UNIVERSITY OF MORATUWA, SRI LANKA MORATUWA

EFFECT OF INFORMATION SYSTEMS IN POSTWAR CONSTRUCTION

By **A.S.K. Senadeera**

Supervised by

Prof. A.A.D.A.J. Perera

This Dissertation was submitted to the Department of Civil Engineering of the University of Moratuwa in partial fulfillment of the requirements for the Degree of Master of Science in Construction Project

Management.

624"15"

69:005.8 (013)

Department of Civil Engineering

University of Moratuwa

Sri Lanka

May 2015

109881

TH2979

DECLARATION

I certify that this thesis does not incorporate without acknowledgement any material

previously submitted for a degree or diploma in any university to the best of my

knowledge and believe it does not contain any material previously published, written

or orally communicated by another person or myself except where due reference is

made in the text.

I also hereby give consent for my dissertation, if accepted, to be made available for

photocopying and for inter library loans, and for the title and summary to be available

to outside organizations.

UOM Verified Signature

A. S/K Senadeera

(MSC/CPM/11/118983L)

Date: 22 May 2015

This is to certify that this thesis submitted by A.S.K Senadeera is a record of the

candidate's own work carried out by him, under my supervision. The matter

embodied in this dissertation is original and has not been submitted for the award of

any other degree.

Prof. A.A.D.A.J. Perera

Professor, Department of Civil Engineering, University of Moratuwa

Date:

Ù

ABSTRACT

Military Engineering was known to humankind from the Roman era and there after empires were created with ingenuity of military construction projects such as Great Wall of China and Castles in Europe. Reconstruction projects undertaken by the military always follow concepts that specialize in criteria governed by the Militarized theories. Further, Information Technology has helped to bridge the gap of project management tools and techniques to enhance productivity in most effective and efficient manner. Most of the manufacturing oriented organizations in Sri Lanka are shifting towards the modernization and reaping the benefit of Information Technology. The use of Information Technology for specialized projects such as post-war reconstruction projects is considered ground-breaking in the Sri Lankan context. This study will reveal the insights of using Information Technology for Project Management in projects undertaken by the military during the post-war era of Sri Lanka.

The main objective of the research is to analyze productivity improvement and information availability in post-war construction that can be achieved with Information Systems. To achieve the objectives of the research, literature review compiled to identify barriers of construction project management, real impact of IS on performance of project deliverables and major issues in physical infrastructure reconstruction and construction undertaken by military. Literature review begins with war theories and the great events of history, which totally changed the way of human life through civilization. Systematically the study moves into the nature of projects undertaken by the Military. The Project Management aspects in Construction are severely scrutinized to capture the theoretical background of proper Project Management and challenges. It further elaborates the theories which govern the role of Military in post war scenarios including the internal and external forces. On the other hand use of Distributed Information Systems and their benefits were comprehensively reviewed to set the basis for the research.

The methodology derived was two folded. Case study based analysis of a construction project undertaken by the military was the main focal point while the outcomes were strengthened by expert reviews. The data analysis was carried out with the real time data of the selected case which was "Defence Headquarters Complex Project" which is constructed by the defense forces of Sri Lanka. The data captured in to a real Enterprise Resource Planning System with comparisons between manual processes. The industry experts were selected from a pool of professionals considering several key attributes. The analysis was carried out in parallel with the manual processes and professional review. After capturing considerable amount of real time data the outcomes were derived.

The analyzed data were tabulated and compared based on key attributes such as time benefit and information availability under six knowledge areas namely asset, time, cost, reporting, finances and stores management. The conclusion derived from the analysis clearly illustrated that time reduction achieved in all knowledge areas under study is greater than 83.4%. The increase of information depth in managerial and operational levels are greater than 73.3% and 60.8% respectively in all knowledge areas considered for research study. The analysis was meticulous on the basis that the comparison was made real time with exact environment. The conclusions derived from the analysis clearly illustrated the level of efficiency made available with use of Distributed Information Technology Systems and further enhanced with the professional reviews.

Sri Lanka, as a developing nation will be able to reap the benefits of Information Technology with the correct usage and application. Although the Military Construction Projects are considered unique in several aspects, the analysis illustrates that Information Technology can be successfully utilized to enhance the key aspects of Project Management such as Time, Cost and Quality. This study can be further extended to analyze many influential aspects such as human behaviour towards Information Technology Systems and Technological Behaviour in Sri Lanka.

ACKNOWLEDGEMENT

This research would not have been possible without many people who have helped along the way, both in a formal and informal capacity. First and foremost, I would like to express my appreciation and sincere gratitude to my supervisor Prof. A.A.D.A.J. Perera, Department of Civil Engineering, University of Moratuwa having faith in me and giving me an opportunity to conduct research under his supervision. His insightful advice, constant support, encouragement, and guidance throughout the research with great enthusiasm were a tremendous help for me to complete the research.

Secondly, I would like to thank Eng. Samudaya Nanayakkara and Mr. Prasad Perera for their continual guidance, support and encouragement and paving path for completing this dissertation not only educational and enlightening but fun too.

My deepest gratitude goes to Dr. Lesley Ekanayake, Dr. Rangika Halwatura for providing me valuable guidance during the period of the research and academic studies. I would like to thank Mrs Kanthi Menike and staff of Division of Construction Management, University of Moratuwa for their assistance.

I would not hesitate to thanks board of directors of M/S Sapere (Pvt) Ltd offering me the opportunity to use Enterprise Resource Planning System free of charge until completion of my research.

I am grateful to all the professionals from Sri Lanka Army, Sri Lanka Navy and Retired General Manager of Central Engineering Consultancy Bureau, Eng. CS Soysa taking out their time from their busy schedule to share their knowledge with me and providing necessary guidance for me to make my dream come true.

I am also in debt to the Staff of the Defence Headquarters Complex Project Akuregoda who has shared their valuable knowledge and time with me. Also my staff helped me entering data to the Enterprise Resource Planning System for analysis.

Final thanks go to my family, especially to my wife, Noeline Senadeera, my son Sanuja Senadeera and daughter Tharushika Senadeera whose continual support encouraged me to complete the thesis.

TABLE OF CONTENTS

Declaration		ii	
Abstract			iii
Acknowledgement		iv	
Table of contents			v
List of tables		ix	
List of	figures		X
List of	abbrev	iations	χi
CHAP	TER 1	- INTRODUCTION	
1.1	Overvi	iew	1
1.2	Object	ive	2
1.3	Metho	dology	2
1.4	Proble	m Rational	3
1.5	Structu	ure of the Thesis	3
CHAP	TER 2	- LITERATURE REVIEW	
2.1	Overvi	iew	5
2.2	War T	heories and Military Engineering	5
	2.2.1	Overview	5
	2.2.2	Theories of War	5
	2.2.3	Military Engineering vs. Civil Engineering	8
2.3	Post W	Var Scenario	14
	2.3.1	Overview	14
	2.3.2	Socio Economic Status in Post War Scenario	15
	2.3.3	Military Role in Postwar	18
	2.3.4	International Community	20
2.4	Recon	struction	23
	2.4.1	Overview	23
	2.4.2	Reconstruction	24
	2.4.3	Post-War Reconstruction	27
2.5	Projec	t Management	29
	2.5.1	Overview	29
	2.5.2	Project Management	30
	2.5.3	Construction Project Management	33
	2.5.4	Reconstruction Project Management	36
	2.5.5	Postwar Reconstruction Project Management	37
2.6	Inforn	nation Systems for Construction Management	40
	2.6.1	Overview	40
	2.6.2	Information Systems	40
	2.6.3	Evolution of Information Systems	41

	2.6.4 Benefits of Information Systems	41
	2.6.5 Construction Project Management Information Systems	46
	2.6.6 Modes of Hosting for Enterprise Resource Management Systems	48
	2.6.7 Functions of an Enterprise Resource Management System	49
	2.6.8 ERP System for Data Analysis	51
	2.6.9 Benefits of Enterprise Resource Planning Systems	62
2.7	Sri Lankan Postwar Reconstruction and Construction Projects	
	Undertaken by the Military and Their Issues	70
	2.7.1 Overview	70
	2.7.2 Physical Infrastructure Reconstruction and Construction	
	Undertaken by Military	71
	2.7.3 Major Issues in Physical Infrastructure Reconstruction and	
	Construction Undertaken by Military	73
2.8	Summary	74
CHA	PTER 3 - RESEARCH APPROACH AND METHODOLOGY	
3.1	Overview	76
3.2	Type of Research	76
3.3	Philosophical Perspective of Research	79
3.4	Selection of Research Strategies	84
	3.4.1 Case Study	85
	3.4.2 Interview	89
3.5	Selection of Case Study	90
3.6	Selection of Interviewees	98
3.7	Summary	102
CHA	PTER 4 - ANALYSIS	
4.1	Overview	104
4.2	Background of The DHQC Project	104
	4.2.1 Rationale for Establishment of DHQC Construction	
	Organization	107
	4.2.2 Organizational Framework	108
4.3	Reliability of Data	110
4.4	Data Gathering	111
4.5	Data for the Selected Case Study Analysis	113
	4.5.1 Current Situation	113
	4.5.2 Data Population of the ERP	114
	4.5.3 Evaluation of Quantitative Data in ERP System and Manual	
	Operation	119
	4.5.4 Qualitative Data Appraisal in ERP System	149
	4.5.5 Analysis Based on Expertise Knowledge	152
4.6	Summary	154

CHA	APTER 5 - CONCLUSION AND RECOMMENDATIONS	
5.1	Research Conclusion	156
5.2	Recommendations	162
5.3	Further Research	164
REF	FERENCES	166
APP	PENDIX A	177
APP	PENDIX B	180

LIST OF TABLES

Table 2.1:	Benefit of ERP Implementation	50
Table 2.2:	Productivity Improvement by ERP Deployment	63
Table 2.3:	Benefit of ERP Implementation	65
Table 2.4:	Tangible and Intangible Benefits of ERP	66
Table 2.5:	ERP Implementation benefits by Degree of Importance	68
Table 2.6:	Ranking by Mean Values of the Responses on CEIS Benefits	68
Table 2.7:	Ranking by Mean Values of the Responses on CEIS Benefits	69
Table 3.1:	Assumptions of Main Two Paradigms	80
Table 3.2:	Features of Main Two Paradigms	82
Table 3.3:	Methodological Assumptions of Main Paradigms	83
Table 3.4:	Merits and Deficiencies of the Case Study Approach	89
Table 3.5:	Major Construction Projects Undertaken by Military	91
Table 3.6:	Criterion D - Specialties involved in the project	96
Table 3.7:	Summary of Criteria	97
Table 4.1:	Time Reduction on Asset Management	122
Table 4.2:	Time Reduction on Cost Management	123
Table 4.3:	Time Reduction on Time Management	125
Table 4.4:	Time Reduction on Project Forecast	126
Table 4.5:	Time Reduction on Account and Financial Management	128
Table 4.6:	Time Reduction on Purchase and Stores Management	129
Table 4.7:	Ranked Order of Information Availability	131
Table 4.8:	Asset Management - Managerial Level	132
Table 4.9:	Asset Management - Operation Staff Level	133
Table 4.10:	Cost Management - Managerial Level	135
Table 4.11:	Cost Management – Operational Level	136
Table 4.12:	Time Management - Managerial Level	138
Table 4.13:	Time Management – Operation Level Staff	139
Table 4.14:	Project Forecast - Managerial Level	140
Table 4.15:	Project Forecast - Operation Staff Level	141
Table 4.16:	Project Account and Financial Management- Managerial Level	143
Table 4.17:	Project Account and Financial Management - Operational Level	145
Table 4.18:	Purchase and Stores Management - Managerial Level	147
Table 4.19:	Purchase and Stores Management - Operation Staff Level	148
Table 5.1:	Time Benefit, Information Deficiency and Gained of	
	Asset Management	156
Table 5.2:	Time Benefit, Information Deficiency and Gained of	
	Cost Management	157
Table 5.3:	Time Benefit, Information Deficiency and Gained of	
	Time Management	158
Table 5.4:	Time Benefit, Information Deficiency and Gained of	
	Forecast Management	159

Table 5.5:	Time Benefit, Information Deficiency and Gained of	
	Financial Management	160
Table 5.6:	Time Benefit, Information Deficiency and Gained of	
	Stores Management	161
Table 5.7:	Efficiency Increase in Percentages	162

LIST OF FIGURES

Figure 1.1:	Organization of the Research	2
Figure 2.1:	Key Barriers in Construction Project Management	34
Figure 2.2:	Computer Used in the Firms	42
Figure 2.3:	Materials Digitally Sent at Firms (Internal and External)	43
Figure 2.4:	General Software in Use and Possible Future Software	43
Figure 2.5:	Technical Software's Use at the Firm	44
Figure 2.6:	Information Hub of Supply Chain	45
Figure 2.7:	Three Levels of an Organization	47
Figure 2.8:	Interconnection of the Terms	71
Figure 3.1:	Criterion A - Project cost	93
Figure 3.2:	Criterion B - Duration of Project and Value of Work	
	Done in Unit Time	94
Figure 3.3:	Criterion C - Percentage of Work Completed	95
Figure 3.4:	Criterion A - Project cost	104
Figure 4.1:	DHQC Project Plan	106
Figure 4.2:	Time Reduction on Asset Management	122
Figure 4.3:	Time Reduction on Cost Management	124
Figure 4.4:	Time Reduction on Time Management	125
Figure 4.5:	Time Reduction on Project Forecast	127
Figure 4.6:	Time Reduction on Account and Financial Management	128
Figure 4.7:	Time Reduction on Purchase and Stores Management	130
Figure 4.8:	Asset Management - Managerial Level	132
Figure 4.9:	Asset Management - Operation Staff Level	134
Figure 4.10:	Cost Management - Managerial Level	135
Figure 4.11:	Cost Management – Operational Level	137
Figure 4.12:	Time Management - Managerial Level	138
Figure 4.13:	Time Management – Operation Level Staff	139
Figure 4.14:	Project Forecast - Managerial Level	141
Figure 4.15:	Project Forecast - Operation Staff Level	142
Figure 4.16:	Project Account and Financial Management- Managerial Level	144
Figure 4.17:	Project Account and Financial Management - Operational Level	146
Figure 4.18:	Purchase and Stores Management - Managerial Level	147
Figure 4.19:	Purchase and Stores Management - Operation Staff Level	148

LIST OF ABBREVIATIONS

BPR : Business Process Re-engineering
CMU : Construction Management Unit
CPM : Construction Project Management

CPI : Cost Performance Index

EIS : Executive Information System ERP : Enterprise Resource Planning

EVA : Earned Value Analysis EVM : Earn Value Method

GoSL : Government of Sri Lanka

GRN : Good Receive Note

HTTP : Hypertext Transfer Protocol

ICT : Information and Communication Technology

IS : Information Systems
IST : Internet Service Provider
IT : Information Technology

LTTE : Liberation Tigers of Tamil Elam
MIS : Management Information System

MOD : Ministry of Defense

MRP : Material Requirement Planning
NATO : North Atlantic Treaty Organization

OSS : Open Source Software

PDF : Portable Document Format

PHP : Hypertext Processor
PM : Project Management
PMU : Project Management Unit
SaaS : Software as a Service

SAP : System Application Programme SCM : Supply Chain Management

SEM : Systems Engineering Management

SLA: Sri Lanka Army
SLAF: Sri Lanka Air Force
SLN: Sri Lanka Navy

TPS : Transaction Processing System WBIS : Web Based Information System

USAID : U.S. Agency for International Development