered aerofoil configurations obtain 

high lift to drag ratios of these than that of monoplane configurations [4]. 

Recent advancements of the micro air vehicles (MAVs), which have wing span of less 

than 15cm [5] and can be used in a variety of military and civilian situations [6, 7], lead 

to analyze the flight of the insects. Flapping motion of the insect flight can be 

categorized such as pitching motion, plunging motion and combined pitch and plunge 
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motion. The objective in the current research community is to find out a better aerofoil 

adaptation and a better flapping motion mechanism for the MAVs. The wing 

configurations such as unstaggered biplane and tandem aerofoils are very important 

when considering a proper aerofoil adaptation for the MAVs and understanding the 

superior flight performance of the insect flight. There are basically two dimensionless 

parameters that have to be considered when analyzing insect flight, namely, reduced 

frequency and Strouhal number. The unsteadiness of the flapping flight is quantified by 

a dimensionless number called the reduced frequency ( ) while the efficiency is 

quantified by the Strouhal number (  ). 

 
  

  

  
 

 

(1) 

 

 
   

    

  
 

 

(2) 

 

where  ,  ,  ,    and    are angular frequency, flapping frequency, chord length of the 

aerofoil, flapping amplitude and the free stream velocity respectively [5]. Smaller birds 

flies at higher reduced frequencies while larger birds flies at lower reduced frequencies 

meaning that the smaller birds tend fly at more unsteady conditions. Furthermore, based 

on the data of different species of insects, bats and birds in cruise flight, Taylor et al. [8] 

concluded that the Strouhal numbers of their flight lie within 0.2-0.4 while the average 

value being 0.29.  

Many experimental and numerical methods were used to analyze the aerodynamic 

performance of the biplane wing configurations. However, there’s a scarcity of 

theoretical models developed to analyze these kinds of biplane problems [9]. Major 

disadvantages of the direct numerical simulation (DNS) methods when analyzing these 

problems are the computational time. Therefore these problems should be analyzed 

using analytical models which are known to be computationally economical.  
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Compared to DNS methods, the vortex panel method and conformal mapping method 

reduce the computational cost while capturing accurate description of the fluid flow. The 

problem with the vortex panel method is that when the vortex particles are too close to 

the boundary, unrealistic results are obtained [10]. Also substantial and non-physical 

edge effects are present at the end of the each panel [11]. These kinds of deficiencies do 

not arise in conformal mapping technique since the no flow boundary condition is 

applied on the whole boundary. The method of images is valid even if the vortices are 

very close to the body. Also the conformal mapping technique is computationally 

economical than the vortex panel method. Therefore it is logical to analyze the problem 

using the conformal mapping technique.   

 

 

 

 

 

 

 

 

 

  

 

user
Sticky Note

user
Sticky Note

user
Sticky Note

user
Sticky Note

user
Sticky Note



4 

 

1.2. Overview 

The main objective of the study is to analyze aerodynamic performance of tandem, 

stationary/moving biplane wing configurations using a model which is computationally 

economical. Since the evaluation of lift and drag on the aerofoils are vital in these kinds 

of problems, the unsteady forces on the each aerofoil in the biplane configurations are 

evaluated by using two dimensional inviscid, incompressible, irrotational potential flow 

theory where the flow field consists of logarithmic point singularities at vortex points. 

First the aerofoils are mapped into a circular domain using a multiply connected domain 

conformal mapping method proposed by [12]. Then the complex potential associated 

with the uniform flow is determined using elliptic functions in doubly connected domain 

by mapping the mapped circular domain to a rectangular domain. Since a vortex 

shedding mechanism is incorporated to model the free shear layers of the fluid flow, the 

complex potential associated with vortex motion is evaluated by the modified Green’s 

function [13] in the doubly connected domain. These complex potentials are combined 

to obtain total complex potential of the system. Then using unsteady Blasius equation, 

[14], [15] the complex forces are evaluated. Eventually the results obtained by the 

developed model are validated by the relevant literature and several doubly connected 

problems are analyzed using the developed model. This analysis can be considered as an 

extension of the study [16] even though the method used for the evaluation free stream 

complex potential is different in the current study compared with [16]. 
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2. LITERATURE REVIEW   

2.1. Tandem aerofoil configuration 

A tandem aerofoil configuration is comprised of two independent lift generating 

aerofoils such that the aerofoils are on two different planes, separated vertically and 

horizontally. This type of aerofoil configuration has been a main aspect of the manned 

flight since the beginning. A tandem aerofoil configuration is shown in figure 1 with 

some valuable parameters.  

            

            

            

            

 

Specifically there are two types of tandem tail-wing configurations named canard wing 

configuration and delanne wing configuration. In a canard wing configuration, there is a 

small forewing ahead of the main wing in a tandem configuration. When there is a tail 

wing rear to the main wing, that type of tandem configuration is called delanne wing 

configuration.  

Stagger, Gap and Decalage are defined as follows [17]; 

Stagger (St): 

Stagger is defined as the distance between the forewing and rear wing 0.25 chord 

positions non dimensionalised by the chord. Stagger is positive when forewing is above 

the rear wing. Stagger is negative in figure 1. 

 

St 

𝛼𝑤 
𝛼𝑝 G 

Figure 1: Tandem aerofoils: Stagger, Gap and Decalage 
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Gap (G): 

The absolute value of the vertical distance between the forewing 0.25 chord location and 

the rear wing 0.25 chord location non dirnensionalised by the chord is defined as the gap 

between aerofoils. By definition, the gap is always positive. 

Decalage ( ): 

Relative angle of attack between forewing and rear wing is defined as the decalage.  

 

          (3) 

   

where    is the angle of attack of the forewing and    is the angle of the rearwing by 

the free stream. 

 

There are many applications of tandem aerofoil configuration mainly in military aircrafts 

and home built aircrafts. To achieve high efficiency, long range and high flying, tandem 

aerofoil configurations are used in UAVs and modern fighter jets. 

2.2. Pitching motion 

An aerofoil that has a sinusoidal angular motion about its axis is considered to be in 

pitching motion. The angular displacement ( ) and the angular velocity ( ̇) of the 

pitching aerofoil is mathematically represented by Eq. (4) and Eq. (5). An aerofoil 

undergoing a pitching motion is shown in figure 2.  

              (4) 

  ̇               (5) 

Here   ,   and   are pitching amplitude, angular frequency of the pitching motion and 

time respectively. 
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2.3. Plunging aerofoil 

An aerofoil that has a sinusoidal translation motion about a fixed reference axis is 

considered to be in plunging motion. The displacement ( ) and the translation velocity 

( ̇) of the plunging aerofoil is mathematically represented by Eq. (6) and Eq. (7). An 

aerofoil undergoing a pitching motion is shown in figure 3. 

 

 

 

 

 

 

2.4. Flapping aerofoils  

Many studies are available on the aerodynamic analysis of aerofoils undergoing flapping 

motion. These studies mainly concerned about the lift and thrust generation of the 

             (6) 

  ̇              (7) 

reference axis 

Figure 2: Pitching aerofoil 

𝜶 �̇� 

𝒉 

�̇� 

Figure 3: Plunging aerofoil 
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flapping aerofoil and flapping aerofoil combinations since the mechanisms of lift and 

thrust generation are of main importance in this area of study. 

The bird’s ability to generate thrust by wing flapping was first observed by Knoller [18] 

and Betz [19] independently. As shown in the figure 4, an effective angle of attack is 

created, when an aerofoil flaps, resulting in a force having a lift force and a thrust force 

as its components. This phenomenon is called the Knoller-Betz effect. Katzmayr [20] 

was the first to analyze Knoller-Betz effect by experimentally analyzing the thrust on an 

aerofoil in a sinusoidally oscillating flow field.  

 

Figure 4: Thrust generation of a plunging aerofoil [21] 

Von Karman and Burgers [22] theoretically analyzed the wake structures of plunging 

aerofoils and observed that the location and the polarity of the wake vortices indicate 

whether the wake structure is drag producing or thrust producing. Drag producing and 

thrust producing wake structures are shown in the figure 5 and figure 6 respectively. The 

theoretical analysis on the pitching and plunging aerofoils done by Garrick [23] 

concluded that an aerofoil undergoing a plunging motion produces thrust for any 

frequency range while an aerofoil undergoing a pitching motion produces thrust above a 

certain frequency and the trust generation depends on the location of the pitch axis of the 

aerofoil. Jones et al. [21] investigated the Knoller-Betz effect using experimental and 

computational methods. In their study, the vorticity structures and the time averaged 

velocity profiles of the wake were analyzed using inviscid unsteady panel codes. Yao et 
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al. [24] developed an inviscid unsteady model based on panel method for analyzing 

vortex-aerofoil-wake interaction problems. Aerofoils at tandem were analyzed using the 

model by obtaining flow patterns and unsteady forces for different kinds of 

configurations. 

 

Figure 5: Drag producing wake pattern [21] 

 

Figure 6: Thrust producing wake pattern [21] 

 

Aziz and Mukherjee [25] obtained unsteady forces and wake structures of the two 

aerofoils in tandem. A potential flow model was used to model the flow field and to 

obtain unsteady forces. The results were validated with the literature. 
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2.5. Analytical solutions for doubly connected problems 

2.5.1. Uniform flow in doubly connected domain 

The analytical solution for the complex potential associated with the uniform flow (free 

stream) is well known when it comes to flow fields around a single contour in the 

unbounded fluid domain (simply connected domain). However, when there is more than 

a single contour in the fluid region, construction of the complex potential, analytically, 

becomes very complicated. There are several early investigations on the analytical 

solutions for the inviscid, irrotational and incompressible flow fields in doubly 

connected domains (two contours in the fluid domain).  

Hicks [26] obtained the analytical solution for the flow field when two cylinders are in 

arbitrary motion. Velocity potential was obtained by definite integrals and when the 

motion of the cylinders are restricted such that they move as a whole like a rigid body, 

the solution for the flow field was obtained using elliptic functions and bipolar 

coordinates. The same problem was addressed by Greenhill [27] and the flow solution 

was obtained as an infinite series in bipolar coordinates. Carpenter [28] obtained an 

analytical flow solution, as an infinite series in rectangular coordinates, for two cylinders 

in real axis. Using the same method, Kawaguti [29] solved the problem of two cylinders 

moving past each other. 

Flow fields around two obstacles, with specifiable circulations around those, were 

investigated by Lagally [30] and Ferrari [31], independently, using elliptic functions. 

The solution for the flow field was represented by Weierstrass zeta functions and 

Weierstrass sigma functions [32]. Solution for the uniform flow field was obtained in 

terms of Weierstrass zeta functions. Using Lagally’s approach, Garrick [33] analyzed the 

flow field around a biplane configuration with the use of proper conformal mapping. 

Wang [34] obtained the flow solutions for the unsteady flow field around two arbitrarily 

translating and expanding circles by using conformal mapping and Fourier series.   
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Crowdy [35] introduced a generalized method, mainly by utilizing a special 

transcendental function called Schottky Klein prime function [36], [37], to obtain the 

flow field around any finite number of cylindrical objects in uniform flow when the 

circulations around the obstacles are taken to be vanished. The method introduced can 

be extended to any general shaped bodies if the conformal mapping from the bounded 

canonical multiply connected region to the unbounded fluid region is known.  

2.5.2. Vortex motion in doubly connected domain 

Early investigations on vortex dynamics are mainly by Kirchhoff and Routh [38]. Lin 

[39], [40] was the first to extend the Kirchhoff Routh approach to vortex motion in 

multiply connected domains.  

Johnson and Mcdonald [41] addressed the problem of vortex motion in doubly 

connected domain. A problem that has significance in geophysical fluid dynamics, 

motion of a vortex near two circles with arbitrary radii, was analyzed using Hamiltonion 

dynamics. The circulations around the circles were assumed to be null in the study. 

Further they analytically investigated a doubly connected problem of vortices near 

barrier gaps. 

Zannetti et al. [42] addressed the problem of vortex motion in doubly connected domain 

when multiple vortices are present using elliptic functions. Vortex shedding of two 

element aerofoil and a two bladed Darrieus turbine were considered. They analyzed the 

patterns of flow fields and variation of the circulations around the aerofoils with time. 

Crowdy and Marshall [43] developed a new constructive method for analyzing the 

movement of a point vortex near any finite number of obstacles in the fluid domain 

while taking circulations around the obstacles to be vanished. They have used the 

Hamiltonion dynamics to analyze the problem and also Kirchhoff Routh path functions 

[44] were reproduced in terms of Schottky Klein prime function due to its efficacy. 

Further, Crowdy [13] developed a new calculus for two dimensional vortex dynamics in 

multiply connected domains. By utilizing the new calculus, instantaneous complex 
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potentials can be evaluated when there are a finite number of vortices around finite 

number of arbitrary shaped obstacles. Furthermore, the freedom of specifying arbitrary 

values of circulations around the obstacles is also facilitated.   
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3. MODEL DEVELOPMENT 

3.1. Conformal mapping in doubly connected domains 

The problem involves with two NACA 0012 aerofoils in tandem configuration. Since 

the aerofoil shapes are complicated, those shapes must be conformally mapped into a 

circular computational domain which is an annulus region. This is achieved by series of 

mapping functions. First, the aerofoils are mapped, conformally, into two disjoint circles 

using a holomorphic function,       , by utilizing a method for conformal mapping 

of multiply connected domains proposed by M.E. Klonowska and W.J. Prosnak [12] as 

in the study [16]. Then the disjoint circles are mapped into an annulus region. 

3.1.1.  Conformal mapping from physical plane to circular domain 

The conformal map is from physical   - plane to   - plane. Existence of a mapping 

function,       , is ensured by Koebe theorem [45] which states that every multiply 

connected domain can be mapped into a circular domain with the same connectivity. 

The uniqueness of the solution is obtained by following normalizing conditions as 

mentioned in the same theorem. 

 It is assumed that the mapping is one to one. Therefore, when          

and       . 

 It is also assumed that the directions in the two points at infinity of the mapping 

planes are identical. Hence, 

  

  
|
   

    

 

3.1.1.1. Standard form of the mapping function 

According to Runge theorem, any holomorphic function,  ( ), can be represented in a 

multiply connected domain by a sequence of rational functions that converges to  ( ). 

Therefore, 
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     ∑ ∑    (
  

    
)

 
  

   

 

   

 (8) 

 

where, 

           

    (Number of bodies) 

      (Truncated value) 

    - Complex constants associated with the mapping function 

   - Radii of the mapped circles in   plane 

   – Centers of the circles in   plane 

Here the unknown constants,   ,   , and     are determined by the method proposed by 

[12]. Note that   , truncated value is taken to be 50 since the function  , converges at 

that value.  

The equation (8) represents the mapping function from the two aerofoils in   – plane 

(physical domain), as shown in figure 7, into two disjoint circles in   – plane as shown 

in figure 8. Also, parameters when       represent the parameters of the circles that 

was mapped by the front aerofoil and the rear aerofoil respectively. 
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Figure 7: Aerofoils in z – plane (physical domain) 

 

Figure 8: Mapped disjoint circles in   – plane, circle numbered as ‘1’ corresponds to the 

front aerofoil and the other circle corresponds to rear aerofoil. 

1 

2 
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3.1.2. Mapping functions 

Since the computational domains are an annulus and a rectangular domain, these 

domains are obtained using series of mapping functions.  

The lower circle of the  -plane is mapped into    - plane, using the equation (9), so that 

the center of the circle is at the origin of    - plane. Also the upper circle is mapped 

accordingly. 

    (
    

  
) (9) 

 

Next, by the transformation (10), the center of the circle corresponding to the upper 

aerofoil is taken to the real axis.  Here   is the angle between the real axis and the line 

connecting the origin and the center of the circle corresponding to the upper aerofoil. 

        
    (10) 

 

Then    - plane is transformed to the   - plane to make the circles, Apollonius circles, 

by the transformation (11). 

   
    

 
 (11) 

 

where, 

   

(

 
 (|     |

  (
  

  
)
 

  )

 |     |
⁄

)

 
 

  

   √ |     |        
  

 

Then, w - plane is mapped to the    - plane by the mapping function (12). 

    (
   

   
) (12) 
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Finally,    - plane (figure 9) is mapped into computational domains,   and  , separately 

since the complex potential associated with uniform flow is evaluated in   domain and 

the complex potential associated with vortex motion is evaluated in   domain. 

   - plane to   - plane (figure 10) and   – plane (figure 11) transformations are obtained 

by the mapping functions (13) and (14) respectively. 

       (13) 

            (14) 

where   is a constant that makes outer circle unit radius and also     maps    . 

From   - plane to   - plane, only the radii of the outer and inner circles are changed. 

 

Figure 9:   - plane (Annulus region): front aerofoil is mapped into the outer circle while 

rear aerofoil is mapped into the inner circle in tandem configuration. 

𝜁 - plane 
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Figure 10: computational   - plane: front aerofoil is mapped into the outer circle while 

rear aerofoil is mapped into the inner circle.  

   

 

 

Figure 11: computational   - plane: front aerofoil is mapped into the line in the right and 

the rear aerofoil is mapped into the line in the left in tandem configuration.  

𝜏 - plane 
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3.2. Evaluation of complex potential  

3.2.1. Potential flow theory 

The tandem biplane problem is addressed by two dimensional potential flow theory with 

the association of conformal mapping. The following assumptions are made. 

 Inviscid fluid 

 Incompressible fluid 

 Irrotational fluid 

Also the fluid domain contains point singularities due to the vortex motion that is used to 

model the free shear layers of the real fluid flow. 

3.2.1.1. Governing equations 

3.2.1.1.1. Incompressibility condition 

By the continuity equation, 

 
  

  
  (  ⃗⃗ )    (15) 

Where, 

  - density of the fluid 

 ⃗⃗  - velocity vector field 

Since the flow field is assumed to be incompressible, the density of the fluid is constant. 

Therefore,   is constant. Hence the equation (15) can be written as equation (16); 

   ⃗⃗    (16) 
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(i.e. divergence of the velocity vector field vanishes) 

 ⃗⃗  can be represented as,  ⃗⃗       , where i and j are unit vectors along   and   axes 

respectively and     are corresponding velocity components. 

Then by the equation (16), 

 
  

  
 

  

  
   (17) 

3.2.1.1.2. Irrotationality condition 

Vorticity ( ) of a fluid flow field is defined as the local spin of a fluid particle.  

      ⃗⃗     (18) 

 

Where, 

  - angular velocity of a fluid particle 

Since the two dimensional flow field is assumed to be irrotational vorticity vanishes. 

Hence the irrotationality condition, 

    ⃗⃗    (19) 

 

(i.e. curl of the velocity vector field vanishes) 

From the equation (19), 

(
  

  
 

  

  
)    

where   is the unit vector along   axis. 

Therefore, 
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 (
  

  
 

  

  
)    (20) 

 

3.2.1.2. Complex potential 

By the equation (19), it can be shown that the integral, 

 ∮  ⃗⃗       (21) 

where, 

            (22) 

Therefore the integral is path independent. Then, by definition, the velocity vector field 

is a conservative vector field. And there exists a scalar potential function for the velocity 

vector field. It is called the velocity potential ( ) and can be represented by the equation 

(23). 

  ⃗⃗     (23) 

where,          and continuous in 2D space. 

Further, 

   
  

  
 (24) 

   
  

  
 (25) 

It can be shown by taking, the flux per unit length, into account that, 

   
  

  
 (26) 

and 
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 (27) 

where, the stream function,          and continuous in 2D space. 

Therefore, from equations (24), (25), (26) and (27), 

 
  

  
 

  

  
 (28) 

and 

 
  

  
  

  

  
 (29) 

The equations (28) and (29) are called Cauchy-Riemann equations. Assuming that the 

partial derivatives of the equations (28) and (29) are continuous, then   and   can be 

written such that, 

                    

where,      is an analytic (holomorphic) function of the complex variable   (     ) 

and   is the vector operator   . 

By partially differentiating the equations (28) and (29) w.r.t.   and  , it can be shown 

that, 

      (30) 

      (31) 

Where   denotes the Laplacian operator (   .  

Therefore the stream function and the velocity potential satisfy the 2D Laplace equation. 

The solutions of the Laplace equations can be added to obtain new solutions. Therefore 

complex potentials of background flows can be added together to obtain new flow field 

which is the combined effect of the background flow fields. 
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In the current study, the complex potential associated with uniform flow and the 

complex potential associated with vortex motion are evaluated in a doubly connected 

domain.  

3.2.1.3. Boundary conditions 

Since the problem is to analyze the flow field around two aerofoil configurations which 

can be stationary/moving, two boundary conditions are to be satisfied. Those are as 

follows; 

1. Far field boundary condition 

2. Impermeability condition 

3.2.1.3.1. Far field boundary condition 

The velocity of the flow field should be equal to the free stream velocity as | |   . Let 

the free stream velocity be   from negative to positive direction of the   – axis. 

Then the far field boundary condition, 

  ⃗⃗ |
| |  

   (32) 

3.2.1.3.2. Impermeability condition 

Let the boundaries of the aerofoils in the   - plane be      where       for 

boundaries of forward and rear aerofoils in tandem configuration and lower and upper 

aerofoils in unstaggered configuration respectively.  

 

 

 

 

𝜕𝐷𝑧𝑘 

𝒏 

Figure 12: normal vector (n) and the boundary of an aerofoil 
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Since there is no flux through the boundary of the aerofoils the velocity at a point on the 

boundaries of the aerofoils should be equal to the velocity of the flow field at that point. 

Therefore, 

  ⃗⃗     ⃗    (33) 

where  ⃗  is the velocity of a point on the boundary of the aerofoil.  

When the aerofoils are stationary, 

 ⃗    

Therefore the impermeability condition on the boundaries of the aerofoils, 

  ⃗⃗      (34) 

3.2.2. Uniform flow in doubly connected domains 

3.2.2.1. Elliptic functions 

3.2.2.1.1. Doubly periodic functions 

Let    and    be two complex numbers whose ratio is also complex. A function      is 

called a doubly periodic function if, 

                       

for all   for which      exists,      is called a doubly periodic function of   having 

periods     and    . 

 A doubly periodic function that is analytic is called an elliptic function. 
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3.2.2.2. Complex potential of uniform flow 

Complex potential associated with the doubly connected domain is formulated using 

elliptic functions since they are analytical except at isolated singularities at poles. 

Therefore elliptic functions naturally represent solutions to various flow patterns.  

The annulus in    - plane is further transformed into a rectangular slit domain in   - 

plane using the mapping function (14).  

   - plane is the computational domain for the evaluation of the complex potential 

associated with the uniform flow in doubly connected domain. 

The outer circle of the annulus in     - plane is mapped into the line      and the inner 

circle in the annulus is mapped into the line              . The upper edge and the 

lower edge of the rectangle are     and      respectively. Here,       .  

The rectangle is defined as follows; 

            

and  

           

where, 

             and            , where    and    are the radii of the inner and outer 

circles of the annulus in    - plane.  

Here the origin of the   - plane is inside the rectangle. 
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3.2.2.2.1. Formulation of the complex potential of uniform flow 

The complex potential associated with the uniform flow,        is evaluated first. Then 

the corresponding complex potential in   - plane is calculated using the mapping 

functions, (13) and (14) since further calculation is done in   - plane. 

The complex velocity at   - plane is represented as follows, 

 
        

  
 

        

  

  

  
 (35) 

Where the complex velocity, 
        

  
 at    - plane should be a single valued analytical 

function of   in the rectangular domain since the complex velocity 
        

  
 at   - plane is 

a single valued analytical function of  . Therefore        must possess a period of    . 

Also, it can be shown that the complex potential        possesses a period of      

   .  

Therefore        is a doubly periodic function of   having periods, 

              (36) 

and 

         (37) 

 

For further calculations a periodic rectangular domain is considered with following 

properties. 

                

and  
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Therefore the complex velocity, 
        

  
 has singularities at     and      . Thus 

        

  
 can be represented by the following elliptic function (38), 

 
        

  
                                (38) 

where  ,   are real constants,   is the free stream velocity at infinity,   is the angle 

made by the free stream with the horizontal axis of   – plane and   is the Weierstrass’s 

elliptic function and it is defined as follows (39), 

      
 

  
 ∑ [

 

         
 

 

    
 

]

   

      

 (39) 

where, 

               for          

The prime in the double series denotes the omission of the pair            . The 

Weierstrass’s elliptic function converges absolutely and uniformly in the bounded 

rectangular domain. 

By definition, 

       
     

  
 (40) 

where      is the Weierstrass’s zeta function and defined as follows (41). 

      
 

 
 ∑ [

 

        
 

 

    
 

 

    
 

]

   

      

 (41) 

Equation (38) can be rearranged as equation (42), 

 
        

  
        

     

  
       

         

  
    (42) 
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By integrating the equation (42) with respect to  , 

                                          (43) 

   is a constant that can be set to zero without affecting the solution.  

By imposing Kutta condition at images of trailing edges on   – plane where, 

 
        

  
   (44) 

The constant   is determined. Hence the above complex potential associated with 

uniform flow is unique. 

Complex potential associated with the uniform flow in the   - plane can be obtained by 

using the mapping functions that transform   - plane to   - plane. For further 

calculations the complex potential associated with the uniform flow should be expressed 

in terms of   since the main computational domain is taken to be the   - plane. 

3.2.3. Modeling free shear layers 

Free shear layers of the flow field is modeled by using point vortices. 

3.2.3.1. Point vortex 

Complex potential associated with a point vortex with a circulation of   is as follows; 

    
  

  
          (45) 

where, 

  - circulation/strength of the point vortex 

  - complex variable in   - plane 

   - position of the point vortex at   - plane 
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3.2.4. Vortex Motion in doubly connected domain 

Instantaneous complex potential of the vortex motion in doubly connected domain is 

evaluated using the method introduced in [13]. The complex potential associated with a 

point vortex of unit circulation at point   inducing -1 circulation around the inner circle   

and null circulations around other inner and outer circles in the annulus in   – plane is 

given by the modified Green’s function, 

          
 

  
  (

      

| |        ̅    
) (46) 

where, 

          
  

  

    ̅ 
 (47) 

      - generator associated with     inner circle in   - plane 

  - number of generators (number of inner circles (= 1)) 

   - radius of the     inner circle 

   - center of the     inner circle 

For       

          
 

  
  (

      

| |     ̅   
) (48) 

        is the complex potential due to vortex at point   in   plane which induces -1 

circulation around the outer circle and null circulation around inner circle. 

Since only one generator is associated with doubly connected domain,  

           (49) 
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Therefore, 

For       

          
 

  
  (

      

| |       ̅   
) (50) 

        is the complex potential due to vortex at point   in   plane which induces -1 

circulation around the inner circle and null circulation around outer circle. 

As mentioned by [13] circulations around the circles in   - plane can be specified by 

simply multiplying the relevant Green’s function by the required value of circulation. 

3.2.4.1. Computing Schottky Klein prime function 

To obtain the modified Green’s function for the vortex motion in doubly connected 

domain, computation of Schottky Klein prime function is needed. First set of   Mobius 

maps [43], [46] should be defined for each inner circle assuming there are   inner 

circles in the computational domain    in   - plane (in fact there is only one inner circle 

in the domain under consideration since the problem is doubly connected). 

Let 

       
      

      
 (51) 

 

for            

where, 

      
|  |
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  ̅

  
 

   
 

  
 

Here,    and    are radius and center of the     circle respectively. The inverse of a 

Mobius map also becomes a Mobius map. Therefore   additional maps can be 

generated considering the inverse maps. Also, composition of a Mobius map with 

another Mobius map results another new Mobius map. Therefore composition of   

Mobius maps with their   inverse maps generates infinite number of additional Mobius 

maps. The infinite set of Mobius maps can be categorized according to their level while 

level 1 being the basic Mobius maps and their inverses. To compute the SK function all 

these Mobius maps are needed excluding inverse maps and the compositions that 

reduces to a lower level map or reduces to identity map (Schottky Group is defined with 

all the maps). Therefore the categorization of the maps is as follows (subset of Schottky 

Group, the set  ). 

Level 1 maps: (basic maps or generators) 

  ,   ,……………,   

Level 2 maps: (combinations of composite functions) 

  
 ,     ,     ,…..,     ,     ,   

 ,…..,       ,   
  

Level 3 maps: 

All the composite functions of any three basic maps 

All the higher level maps are defined in a similar manner.  
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The Schottky Klein prime function is defined as in equation (52), 

                     (52) 

Where, 

         ∏
                  

                  
    

 (53) 

 

    - complex variables 

  - a subset of Schottky group  

   - elements in the subset of    

When evaluating the infinite formula, the subset of the Schottky group is selected such 

that the elements up to some level are included.  

Since the problem is doubly connected there’s only one generator (one basic map) 

associated with the problem [44]. Therefore only the case when     is considered. 

When    , the inner circle in the annulus should be considered. The radius and the 

center of the inner circle are   and   respectively. Therefore,      and     . 

From equation (51) the basic Mobius map becomes the equation (49), 

          

The infinite number of maps are easily computed from the equation (49). 

Level 1 maps: 

           

Level 2 maps: 
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  (     )       

Level 3 maps: 

  (  (     ))       

Level   maps: 

   (    (     ))        

To compute the modified Green’s functions, (48), (50),        and         ̅
     

should be calculated. By incorporating infinite number of level maps        and 

 (      ̅
   ) can be written as follows, 

             ∏
                      

        

 

   

 (54) 

 

  (      ̅
   )  (  

  

 ̅
)∏

          ̅            ̅    

        

 

   

 (55) 

 

3.3. Modeling the flow field 

3.3.1. Vortex shedding mechanism 

Initially two vortices are placed near the trailing edges as shown in figure 13, 0.001 

distance downstream which is in the range of values recommended in the literature [47]. 
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3.3.2. Calculating strengths of the initial vortices 

Strengths of the initial vortices are found by incorporating the Kutta condition [42]. 

Since the aerofoils are mapped into two circles, the derivative 
  

  
 is singular at trailing 

edges (due to the sharp edges). Then, for the velocity at   - plane (
  

  
) to be finite, the 

velocity at the corresponding points in   - plane (
  

  
) should be zero.   

Therefore, 

 
     

  
|
    
    

   (56) 

 

  - trailing edge position of the front aerofoil in   - plane  

  - trailing edge position of the rear aerofoil in   - plane  

Let       maps       and       maps      , 

Since, 

                , 

𝜏   𝜏   

0.001 0.001 

𝑧  𝑧   𝑧  𝑧   

Initial vortex placing 

positions  

Figure 13: initial vortex placement: tandem aerofoil configuration 
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         (57) 

where the matrices, 

  [
   

   
],   [

          

  
|
    

          

  
|
    

          

  
|
    

          

  
|
    

] and   [

      

  
|
    

      

  
|
    

] 

3.3.3. Calculating velocities of the initial vortices 

To find the velocity at initial vortex points, individual contributions of induced velocities 

are taken into account. 

           

           

           

            

Hence the velocities at the vortex points are calculated using Routh’s Rule [38], 

Velocity at a 

vortex point 

Velocity induced by 

free stream at the 

vortex point 

Velocity induced by 

other vortex at the 

vortex point 
= + 
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  ̅  
      

  

  

  
 

   

  

   
   

  
  

 (58) 

where, 

 ̅  is the complex conjugate velocity at vortex point  , having a vortex with a circulation 

of    and, 

 

                   ( 
   

  
        ) (59) 

   is the point in   plane that maps the vortex point in   - plane. 

Here the complex potential associated with the vortex at the point corresponding to the 

point    in   - plane is removed from the complex potential of the flow field. 

Using the equation (58), 

Complex conjugate velocities at the vortex points near the front and rear aerofoils, 

 ̅   [
       

  

  

  
 

    

  

   
   

  
  

]|

     

     

 

where, 

       [            ( 
    

  
         )]|

     

 

      (‘0’ for front aerofoil and ‘1’ for rear aerofoil) 

 ̅   - Complex conjugate velocities at the vortex points 
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    - Vortex points near the front/rear aerofoils 

    - Points in   – plane that maps the points       in   - plane 

    - Strengths of the vortice at points       

After finding out the initial velocities, the vortices are moved by a time step, 

    Depending on the application values for    were taken in the range 0.001 – 0.02.  

Distance moved by the initial vortices at the time step     is taken as follows; 

      ̅      

Then another two vortices are introduced to the flow field as the Kutta condition 

violates. Then these newly added vortices are moved after calculating the strengths and 

the velocities together with the other two vortices. This process is repeated to model the 

free shear layers of the flow field. 

3.3.4. Generalized formulation for strengths and velocities 

Let there be   vortices in the flow field. Calculation of the strengths of the newly added 

vortices and the velocities of the vortex points in the flow field are as shown in figure 

14. 

 

 

 

  

  

 

𝑁 Vortices  

emitted  

by the rear  

aerofoil 

𝑁 Vortices  

emitted  

by the front  

aerofoil 

𝜏𝑙  
𝜏   

𝑧𝑙  

0.001 

𝜏𝑁  

𝑧𝑁  

𝑧   

𝜏𝑙  
𝜏   

𝑧𝑙  

0.001 

𝜏𝑁  

𝑧𝑁  

𝑧   

Figure 14: Aerofoils in tandem configuration with vortex production 
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Where     maps     in   - plane,      maps     in   - plane and     maps     in   - plane 

for        

By Kutta condition, 

At the trailing edges, 

              

  
|
    
    

   

   ∑             ∑            

 

   

 

   

 

After solving for     and    , 

        

Where, 

  [
   

   
] 

 

  

[
 
 
 
 
          

  
|
    

          

  
|
    

          

  
|
    

          

  
|
    ]

 
 
 
 

 

  

[
 
 
 
 
 
 
(
     

  
 ∑              ∑             

   

   

   

   

)|

    

(
     

  
 ∑              ∑             

   

   

   

   

)|

    ]
 
 
 
 
 
 

 

Velocity of a vortex point can be obtained by using the Routh’s rule (58).  
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3.4. Evaluating forces on the aerofoils 

3.4.1. Formulation of the governing equation 

Forces per unit span on the aerofoils can be calculated by integrating the pressure on the 

boundaries with respect to arc length of the boundary. 

Then the vector form of the force per unit length on the aerofoils, 

       ∮      
 

    

 (60) 

 

       

  - unit normal vector of the boundary  

   - integral path along the boundary (arc length) 

  - pressure on the boundary 

Unsteady Bernoulli’s equation along a streamline,  

  
 

 
 

  

  
 

 

 
| ⃗⃗ |

 
 (61) 

where   is the density of the fluid. 

From (60) and (61), 

       ∮ (
  

  
 

 

 
| ⃗⃗ |

 
)    

 

    

 

Complex form of the equation can be written as follows; 

       
   

    
   

   ∮    ̅
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where  ̅ is the complex conjugate of the complex variable,   and      is the complex 

force on the aerofoils for      . 

       
   

    
   

    ∮ (
  

  
 

 

 
| ⃗⃗ |

 
)

 

    

   ̅

Since,  

| ⃗⃗ |
 

 
     

  
(
     

  
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 

     

  

     

  ̅
 

where ‘bar’ denotes the complex conjugate and since boundaries are constant 

streamlines, then along a streamline,     . Hence       ̅   .  

Then, 

       
   

    
   

    ∮ (
  

  
 

 

 

     

  

     

  ̅
)   ̅

 

    

 

        
   

    
   

  
  

 
∮ (

     

  
)

 

  
 

    

    ∮ (
  

  
)   

 

    

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 (62) 

The above equation (62) is called the unsteady Blasius equation. The equation has a 

steady part and an unsteady part. 

Steady part: 

 
  

 
∮ (

     

  
)
 

  
 

    

 

Unsteady part: 

    ∮ (
  

  
)   

 

    

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
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Since the computational domain is the annulus in   - plane the equation (62) is 

represented by the variable   in   - plane. 

By chain rule, 

     

  
 

     

  

  

  
 

also, 

          

Then the equation (62) can be rearranged as follows, 

       
   

    
   

  
  

 
∮ (

     

  
)

 

(
  

  
)   

 

    

    ∮ (
  

  
)   

 

    

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 

Here      (for      ) are the outer and inner boundaries on the annulus in   - plane 

respectively.  

Since the stream function is an instantaneous constant on the boundaries,       , 

where      is an instantaneous constant. 

Since           

Taking the conjugate, 

    ̅̅ ̅̅ ̅̅ ̅       

differentiating partially with respect to  , 

 
     ̅̅ ̅̅ ̅̅ ̅

  
 

  

  
  

  

  
 (63) 

on the boundaries, 
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‘prime’ denotes the derivative. 

From the equation (63), 

 
     ̅̅ ̅̅ ̅̅ ̅

  
 

  

  
        (64) 

 

Using the above equations (63) and (64), the unsteady part of the equation (62) can be 

written as follows, 

    ∮ (
  

  
)   

 

    

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
     ∮ (

     ̅̅ ̅̅ ̅̅ ̅

  
       )  
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Then the equation (62) can be rearranged as follows, 
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(65) 

 

3.4.2. Numerical Quadrature 

Equation (65) cannot be solved using analytical methods due to its highly non-linear 

nature and as the complex potentials are evaluated instantaneously, time dependence of 

the complex potential is not obtained. Therefore a numerical quadrature is incorporated 

to solve the equation.  

The steady part and the unsteady part of the Blasius equation (65) are considered 

separately. Both the integrands of the integrals in the steady and the unsteady parts of 

the equation are analytical functions and integrals are taken over circles in the complex 

plane. Therefore the best way to evaluate the integrals is to incorporate trapezoidal rule 
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due to its accuracy when dealing with integrals of periodic analytic functions over a 

periodic interval. 

When considering the unsteady part of the equation (65) there is a partial derivative with 

respect to time associated with it. It cannot be solved since the time dependence of the 

complex potential is not evaluated. Therefore the partial time derivative is numerically 

solved using a finite difference method. 

3.4.2.1. Trapezoidal rule 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Let the integrands of the integrals in steady and unsteady parts of the equation (65) 

be        and        respectively. 

Therefore, 

  𝑞 

  

𝜁  𝑝𝑙𝑎𝑛𝑒 

Figure 15: computational domain (Annulus) in 𝜁 - plane 
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) (67) 

To implement the trapezoidal rule the angle at the centers of the circles are divided into 

equal   parts. Also   points in each circle are selected. 
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Figure 16: discretizing the circle to equally spaced angles 
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  has to be selected so that the error associated with the numerical quadrature is 

minimized. It is selected to be       . 

Let, 

                         

Values of   on the circles can be represented as follows, 

     
         

      
 (

  
 

)             

Note that      and     . 

Then the integrals of the Blasius equation are evaluated as follows, 

3.4.2.1.1. The steady integral of the Blasius equation 
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By trapezoidal rule, 
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Here, when evaluating the above integral, the circles are slightly extended to the fluid 

domain at the corresponding trailing edge positions in the   domain to avoid the trailing 

edge singularity associated with the mapping function when mapping sharp edges. 

3.4.2.1.2. The integral of the unsteady part 
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The integral is evaluated by trapezoidal rule, 
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The above integrals are evaluated at every time step using the trapezoidal rule as shown. 

3.4.2.1.3. Initial conditions 

Initially two vortices are placed downstream of the aerofoils and the strengths of the 

initial vortices are calculated using Kutta condition as mentioned in section 3.3.2.. The 

complex potential at this initial state is evaluated around the two circles and also the 

derivatives of the complex potentials with respect to the variable   are evaluated on the 

two circles. This corresponds to the evaluation of complex velocities at the selected 

points on the two circles (  points on each circle). Initial value of the equation (63) has 

to be found to evaluate the unsteady part of the Blasius equation.  

Initial conditions; 

      |          |   (
  

  
) 

 where, 

    |         |       

          

  
    

          

  
 

    |    is evaluated around both circles. 

3.4.2.2. Evaluating unsteady part of the Blasius equation 

A finite difference method is used to evaluate the unsteady part of the Blasius equation 

at each time step. The time step is taken as the time step taken to shed vortices which 

varies from 0.001 - 0.02, depending on the application. 
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where,            

    corresponds to the initial condition (when    ). 

The unsteady part can be rearranged as follows, 
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Then the finite difference scheme is, 

   |    
       

  
 

where the time step,    varies from 0.001 - 0.02 depending on the application. 

    and     are evaluated at every time step and hence the complex forces on the 

aerofoils are obtained. Then   and   components of the force are obtained by 

considering real and imaginary parts of the complex force. 

  
   

     (    ) 

  
   

      (    ) 

The lift coefficient and the drag coefficient are calculated by using equations (68) and 

(69), 
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 (69) 

 

where   is the density of the air and c is the chord length of the identical aerofoils. 
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4. RESULTS AND DISCUSSION 

4.1. Validation 

4.1.1. Single plunging aerofoil 

The flow pattern for the single aerofoil in plunging motion is obtained by separating 

aerofoils 50 times the chord length as shown in the figure 19. The reduced frequency is 

taken to be 3. And the plunge amplitude is taken to be 0.2 units while the non-

dimensionalized time step being at 0.007. These values are taken to validate the current 

developed model.  

Reduced frequency, 

   
  

  
 (70) 

Non-dimensionalized time, 

  ̅  
   

 
 (71) 

The separation of the aerofoils leads to the assumption of the effect of the vortices 

emitted by each aerofoil on the other aerofoil should be negligible. Hence a flow pattern 

with a perfect qualitative agreement with the experimental data obtained by Jones et al. 

[21] for a single plunging aerofoil is obtained using the model developed. The wake 

structures obtained by Jones et al. [21] using inviscid panel code and using water tunnel 

experimental procedures are shown in the figure 17. The wake pattern obtained by using 

the current model is shown in the figure 18. It can be concluded that the wake formation 

of the plunging aerofoil is essentially an inviscid phenomena due to the excellent 

qualitative agreement with the inviscid wake structure and the experimental wake 

structure. 
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Figure 17: Result obtained by Jones et al. [21] 

 

Figure 18: Result obtained by the model developed 
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Figure 19: plunging aerofoils at 50c distance apart 



52 

 

For the validation of the model developed for predicting unsteady forces, plunging 

aerofoils at distance 50c apart are considered. The reduced frequency, non-

dimensionalized time step and plunging amplitude are taken to be 17, 0.015 and 0.018 

respectively. Then the harmonic unsteady lift coefficient is calculated using the 

developed model. Finally a graph is plotted for the harmonic lift coefficient vs. the 

product of reduced frequency and time. An excellent qualitative agreement is observed 

with the data obtained by Yao et al. [24] as shown in the figure 20.   

 

Figure 20: harmonic lift compared with data by Yao et. al [24] 

4.1.2. Tandem aerofoils 

Three tandem aerofoil configurations are selected for validation. Gap is varied in three 

configurations while the horizontal gap and the decalage to be taken as 0.5c and 0 

respectively. The gaps in the three configurations are selected to be 0.2c, 0 and -0.2c. 

The flow pattern and the unsteady lift coefficient are evaluated for each case and 

compared with the panel code results obtained by Yao et al. [43]. 
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4.1.2.1. Tandem aerofoil configuration I 

The wake pattern and the unsteady lift coefficient variation with time is obtained for the 

aerofoils at a 0.5c horizontal gap, 0.2c gap and 0 decalage with an angle of attack of 5 

degrees and compared to the panel code results obtained by Yao et al. shown in the 

figure 21 [43]. The wake pattern obtained by the developed model is shown in the figure 

22. An excellent qualitative agreement with the wake patterns is observed. 

 

Figure 21: wake pattern obtained by Yao et al. [24] for gap - 0.2c, horizontal gap - 0.5c 

 

Figure 22: wake pattern for gap - 0.2c, horizontal gap - 0.5c, AOA -    
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The lift coefficients of the front and rear aerofoils are also obtained using the developed 

model and compared with the data obtained by Yao et al. [43]. The plots between 

unsteady lift coefficient and the non-dimensionalized time show a good qualitative and 

the quantitative agreement as shown in the figure 23. 

 

Figure 23: comparison of the unsteady lift coefficient 

 

4.1.2.2. Tandem aerofoil configuration II 

The wake pattern and the unsteady lift coefficient variation with time is obtained for the 

aerofoils at a 0.5c horizontal gap, 0 gap and 0 decalage with an angle of attack of 5 

degrees and compared to the panel code results obtained by Yao et al. [43] shown in 
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figure 24. The wake pattern obtained by the developed model is shown in the figure 25. 

An excellent qualitative agreement with the wake patterns is observed. 

 

Figure 24: wake pattern obtained by Yao et al. [24] for gap - 0, horizontal gap - 0.5c 

 

 

Figure 25: wake pattern for gap - 0, horizontal gap - 0.5c, AOA -    
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The lift coefficients of the front and rear aerofoils are also obtained using the developed 

model and compared with the data obtained by Yao et al. [43]. The plots between 

unsteady lift coefficients and the non-dimensionalized time show a good qualitative and 

the quantitative agreement as shown in the figure 26. 

 

 

Figure 26: comparison of the unsteady lift coefficient 

4.1.2.3. Tandem aerofoil configuration III 

The wake pattern and the unsteady lift coefficient variation with time is obtained for the 

aerofoils at a 0.5c stagger, -0.2c gap and 0 decalage with an angle of attack of 5 degrees 

and compared to the panel code results obtained by Yao et al. shown in the figure 27 
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[43]. The wake pattern obtained by the developed model is shown in the figure 28. An 

excellent qualitative agreement with the wake patterns is observed. 

 

Figure 27: wake pattern obtained by Yao et al. [24] for gap - -0.2c, stagger - 0.5c 

 

Figure 28: wake pattern for gap - -0.2c, horizontal gap - 0.5c, AOA -    
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The lift coefficients of the front and rear aerofoils are also obtained using the developed 

model and compared with the data obtained by Yao et al. [43]. The plots between 

unsteady lift coefficients and the non-dimensionalized time show a good qualitative and 

the quantitative agreement as shown in the figure 29. 

 

Figure 29: comparison of the unsteady lift coefficient 
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4.2. New results obtained by the developed model 

4.2.1. Single stationary aerofoil 

The flow filed of a single NACA 0012 aerofoil in a uniform stream is obtained as shown 

in the figure 30. To model the flow field of a stationary aerofoil in a uniform flow, the 

gap of the aerofoils in the doubly connected domain is taken to be 50 times the chord 

length. The magnitude of the gap prevents the influence of the bound vortex around one 

aerofoil on the other. This leads to a better prediction of the flow field around a single 

stationary aerofoil. The angle of attack is kept at 5 degrees and the variation of the ratio 

of the lift coefficient (  ) to steady state lift coefficient (   ) is plotted with the non-

dimensionalized time. The non-dimensionalized time step was taken to be 0.01.  

 

Figure 30: Single aerofoil in a uniform flow 
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Figure 31: Plot of ratio of lift coefficient to steady state lift coefficient to non-

dimensionalized time 

4.2.2. Single plunging aerofoil 

Variation of the lift coefficient with time is obtained for a single plunging aerofoil at 

different plunging amplitudes as shown in the figure 32. As in the case of single 

stationary aerofoil, the aerofoils are kept 50 times the chord length to avoid the influence 

of the bound vortices on one another since it leads to accurate predictions of the flow 

field for a single plunging aerofoil.  

The plunging amplitudes and the reduced frequency are taken to be 0.025, 0.05, 0.075 

and 4 respectively. The magnitudes of the plunging amplitudes are taken to be low 

values to avoid the leading edge vortex formation. The Kutta condition cannot be 

applied at the leading edge due to the absence of the sharp leading edge. Therefore a 

vortex shedding mechanism cannot be introduced at the leading edge. The limitation of 

no leading edge vortex formation is present in the current model. 
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Figure 32: Variation of the lift coefficient with the time for different plunging 

amplitudes, 0.025, 0.05 and 0.075 

 

4.2.3. Tandem aerofoils 

Using the developed model, the validated results for tandem aerofoils are extended for 

different gaps. The variations of the lift coefficients and the non-dimensionalized time 

for tandem aerofoils at different gaps are obtained as shown in figure 33, figure 34 and 

figure 35. The angle of attack is taken to be 5 degrees for all the cases. The gaps are 

taken to be 2, 3 and 4 times the chord length. The non-dimensionalized time step taken 

to be 0.001 for a higher accuracy level. As opposed to the validation results for tandem 

aerofoils, here the results are obtained for a longer non-dimensionalized time, from 0 to 

10, for a better analysis. 
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Figure 33: Variation of the lift coefficient with non-dimensionalized time for tandem 

aerofoils at a 2c distance apart 

 

Figure 34: Variation of the lift coefficient with non-dimensionalized time for tandem 

aerofoils at a 3c distance apart 
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Figure 35: Variation of the lift coefficient with non-dimensionalized time for tandem 

aerofoils at a 4c distance apart 
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5. CONCLUSION AND RECOMMENDATIONS 

5.1. Conclusions 

An inviscid analytical-numerical model is developed for predicting unsteady forces in 

two aerofoil configurations. Using the developed model, aerofoils configurations in 

tandem and single stationary/ plunging aerofoil are analyzed. The qualitative agreement 

of the plunging aerofoil with the experimental and panel code data is excellent. It can be 

concluded that the wake pattern of a plunging aerofoil in a real fluid is mainly governed 

as an inviscid flow since the experimental data has an excellent qualitative agreement 

with the inviscid wake pattern. The obtained flow field for plunging aerofoil is a jet like, 

thrust producing flow field since the upper row of vortices have a counter clockwise 

rotation which indicates that the flow pattern is thrust producing. It is also observed that 

when the aerofoils are 50c distance apart from each other the influence of the vortices 

emitted by each aerofoil on the other aerofoil can be neglected.   

An excellent agreement of the wake structure of the several tandem aerofoil 

configurations can be observed with the past literature. A good qualitative agreement 

can be observed when comparing unsteady forces in tandem aerofoil configurations. It is 

also observed that the different positions of the rear aerofoil in the tandem configuration 

do not affect the lift coefficient of the front aerofoil. However, the lift on the rear 

aerofoil varies with its relative position. Rear aerofoil gains its maximum lift when the 

starting vortex of the front aerofoil is in the vicinity of the leading edge of the rear 

aerofoil. It can be seen that the lift of the rear aerofoil is increased by placing it in a 

proper position as shown in the figure 26. The interaction of the starting vortex of the 

front aerofoil and the starting vortex of the rear aerofoil seems to reduce the lift of the 

rear aerofoil while approximately not changing the lift of the front aerofoil. 

The results obtained for a single aerofoil in a uniform flow shows that the as the initial 

vortex moves away from the aerofoil, the lift force enhances and the plot in figure 31 
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shows that the ration of the lift coefficient and the steady state lift coefficient tends to 1 

as expected which is the steady state of the flow field.  

In the case of single plunging aerofoil, the magnitudes of the plunging amplitudes are 

carefully selected to avoid leading edge vortex formation. The developed model is not 

valid for the cases when the leading edge vortices are present in the flow field. This is 

due to the inability to model the leading edge vortex in the developed model. The values 

of the lift coefficients are periodic with the same period for the three cases since the 

reduced frequency is the same for all the amplitudes. The variation of the lift coefficient 

increases as the plunging amplitude increases. Negative and positive lift coefficients can 

be observed for the upward and the downward stokes respectively.  

It can be observed that the results obtained for tandem aerofoils at different gaps have 

many things in common. There is a peak in lift coefficient in the rear aerofoil in all 

configurations. When the starting vortex emitted by the front aerofoil moves above the 

rear aerofoil a low pressure region is created in that region. This causes the lift on the 

rear aerofoil to spike up. As the vortex moves with the flow passing the rear aerofoil, the 

lift decreases since the pressure increases above the rear aerofoil. As opposed to the case 

of 0.5c gap the lift coefficient of the front aerofoil is greater than that of the rear aerofoil 

when the non-dimensionalized time increases. As shown in figure 33, figure 34 and 

figure 35 when the non-dimensionalized times are approximately greater than 2, 3 and 4 

the lift coefficients of the front aerofoil becomes greater than that of rear aerofoil for the 

gaps 2c, 3c and 4c respectively. The peaks of the lift coefficient of the rear aerofoil 

occur when the non-dimensionalized times 1.5, 2.5, 3.5 for gaps are 2c, 3c and 4c 

respectively. This is due to the fact that as the gap between aerofoils increases the time 

required for the starting vortex, generated by front aerofoil, to travel above the rear 

aerofoil increases. Also the results show that the lift coefficients converge as the time 

increases (systems achieve steady state).  
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5.2. Recommendations for Future work 

Since the leading edge of the aerofoils do not have any sharp edges, the analytical-

Numerical approach does not include the generation of the leading edge vortex which is 

very important analyzing flapping motions of aerofoil configurations. A leading edge 

vortex can be introduced to the flow field if there’s a sharp edge at the leading edge of 

the aerofoil. Therefore modeling the flow field for two flat plates is recommended as a 

future work. 

In the study, only synchronized plunging motion is considered when predicting unsteady 

forces. The study can be extended to asynchronized plunging motion, pitching motion in 

the same phase and counter phase, and combined pitch and plunge motion in counter 

phase. Then the complex potential associated with the moving bodies can be evaluated 

using a suitable Laurent series expansion.  

Finally the developed model capable of determining unsteady forces can be used to 

optimize flapping wing parameters in a biplane configuration.  
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