NATURAL RUBBER LATEX NANOCOMPOSITES; EFFECT OF MONTMORILLONITE CLAY STRUCTURE ON REINFORCEMENT AND EXTRACTABLE PROTEINS

UNIVERSITY OF MORATUWA, SRI LANKA MORATUWA

Matarage Derick Senarath Ananda Amarasiri

08/8043

Thesis submitted in partial fulfilment of the requirements for the degree of Master of Philosophy

Department of Chemical and Process Engineering

University of Moratuwa

Sri Lanka

October 2014

66 (043)

108891 1. CD - ROM

108891

DECLARATION

"I declare that this is my own work and this thesis' does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any other university or institute of higher learning and to the best of my knowledge and belief and it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis in whole or in part in print, electronic or other medium I retain the right to use this content in whole or part in future work (such as articles or books).

UOM Verified Signature

Signature

01/10/2014 Date

The above candidate has carried out research for the M.Phil. thesis under our supervision.

i

UOM Verified Signature Signature of the Supervisor;

UOM Verified Signature

Signature of the Supervisor;

03/10/2014 Date

03/10/2014 Date

ABSTRACT

Natural rubber (NR) latex-clay nanocomposite (NRLCN) prepared with montmorillonite (MMT) clay aqueous dispersion was evaluated for reinforcement, extractable proteins and barrier properties. Physio-mechanical properties of the NRLCN were compared with conventional NR latex composites containing CaCO₃. The NRLCN structure was characterized with X-ray diffraction and scanning electron microscope (SEM) techniques. X-ray diffraction data showed that, with a lower concentration of clay, highly exfoliated clay structure was achieved whilst clay aggregation gradually resulted with a higher concentration of clay.

Crosslink density and volume fraction of rubber in the swollen gel as computed based on the solvent absorption data of the latex nanocomposite films increased while molar mass between crosslink of the rubber decreased with the increase of clay concentration. As a result of nano scale dispersion of montmorillonite clay and higher crosslink density of the latex nanocomposite films, resistance to permeation of small molecules through the NRLCN is significantly enhanced in comparison to conventional NR latex-CaCO₃ composites.

Solid state mechanical properties of NRLCNs have shown a significant reinforcement effect of dispersed nanoclay platelets but without sacrificing the elastic properties. Results have been explained in terms of degree of clay dispersion/exfoliation, crosslink density and strain induced crystallization.

The extractable protein content was analysed for the NRLCN samples using the Modified Lowry Method. It had shown a significant reduction of the extractable protein content in the NR latex films when montmorillonite clay is introduced. The NRLCNs were leached using typical industrial leaching conditions and also tested for the extractable protein content which dropped well below the allergenicity level of human skin. The extractable protein content of raw NR latex-clay un-vulcanized films had shown similar results as the NRLCN which confirms the attraction of protein cations with the nanoclay platelets. The entrapped protein has accelerated the vulcanization reaction of the NRLCN which caused higher crosslink density. Higher mechanical properties, very low extractable protein content and improved barrier resistance indicated that NR latex nanocomposite containing montmorillonite clay is a potential replacement for conventional NR latex composites containing CaCO₃.

Keywords: Natural rubber latex/ clay/ nanocomposites/ physical properties/ barrier properties/ exfoliation/ crosslink density/ Latex allergies/ Extractable proteins

ACKNOWLEDGEMENT

First I wish to thank my late parents who had taught me the social values, courage and determination to face the challengers in life. This is a tribute for their steadfast commitment.

I greatly appreciate my eminent supervisors Dr. Shantha Walpolage of University of Moratuwa and Dr. Upul Rathnayaka of Rubber Research Institute. They have mentored and monitored me with their visionary, focused approach to the research topic. Their attentiveness and interest in this study, creditable assistance, advice and criticism have motivated me immensely and guided me on the pathway to the successful completion of this work within specified time period.

I wish to express my deepest gratitude to Prof. K. Subramanium, Prof. (Mrs.) P. Sivagurunathan, Prof. S. A. S. Perera, Dr. Jagath Premachandra, Dr. Shantha Amarasinghe and to whom I am deeply indebted.

I like to thank the senate research council for granting the funds on my experimental expenses which enable me to fulfil the requirements.

I would like to express my deepest gratitude to Dr. Gamini Senevirathna the Director of Rubber Research Institute for his kind assistance in granting me to carry out my research activities in RRI institute premises. Further I wish to thank Dr. Susantha Siriwardana, Dr. (Mrs.) Dilhara Edirisingha and Dr. (Mrs.) Nilmini the Heads of Departments, Mr. A. K. Chandralal for their valuable contributions during my work.

My appreciations go to Dr. (Mrs.) Shantha Egodage, Dr. (Mrs.) Kalyani Liyanage, Dr. T.A.G. Gunasekera and Mr. Udaka De Silva of University of Moratuwa and Mr.Justin Senevirathna the General Manager of Lalan group.

Last but not least I would like to acknowledge my beloved family members and Mr. Anura Vidanagamage for their kind cooperation.

TABLE OF CONTENTS

Page No.

Declaration	i
Abstract	ii
Acknowledgement	iii
Table of contents	iv
List of Tables	ix
List of Figures	x
List of Abbreviations	xiii
CHAPTER 1 – INTRODUCTION	01
1.1 Background Motivation	02
1.2 Aims and Objectives	04
CHAPTER 2 - LITERATURE REVIEW	05
2.1 Historical Background of Latex Production	06
2.2 Natural Rubber Latex	06
2.3 Composition of Natural Rubber Field Latex	07
2.3.1 Rubber phase	08
2.3.2 Aqueous phase	08
2.3.3 Lutoid phase	09
2.4 Structure of Latex Particle	09
2.5 Concentration of Latex	10
2.5.1 Centrifuging of latex	10
2.6 Preservation of NR Latex	10
2.6.1 Short term preservation	11
2.6.2 Long term preservation	11
2.7 Characterization of NR Latex	12
2.7.1 Total solid content (TSC)	12
2.7.2 Dry rubber content (DRC)	12

	2.7.3 Alkalinity	13
	2.7.4 Potassium hydroxide (KOH) number	13
	2.7.5 Volatile fatty acids (VFA) number	13
	2.7.6 Mechanical stability time (MST)	13
	2.7.7 Viscosity	13
2.8 C	ompounding of NR Latex	14
	2.8.1 Preparation of compounding ingredients	14
2.9 V	ulcanization of Latex	15
	2.9.1 Pre vulcanization	15
	2.9.2 Post vulcanization	15
2.10)	Dipping Methods	.15
2.11	Dipped Products	16
	2.11.1 Surgical gloves	16
	2.11.2 Examination gloves	17
	2.11.3 Household gloves	17
2.12	Problems with the Dipped Products	17
	2.12.1 Physical properties	17
	2.12.2 Barrier properties	17
	2.12.3 Health hazards	18
2.13	NR Latex Allergy	20
	2.13.1 Prevalence and health impact on allergy to NR latex	22
	2.13.2 Role of glove powder in allergic reactions to NR latex	24
	2.13.3 Binding of natural latex proteins tocorn starch powder	25
	2.13.4 Airborne glove powder as an allergen carrier	26
	2.13.5 Respiratory problems in natural latex allergic individuals	26
	2.13.6 Role of glove powder in irritation and contact dermatitis development	26
	2.13.7 Medical data	27
	2.13.8 Market response	28

2.13.9 Latex allergens	29
2.14 Current practices to overcome latex allergy	29
2.14.1 Chlorination	29
2.14.2 Leaching	30
2.14.3 Irradiation	31
2.14.4 Double centrifuging	32
2.15 Experimental systems	32
2.16 Draw backs in present practices	32
2.17 Polymer Nanocomposites	33
2.17.1 Structure and properties of layered silicates	33
2.17.2 Cation Exchange Capacity	34
2.17.3 Structure and properties of organically modified layered silicate (OMLS)	36
2.18 Filler characteristics	37
2.18.1 Reinforcement behaviour of fillers	38
2.19 Polymer- Clay composites structures	41
2.19.1 Phase separated microcomposite	41
2.19.2 Intercalated nanocomposite	42
2.19.3 Exfoliated nanocomposite	42
2.20 Preparative methods	42
2.20.1 Solution mixing	42
2.20.2 In-situ Intercalation	42
2.20.3 Melt Intercalation	42
2.21 Characterization of Polymer nanocomposites	43
2.21.1 X- Ray Diffraction	43
2.21.2 Transmission Electron Microscopy (TEM)	44
2.21.3 Scanning Electron Microscopy (SEM)	45
2.22 Rubber-Clay nanocomposites	46
2.22.1 Preparation of nanoclay dispersion	46

2.22.2 Compounding of NR latex with nanoclay	47
2.23 Dipping characteristics	47
2.23.1 Viscosity studies	47
2.23.2 Dipping properties	48
2.23.3 Reinforcement	48
2.23.4 Physical properties	49
2.23.5 Crosslink density	51
2.23.6 Solvent transportation properties	51
2.23.7 Extractable protein content	- 51
CHAPTER 3 – METHODOLOGY	52
3.1 Materials	53
3.2 Characterization of natural rubber latex and compounding ingredients	53
3.3 Preparation of dispersions and emulsions	53
3.4Compounding of NR latex	54
3.5 Characterization of compounded latex	54
3.5.1 Viscosity	54
3.6 Preparation of NR latex films	55
3.7 Characterization of NR latex /clay nanocomposite (NR LATEXCN)	55
3.7.1 X-ray diffraction	55
3.7.2 Scanning Electron Microscopy images	56
3.8 Solvent transportation properties	56
3.9 Vulcanizate properties	57
3.10 Determination of Extractable Proteins	57
CHAPTER 4 - RESULTS & DISCUSSION	59
4.1 Characterization of natural rubber latex	60
4.2 Plasticity of filled raw rubber	61
4.3 Characterization of compounded late	62
4.3.1 Viscosity	62

4.4 Characterization of Rubber-clay nanocomposites	63
4.4.1 X-ray diffraction	63
4.4.2 Scanning Electron Microscopy images	65
4.5 Barrier Properties	66
4.5.1 Solvent absorption behaviour	66
4.5.2 Volume fraction of rubber in swollen gel	67
4.5.3 Molar mass between crosslinks	68
4.5.4 Crosslink density	69
4.6 Physical Properties	70
4.6.1 Tensile strength	70
4.6.2 Modulus	72
4.6.3 Elongation at break	74
4.6.4 Tear strength	75
4.6.5 Hardness	76
4.7 Extractable Protein Content	78
4.7.1 Un-leached samples	78
4.7.2 Comparative study with leached samples	80
4.7.3 Un-leached MMT clay filled raw rubber samples	. 81
CHAPTER 5 -CONCLUSION	84
5.1 Conclusion	85
5.2 Future Work	86
REFERENCES	87

LIST OF TABLES

Table 2.1: Typical composition of fresh natural rubber latex	7
Table 2.2: Typical composition of the phases of fresh natural rubber latex	8
Table 2.3: Composition of rubber phase	8
Table 2.4: Preservative systems used with concentrated latex	12
Table 2.5: Surgical products that may contain natural rubber latex	16
Table 2.6: Products in the home that may contain natural rubber latex	16
Table 2.7: Clinical syndromes associated with glove exposure	22
Table 2.8: Chemical formula and characteristic parameter of commonly used 2:1 phyllosilicates	35
Table 3.1: Compound formulation for NR latex/ montmorillonite clay and NR latex/CaCO ₃ composites	54
Table 4.1: Specification tests results of concentrated latex	60
Table 4.2: Metal ion content of concentrated latex	60
Table 4.3: Diffraction peak positions and interlayer distance of NR latex/Montmorillonite clay nanocomposites	64

LIST OF FIGURES

	Page No.
Figure 2.1: Dispersion of NR latex particles in an aqueous medium	7
Figure 2.2: Chemical structure of the rubber hydrocarbon	8
Figure 2.3: Structural arrangement of NR latex particle	10
Figure 2.4: Structure of 2:1 phyllosilicates	35
Figure 2.5: Clay platelets with different arrangements	40
Figure 2.6: Different types of composites arising from the	41
interaction of layered silicates, polymers:	
a) Phase-separated microcomposite; b) Intercalated nanocomposite,	
and c) Exfoliated nanocomposite	
Figure 2.7: X ray with θ degrees reflection on a crystal surface	43
Figure 2.8(a): TEM Image of an exfoliated system	44
Figure 2.8(b): TEM Image of an intercalated system	44
Figure 2.8(c): TEM image at lower magnification	45
Figure 2.9: SEM image of rubber- clay nanocomposites	46
Figure 3.1 Casted film of filler loaded Natural Rubber	55
Figure 4.1: Variation of plasticity values of raw rubber under	61
different montmorillonite clay loading.	
Figure 4.2: Variation of plasticity values of raw rubber under different	62
CaCO ₃ loading	
Figure 4.3: Variation of viscosity of latex at different loadings of	62
montmorillonite clay	
Figure 4.4: X-ray diffractograms of (a) NR latex/clay nanocomposites	63
(b) Montmorillonite clay	
Figure 4.5: SEM image of NR LATEXCN film containing	65
2 phr of montmorillonite clay.	

Figure 4.6: Variation of solvent absorption coefficients of filler	66
loaded for different rubber composites	
Figure 4.7: Variation of volume fraction of rubber in swollen gel of	67
filler loaded different rubber composites	
Figure 4.8: Variation of molar mass between crosslinks of filler loaded	68
different Rubber composites	
Figure 4.9: Variation of crosslink density of filler loaded different	69
Rubber composites	
Figure 4.10:Variation of tensile strengths of montmorillonite clay loaded Rubber nanocomposites	70
Figure 4.11: Variation of tensile strength values of the Rubber-CaCO ₃	71
micro composite under different CaCO ₃ loadings	
Figure 4.12: Variation of modulus values of the Rubber-montmorillonite clay	72
nanocomposite under different clay loadings	
Figure 4.13: Variation of modulus values of the Rubber-CaCO ₃ micro composite	73
under different CaCO ₃ loadings	
Figure 4.14: Variation of elongation at break values of the Rubber-	74
montmorillonite clay nanocomposite under different clay loadings	
Figure 4.15: Variation of elongation at break values of the Rubber-CaCO ₃	74
micro composite under different CaCO ₃ loadings	
Figure 4.16: Variation of tear strength values of the Rubber-montmorillonite	75
clay nanocomposite under different clay loadings	
Figure 4.17: Variation of tear strength values of the Rubber-CaCO ₃	76
micro composite under different CaCO ₃ loadings	
Figure 4.18: Variation of hardness values of the Rubber-montmorillonite	77
clay nanocomposite under different clay loadings	

Figure 4.19: Variation of hardness values of the Rubber-CaCO ₃ micro composite under different CaCO ₃ loadings	77
Figure 4.20: Variation of extractable protein content in the Rubber-MMT clay nanocomposite with different loadings of MMT clay	78
Figure 4.21: Protein content comparison between leached and un-leached films at different loadings of MMT clay	80
Figure 4.22: Variation of extractable protein content in the un-leached Rubber-MMT clay nanocomposite with field latex under different loadings of MMT clay	81
Figure 4.23: Schematic illustration of the interaction between protein chains and MMT clay platelets	82

LIST OF ABBREVATIONS

ASTM	- American Society of Testing and Materials
BA	- Boric acid & Lauric acid
CaCO ₃	- Calcium Carbonate
CDRH	- Center for Devices and Radiological Health
CEC	- Cation Exchange Capacity
DRC	- Dry Rubber Content
ELISA	- Enzyme Linked Immunosorbent Assay
FDA	- Food and Drug Administration
FEV	- Forced Expiration Volume
FTIR	- Fourier Transform Infrared Spectroscopy
НА	- High Ammonia
Hev b	- Hevin b
HIV	- Human Immunodeficiency Virus
IgE	- Immunoglobulin E
KOH No	- Potassium Hydroxide number
LA	- Low Ammonia
LATZ	- Low Ammonia latex preserved with ZnO and TMTD
MMT	- Montmorillonite .
MST	- Mechanical Stability Time,
NH4OH	- Ammonium Hydroxide
NHANES	- National Health and Nutrition Examination Survey
NIOSH	-National Institute of Occupational Safety and Health

NMR	- Nuclear Magnetic Resonance Spectroscopy
NR LATEXCN	- NR latex/clay nanocomposite
NR	- Natural Rubber
NRL	- Natural Rubber Latex
ODE	- Office of Device Evaluation
OMLS	-Organically Modified Layered Silicate
PEO	- Poly Ethylene Oxide
PVA	- Poly Vinyl Alcohol
RVNR latex	-Radiation Vulcanized Natural Rubber latex
SEM	- Scanning Electron Microscopy
SSP	- Sodium pentachloro phenate
TEM	- Transmission Electron Microscopy
TGA	- Thermal Gravimetric Analysis
TMTD	- Tetra Methyl Thiuram Disulphide
TSC	- Total Solid Content
U.S.	- United States
USP	- United States Pharmacopoeia
VFA	-Volatile Fatty Acid Number
XRD	- X- Ray Diffraction
ZDEC	- Zinc Diethyldithio Carbomate
ZnO	- Zinc Oxide