DEVELOPMENT OF A PILOT-SCALE BIOGAS PLANT TO UTILIZE BIOMETHANE AS A TRANSPORT FUEL

UNIVERSITY OF

MORATUWA, SRI LAME. LB/DON/62/2012

M. A. D. I. C. Kularatna

08 / 8024

Thesis / Dissertation submitted in partial fulfilment of the requirements for the degree Master of Science

Department of Chemical and Process Engineering

University of Moratuwa Sri Lanka

> 102861 + cb-Rom

TH

December 2010

102861

DECLARATION OF THE CANDIDATE AND SUPERVISOR

I declare that this is my own work and this thesis / dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any University or other institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgment is made in the text.

Signature: Z. Jalarat

2011-12-27 Date:

I hereby grant the University of Moratuwa the right to archive and to make available my thesis or dissertation in whole or part in the University Libraries in all forms of media, subject to the provisions of the current copyright act of Sri Lanka. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

Signature: L. Kalar and

Date: 2011 - 12 - 27

I have supervised and accepted this thesis / dissertation for the award of the degree.

Signature of the Supervisor:

Date: 27/12/11 27/12/2011

ABSTRACT

This project was to develop a system to utilize Biomethane as a transport fuel. It was started at the Department of Chemical and Process Engineering, University of Moratuwa funded by the Ministry of Science and technology. In this project, initially a suitable process was developed to produce biogas utilizing food waste obtained from university canteens and upgraded as a vehicle fuel. Then the pilot-scale biogas plant was designed and construction of the building and fabrication of equipments were preceded.

Initially laboratory scale experiments were conducted to find out the design parameters such as analysis of food waste, composition for optimum gas production rate, etc. According to that, the total solid content (TS) is 37% and total volatile solid content (TVS) is 23%. The best composition for optimum gas production is 10% solid in the slurry.

The pilot-scale biogas plant was operated and produces biogas utilizing food waste and upgraded using a water scrubber to remove CO_2 and H_2S . After that, the cleaned gas, which is having a composition of 85% CH₄, was used as a vehicle fuel. For the initial trials, biogas was replaced with LPG in a LPG three-wheeler without any modification to the three-wheeler system and it was successfully operated. According to the emission tests carried out for biogas vehicle fuel, it shows that it is operating environment friendly than gasoline.

Keywords: Biogas, Food Waste, Vehicle Fuel, Anaerobic Digestion

DEDICATION

I dedicate this thesis to the two pillars in my life: my parents and my husband. I might not come into this plane without my parents who have dedicated their life for making me an educated and a successful person. In addition, I might not complete this without the love, understanding, support and company received from my husband. I would like to express my love and appreciation for the encouragement and the sacrifices made by both my parents and my husband.

ACKNOWLEDGEMENT

I would like to express my appreciation to my main supervisor Prof. Ajith De Alwis for his precious guidance and encouragement to complete this project. I am deeply grateful to him for spending his valuable time in evaluating the progress of my research project. Without his valuable perception and guidance, this research would not have become a reality. Dear Sir, it has been an honour to work with you. In addition, my special thanks goes to my second supervisor, Dr. P.G. Rathnasiri, for being a guiding light right through the research. Also thanks for giving me the opportunity to be part of the research.

I would like to extend my sincere appreciation to the Ministry of Science and Technology for the project initiation and for making this study possible by providing its funding and especially to Mr. P.G. Joseph, Director, Alternative Energy Division, Ministry of Science and Technology, for his time, patience and the tremendous help throughout the research.

My special thanks to Mr. Nuditha Dilnayana, who is continuing the research after me and helped me to finalize many of the works remaining. Special thanks to Mr. Sugath Perera, the operator of the plant for helping me to run the plant and experiments, without which I could not carry my research successfully.

I take this opportunity to thank the academic staff of the Department who provided valuable support throughout my research project and who gave me valuable advice whenever required. At the same time, I should not forget the technical and office staff at the Department, for offering me their honest help without any hesitation whenever required. Special thanks to Dr. Victor Mendis, Senior Lecturer, Mechanical Engineering Department, for the guidance and support provided for us regarding vehicle trials.

iv

I would like to thank the Vice Chancellor and the Dean, Faculty of Engineering and the Registrar for spending their valuable time for considering requests made throughout the research period providing directions. Also thanks to the staff at Vice Chancellor Office, Dean Office and Registrar Office for supporting the administrative works. My special thanks to the Postgraduate Studies Division, University of Moratuwa for approving my research project.

In addition, I would like to express my gratitude for Dr. Bandara Dissanayake, Mr. Deshai Botheju, Mr. Suranga Chaminda, Mr. D.G. Dhanushka, Mr. Dilan Piyarathna, and Mr. Deshaka Kottage for their personal involvement in designing process and machinery. This project will not become a success without their valuable insights and direction.

My special thanks go to Mr. Ariyasheela Wickramanayake, Master Divers for having time to help us always no matter how busy he is and for donating the compressor for our experiments and providing biogas from the Pelawatte Sugar Industries. In addition, Mr. Dananjaya Munasinghe, Mr. Ranjith Fernando and other staff members from Master Divers who were involved with us for continuing vehicle trials.

I would fall short in my duty, if I fail to thank the people whose support is a part of the success.

- Maintenance Division for supporting throughout the research project at building construction, repairs, etc. and especially former Maintenance Engineer Mr. Leelarathna for the excellent support given during plant building construction
- Mr. Kumar, Electrical Superintendent and his staff for the outstanding support given for electrical maintenance and other technical matters
- Mr. Ravindra Irugalbandara, civil engineer, for preparing plant drawings and estimates
- Mr.Heshan De Silva, Deputy General Manager, Laugfs, Kelaniya for providing guidance in technical matters

- Ms. Sanjeevi Jayathilake at Ceylon Oxygen for the support given for the testing gas cylinders
- Mr. Dananjaya P. Kuruppu, Enviromec International (Pvt) Ltd., for providing guidance in technical matters
- Mr. Janaka B Doloswala, Assistant Sales Manager, Solex Engineering (Pvt)
 Ltd., for repairing pumps at free of charge
- Mr. Amila Chandra for preparing 3D drawing of the pilot-scale plant
- Mr. Janaka at Abans for helping us to dispose the slurry when it needs to refill
- Vidatha Centre, Bokundara for providing Gliricedia leaves as a feed material for the plant
- Mr. Prasad Niroshan, Sales Officer and Mr. Mahesh Dharmajith, Mechanical Engineer, David Peris Motor Company Limited, for providing additional technical details required for vehicle trials.
- Mr. Namiz Musafer, Country Manager, Practical Action, for providing required technical support and Mr. Pushpakumara, Practical Action, for the technical support and also for the personal involvement by spending his time at the university during construction of the dry batch plant.
- Sesatha Enterprises, Katubedda, for fabricating the biogas reactor vessel and the scrubber
- Mr. Jayasiri, Odiris Engineering Company for fabricating the food waste crusher and providing valuable suggestions for improvements
- Mr. Sarathchandra and Mr. Charitha Jayanath, Tritech Engineers Private Limited, for plumbing in the plant
- Ruwan Trade Centre, Siddhamulla for constructing the plant building
- Mr. Arjuna, Sampath Iron Works, Moratuwa for doing modifications in the roof of the plant building
- Mr. Asanka Sanjeewa, Bandaragama for making and fixing Bamboo Tats in windows of the plant building
- Mr. Saranelis, Thisara Cleaning Service for supporting with workforce

- Workshop Engineer, Department of Mechanical Engineering, Mr.Somasiri, Mr. Amal Shantha for the support provided at time to time in mechanical related works
- Finance division of the University for handling project funds and supporting with financial matters
- General Administration Division for the administrative works related to the three wheeler possess by the project
- Security Division of the University for providing adequate security facilities for the plant building and machinery
- Supply Division of the University for administrative works done in purchasing capital equipments
- Capital Works and Services Division of the University for administrative works done in construction of the plant building
- University canteens 1 and 2 for providing food waste to feed the plant

I sincerely thank my beloved husband for providing continued support and encouragement during my research work who was always there to support me whenever I needed support on my research work in whatsoever.

Finally, I would like to express my thankfulness for many individuals and friends who have not been mentioned here personally and helped me by thought, word or deeds in making this research a success.

TABLE OF CONTENT

Page

Declaration of the Candidate and Supervisor	i
Abstract	ii
Dedication	iii
Acknowledgement	iv
Table of content	viii
List of figures	xii
List of tables	xiv
List of abbreviations	xvi
List of APPENDICES	xvii
CHAPTER 1 – INTRODUCTION	1
1.1 Background	
1.2 Introduction to the Project	2
1.3 Objectives of the Project	2
1.4 Thesis Structure	3
CHAPTER 2 — LITERATURE SURVEY	4
2.1 Biogas and Its Properties	
2.2 Biogas Production Processes	7
2.3 Operational Conditions in the Biogas Production Processes	10
2.3.1 Temperature	10
2.3.2 pH and Alkalinity	12

2.3.3	Total Solid (TS)	13
2.3.4	Total Volatile Solids (TVS)	14
2.3.5	Chemical Oxygen Demand (COD)	14
2.3.6	Volatile Fatty Acid Content (VFA)	
2.3.7	Carbon – Nitrogen Ratio (C: N)	15
2.3.8	Retention Times	15
2.3.9	Toxicity	17
2.4 Ana	erobic Digestion	18
2.4.1	Hydrolysis	22
2.4.2	Acedogenesis	23
2.4.3	Acetogenesis	23
2.4.4	Methanogenesis	23
2.5 Feed	d stocks	26
2.6 Cha	racteristics/properties	31
2.7 Adv	vantages / Disadvantages	32
2.8 Use	s / Applications	33
2.9 As a	a vehicle fuel	
2.10 U	Jpgrading Biogas	
2.10.1	Water scrubbing	
2.10.2	Pressure Swing Adsorption (PSA)	40
2.10.3	Membrane separation	41
2.10.4	50 1	
2.10.5	Biological desulphurization	41
2.10.6	Ferrous chloride dosing to digester slurry	42
2.10.7	Impregnated activated carbon	42
2.10.8	Chemical conversion method	42
2.10.9	Dry oxidation process	42
2.10.1	0 Liquid phase oxidation process	43
CHAPTER	3 - BIOMETHANATION STUDIES: LAB SCALE	

	3.1	Obje	ectives	.44
	3.2	Mat	erials and Methods	44
	3.3	Feed	d Characterization	45
		3.1	Analysis of feed types	
	3.4	Lab	Scale Reactor System	48
		4.1	Feed preparation	
		4.2	Results of Lab Scale Reactors	
	3.5	Test	ing equipment specifications	
	3.6	Proc	cess Trouble Shooting	51
С	hapte	er 4 –	Process Design and Construction of the Pilot-scale Biogas Plant	54
	-		cess Design	
		1.1	Plant Building	
		1.2	Feed Preparation System.	
		1.3	Feed Transfer System	
		1.4	High Rate Biogas Reactor	
		1.5	Carbon Dioxide Scrubber	
		1.6	H2S Scrubber	
		.1.7	Moisture Removal	
		1.8	Piping and Instrumentation	
	4.	1.9	Sedimentation	
	4.	1.10	Intermediate Storage and Compression	67
	4.2	Dry	Batch Biogas Pits	68
	4.3	Soft	ware used for designing	69
	4.4	Trou	uble Shooting – Plant Machinery	70
	4.5	Mod	difications in Future Use	72
С	hapte	er 5 –	Pilot Plant Operation	73
	5.1	Plan	It Safety	73

5.2 Plant Operation	73
5.3 Plant Monitoring and Discussion	75
Chapter 6 – Biogas in Vehicles	76
6.1 Introduction	76
6.2 Application and Results	76
6.3 Discussion	79
Chapter 7 – Conclusions and Future Work	80
7.1 Conclusion	80
7.2 Future Work: Recommendations	81
References	82
Appendices	

LIST OF FIGURES

	Page
Figure 1: Role of Biogas	7
Figure 2: Sri Lankan Batch Type Digester	9
Figure 3: Variation of digestion time with temperature	11
Figure 4: Energy comparison of waste treatment in OFMSW	20
Figure 5: Theory of Anaerobic Digestion	21
Figure 6: Standard digester	25
Figure 7: Anaerobic contact process	25
Figure 8: Anaerobic filter	25
Figure 9: Up flow anaerobic sludge blanket	26
Figure 10: Composition of Municipal Solid Wastes in Sri Lanka	27
Figure 11: Greenhouse gas emissions for different fuels	32
Figure 12: Bi-fuel System (CNG and Biogas)	36
Figure 13: Water scrubbing system	39
Figure 14: PSA Technology for Scrubbing	40
Figure 15: Composition of the Lab Scale reactor	48
Figure 16: Lab Scale Reactor System (1)	49
Figure 17: Lab Scale Reactor System (2)	52
Figure 18: Gas production in lab scale	52
Figure 19: Process Flow of the Pilot Plant	54
Figure 20: Waste segregating system in the university	55
Figure 21: Pilot-scale Biogas Plant Building	56
Figure 22: Initial Design of the Food Waste Crusher	57
Figure 24: Final view of the Crusher	58
Figure 23: (a) Internal blades (b) Water inlet system in the Crusher	58
Figure 25: Submersible Slurry Pump	59
Figure 26: Initial Design of the Reactor	60
Figure 27: (a) Biogas Reactor Vessel (b) Motor for Inside Impellors (c) Drain ou	ıt
System	61

Figure 28: Vegetable plantation using the drain out slurry as the fertilizer
Figure 29: Initial Design of the Scrubber
Figure 30: Top of the Water Scrubber63
Figure 31: Bottom of the water Scrubber
Figure 33: Moisture Removing Setup (Metal)65
Figure 32: Moisture Removing Setup (Glass)65
Figure 34: (a) Inline pressure gauge (b) Electricity panel board in the pilot plant66
Figure 35: Sedimentation Tank
Figure 36: Compressor67
Figure 37: Intermediate Storage Tanks
Figure 38: Operation of Dry Batch Biogas Pits in the University (a) Collecting straw
(b) Submerse straw in a mixture of urea and cow dung (c) During feeding to the
pit (d) After feeding and fixing the lid68
Figure 40: Software - Packed Bed Calculator
Figure 39: Gas Collection System - Dry Batch Biogas Pits
Figure 41: Selection of packing materials in the software
Figure 42: Preparing and Fixing of Mesh Guard (a) Mesh guard (b) Finalize making
the mesh guard (c) Fix to the pump (d) Fixing pipe lines
Figure 43: Gas Leak Detection - Reactor Vessel (a) Checking the top of the vessel
(b) Apply soap solution (c) Air leaks as bubbles
Figure 44: LPG - Biogas three-wheeler
Figure 45: Biogas Test Bench81

LIST OF TABLES

Page

Table 1: Composition of Biogas	4
Table 2: Calorific Value of Biogas	5
Table 3: Ultimate biogas production potential	5
Table 4: Properties of biogas	6
Table 5: Biogas production variation with mixing	10
Table 6: Temperature ranges of methane production	11
Table 7: Comparison of Mesophilic and Thermophilic Digesters	11
Table 8: Optimum pH Level	12
Table 9: Chemicals used for pH adjustment	
Table 10: TS Values for SC-OFMSW	14
Table 11: TVS for SC-OFMSW	14
Table 12: Generating Times for different microbial	16
Table 13: Toxic levels on waste	17
Table 14: Parameters of Anaerobic Digestion	19
Table 15: Comparison of Single Stage and Two Stage Processes	20
Table 16: Biogas production capacities	28
Table 17: Biogas yields from various feedstock	29
Table 18: Analysis of market garbage collected from Matara Sunday fair	29
Table 19: Properties of bio-solids, rice and a mixed sample	30
Table 20: Estimation of methane yield	30
Table 21: Operational conditions for methane production	31
Table 22: Specifications of Biogas as a Fuel in France and Sweden	34
Table 23: Vehicle Emissions in Sweden	35
Table 24: Emission reduction of biogas vehicles	
Table 25: Comparison of Properties of Biogas and Natural Gas	
Table 26: Components to be removed for different applications	
Table 27: Test Methods	44
Table 28: Analysis of Feed Types	45
Table 29: Initial measurements for TS	

Table 30: Measurements for TS	46
Table 31: Measurements for TVS	47
Table 32 : Testing equipments	49
Table 33: Feed Characterization	53
Table 34: Emission Test for Biogas	78
Table 35: Estimated Fuel Wastage for Biogas	

LIST OF ABBREVIATIONS

Abbreviation	Description
AD	Anaerobic Digestion
ANC	Acid Neutralizing Capacity
CHP	Combine Heat and Power
CNG	Compressed Natural Gas
COD	Chemical Oxygen Demand
HRT	Hydraulic Retention Time
IANGV	International Association of Natural Gas Vehicles
LPG	Liquefied Natural gas
MS – FMSW	Mechanically Sorted Organic Fraction of Municipal
	Solid Wastes
MOST	Ministry of Science and Technology
MSW	Municipal Solid Waste
PSA	Pressure Swing Absorption
RPM	Revolutions Per Minute
SC – OFMSW	Separately collected Organic Fraction of Municipal
	Solid Wastes
SLR	Sri Lankan Rupees
SRT	Solids Retention Time
SS – OFMSW	Source Separated Organic Fraction of Municipal
	Solid Wastes
TS	Total Solids
TVS	Total Volatile Acid
UASB	Up flow Anaerobic Sludge Blanket
VFA	Volatile Fatty Acid

LIST OF APPENDICES

Appendices	Description	Page
Appendices A	Initial Process Design of the Pilot Plant	86
Appendices B	Final Process Design of the Pilot Plant	87
Appendices C	Final Constructed Pilot-scale Biogas Plant	88
Appendices D	Final Constructed Pilot-scale Biogas Plant	89
Appendices E	Operating vehicles with biogas fuel	94

xvii