Assess Effectiveness of TIA Method in Forensic Delay Analysis in Construction Projects

By

Malith Mendis

Research

M.Sc. in Construction Project Management
University of Moratuwa

Supervised by

Prof. A.A.D.A.J. Perera

This dissertation was submitted to the Faculty of Engineering of University of Moratuwa in partial fulfilment of the requirements for the Degree of MSc in Construction Project Management

Faculty of Engineering

University of Moratuwa, Sri Lanka

March 2015

69:005.8 (043)

109880

TH2978

DECLARATION

I confirm that, except where indicated through the proper use of citation and references, this is my own original work. I also confirm that my work include in this dissertation in part or whole has not been submitted for any other academic qualification at any institution. Further, I confirm that subject to final approval by the Board of Examiners of University of Moratuwa, a copy of this dissertation may be placed upon shelves of the library of the University of Moratuwa and may be circulated as required.

UOM Verified Signature

M.S. Mendis

30th March 2015

The above particulars are correct to best of my knowledge.

UOM Verified Signature

Prof. A.A.D.A.J. Perera (Supervisor) Date

Department of Civil Engineering,

University of Moratuwa

ABSTACT

Results of delay analysis is the basis of many claims related to time and money of the construction projects. Results of delay analysis vary depending on the person how perform the analysis, delay analysis method, nature of data available, and many other subjective parameters associate with delay analysis. There is no delay analysis method specified in any standard condition of contracts. Therefore the selection of more suitable method is a liberty of person how preform the analysis. This inspire the background of this research.

Forensics delay analysis is the process which measure the impact of a delay event to the date of completion of the project based. This process called 'Forensic' because it is based on the past data. The planned sequence of activities of the project agreed by parties at the beginning of the project will be the basis of this process. Sequence of activities of a project or project programme, has many dependencies. Most of those dependencies are subjective. Therefore it is very difficult to develop a mathematical model to assess the impact of a delay event to the programme and its date of completion. There are many delay analysis methods. TIA is a one of the most accepted method even recommended by society of construction law. Assessment of the effectiveness of TIA method to analyze delays in construction projects is the objective of the research. Effective method shall be applicable, justifiable and scientific.

Assessing criteria to assess the effectiveness of a delay analysis method has been developed referring to basic requirements in analyzing project delays, provisions in contract law and experts views. The impact of few delay events would be analyze by TIA method and it could be assessed by the assessing criteria. Delay event and application of TIA method and results are the parameters which shall be assessed. This process have many subjective parameters. Impact of subjective parameters related to the delay analysis process, should be nullify to obtain more 'generalized' results. Therefore instead of obtaining results under few cases, it is planned to study the behavior of TIA results with the variability of its subjective parameters. Then these relationships are assessed by the developed criteria. Simulation followed by a case study is the selected methodology for the research. Simulation of the TIA has been done using a model developed based on critical path method. Simulation model should be capable of assemble each simulations together to observe the impact of one delay event on other. Results of simulations would be graphically illustrated.

Effectiveness of TIA method has been assessed in view of scientific method of measurement and applicability to the accepted industrial requirements and norms.

TIA cannot fulfill the requirements of effective delay analysis method, all the times. TIA shall be perform with proper understanding of behavior of its results. Interpretation of TIA results and final decision over the time extension claim shall be still a job, highly depend on expert judgment of professionals.

Contents

ist of Tables	7
ist of Figures	
hapter 1 - Background	
1.2 Objectives of the Research	11
hapter 2 - Literature Review	13
2.1 Introduction	13
2.2 Previous researches relevant to evaluation of TIA and delay analysis methods	14
2.3 The Delay Analysis Methods	
2.3.1 Identify Delay events and their ownership	
2.3.2 Calculation of the Impact of Delay Event	
2.4 Methods of Analyzing the Impact of Delay Event	
2.4.1 As-Planned v As-Built	
2.4.2 Impacted As-Planned	
2.4.3 Collapsed As-Built (also known as 'As-Built But For' method)	
2.4.4 Introduction to the Time Impact Analysis	
2.4.5 TIA Method	
2.5 Evaluation Criteria of Effectiveness of Delay Analysis method	
2.5.1 Capability of TIA to be in line with legal requirements	
2.5.2 Scientific Method of Measurement	33
2.6 Delays and Delay Events	36
2.7 Concurrent Delays	
2.8 Technical and Contractual Constrains	
2.9 Variable parameters (Source input data) of delay analysis	38
2.9.1 Construction programme (Baseline programme)	
2.9.2 Progress Update	40
2.9.3 Condition of Contract	40
2.9.4 Source input data specifically applied in TIA Method	
2.9.5 Nature of fragnet	
2.9.6 Appropriate Schedule	41
2.9.7 Time of analysis been done	41
2.9.8 Level of mitigation of delays	42
2.9.9 Selection of best path of working	42
2.10 Effective Cases of TIA	42

2.11 Illustrate TIA	44
2.12.1 Illustrated in Gant Chart	44
2.12.2 Time Impact Evaluation Forms	47
2.12.3 Illustrated in 4D model	49
2.12 Summary of Literature Review	51
Chapter 3 - Research Methodology	52
3.1 Overview	52
3.2 Outline of the Research	53
3.3 Research Strategy	55
3.4 Research Methods	57
3.4.1 Case study Method	57
3.4.2 Simulation Method	58
3.4.3 Combine research Methodology	58
3.5 Development of Case study Approach	
3.6 Development of simulation for the impact of delay event	60
3.6.1 Model TIA in with multiple variables	61
3.6.2 Model TIA in a Critical Path Programme	61
3.7 Match critical path programme to develop TIA simulation model	62
3.8 Development of Model	63
Chapter 4 - Analysis	65
4.1 Case Study	65
4.1.1 Project Delay events	65
4.1.2 Delay Analysis	67
4.1.3 Summary of case study	76
4.1.4 Subjective parameters identified in case study research	77
4.2 Simulation	78
4.2.1 Summary of Simulation 1	78
4.2.2 Simulation Results	80
4.2.3 Summary of Simulation 2	82
4.2.4 Simulation Results	83
4.2.5 Summary of Simulation 3	84
4.3 Summary of Analysis	85
4.4 Analysis results of simulation	86
Chapter 5 – Conclusion	87
References	

List of Figures

Figure 1 Reseach Flow	11
Figure 2 Methods of Delay Analysis	15
Figure 3 Delay analysis Protocol Common for all Methods	16
Figure 4 TIA Protocol	23
Figure 5 Time Line of TIA Method	28
Figure 6 Evaluation Criteria of Effectiveness if Delay Analysis Method Refer to the Satisfactory Condition of Contract	
Figure 7 Evaluation Criteria Refer to the Scientific Method of Measurements	35
Figure 8 Different Parameters of Delay Analysis Process	42
Figure 9 TIA Method (Example)	45
Figure 10 Illustration of TIA Calculation at Site Level	48
Figure 11 4D Model to Illustrate Delay Analysis	49
Figure 12 Illustrate Fragnet in 4D Model	50
Figure 13 Research Flow Diagram	53
Figure 14 Research Methodology	55
Figure 15 Analysis Method	56
Figure 16 Simplification of Delay Analysis Method	63
Figure 17 Model Simplification of TIA Method in MS Project for Simulation	64
Figure 18 Case Study	66
Figure 19 Simulation of Delay Events	79
Figure 20 Assemble Delay Events to Obtain Total Impact Simulation 1	79
Figure 21 Resultant Delay Vs Duration of Individual Delay Event	81
Figure 22 Simulation of Delay Event 2	82
Figure 23 Summary of Simulation 2	83
Figure 24 TIA Results Vs Progress Level	83
Figure 25 Simulation of Delay Event 3	84

List of Tables

Table 1 Summary of Previous Researches	14
able 2 Further Sub Division of Delay Analysis Methods	
Table 5 Assessment of Effectiveness of TIA Results	86