
jl.B jpoN / fOG

XT o! (

Speaker independent Sinhala Speech to Text SMS 

application for Mobile Phones

B.G.D. Anuradha Bopagama

139157K

library
UNIVERSITY OF MORATUWA, SRI LANKA 

MORATUWA

Dissertation submitted to the Faculty of Information Technology, 

University of Moratuwa, Sri Lanka for the partial fulfillment of the 

requirements of the Master of Science in 

Information Technology.
OOA- \G

00+(0+3)

April 2016
TH 3163

University of Moratuwa

! X>VD - PoM 

(Vm 3/60- Tf 13 !<£<?)TH3163

ii' t, 3163



Declaration

We declare that this thesis is our own work and has not been submitted in any form for 

another degree or diploma at any university or other institution of tertiary education. 

Information derived from the published or unpublished work of others has been 

acknowledged in the text and a list of references is given.

Name of Student (s) 

g'Gn
Signature-ofLStudent (s)

Date: ^ Jotf /26 l b

Supervised by

Name of Supervisor(s) Signature of Supervisors)

6 -T T.

/ e>y /^>(X=Date:

i



Dedication

To my parents and my wife for their constant support and encouragement over the years.

ii



Acknowledgement

I would first like to thank my project supervisor Lecturer Mrs. Indika Karunaratne of the 

Faculty of Information Technology at University of Moratuwa Sri Lanka. She was there 

for me whenever I ran into a trouble or had a question about my research or writing. She 

consistently allowed this paper to be my own work, and steered me in the right direction 

whenever she thought I needed it.

I would also like to thank the Students in University of Moratuwa Information 

Technology Faculty who were involved in the survey and Mr. Amal Wijewardane who 

did a great job by coordinate with other fellow students and get the required voice 

recordings for this research project. Without their passionate participation and input, this 

project could not have been successfully conducted.

Finally, I must express my very profound gratitude to my parents, parents in law, sister in 

law, brother in law and to my loving wife for providing me with unfailing support and 

continuous encouragement throughout my years of study and through the process of 

researching and writing this thesis. This accomplishment would not have been possible 

without them. Thank you.

Author

Anuradha Bopagama

iii



Abstract

Speech recognition is one of the most discussed topics by researchers in recent years. 

Because of the limitless applications and the competition of making more user-friendly 

systems, lots of researchers put their effort on speech recognition system developments. 

There are lot of applications have already developed for English language. But for the 

languages like Sinhala, Hindi, Tamil are still at their preliminary stages.

The main purpose of this study was to develop a speaker independent automatic speech 

recognition android application for Sinhala language. Sinhala is the native language for 

Sri Lankans and they are the only people who speak Sinhala Language. So this study will 

create a great opportunity for the Sri Lankans to build their own speech recognition 

applications using and enhancing this language model.

The products of the study include frequently used SMS phrases speech corpus in Sinhala 

language which can be used in sending SMS. A survey has conducted among university 

students in order to collect frequently used SMS phrases. Those data will be used to 

create and implement the speech recognition system. Since the speech recognition 

training task is a time consuming one and the time limitation for the project restrict the 

size of the SMS phrases corpus to a limited one. At the moment audio recordings were 

only taken from one female and a one male and more recordings needed to build more 

accurate speech model.

The System was implemented using a HMM toolkit call CMUsphinx. CMUSphinx 

toolkit is a leading open source speech recognition toolkit with various tools used to build 

speech applications. CMU Sphinx toolkit has a number of packages for different tasks 

and applications. Pocketsphinx is one of the tools that support Android operating system 

which comes under CMUSphinx. Pocketsphinx tool used to create a speech model that 

can be used in various applications. To build the speech model it needs audio recordings 

of text and corresponding text. Once the model created it can be used in various 

applications. The main aim of this project is to build an accurate speech recognition 

model for Sinhala language that can be used in Android operating system.

iv
-\

\Ka
__r*

A



Contents

Page
1Chapter 01 - Introduction

1.1 Background and Motivation

1.2 Aim and Objectives
1.3 Structure of dissertation

1.4 Summary
Chapter 02 - Literature Review: Current tendency in Speech recognition systems

2.1 Introduction

2.2 Comparison
2.2.1 Problem derivation/statement - Research questions

2.3 Speech Recognition system approach
2.4 Hidden Markov model (HMM)-based speech recognition

2.5 Dynamic time warping (DTW)-based speech recognition

2.6 Deep Neural networking
2.7 Similar projects carried out
2.8 Summary

Chapter 03 - Technology enrichment of speech recognition on mobile devices

3.1 Introduction
3.2 Pocketsphinx process
3.3 Sinhala Speech Recognition with Pocketsphinx

3.4 Summary
Chapter 04 - Approach to Sinhala speech recognition Using Pocketsphinx

4.1 Introduction

4.2 Proposed setup

4.3 Survey
4.4 Android Testing Environment
4.5 Android interface development

4.6 Recording

4.7 Summary
Chapter 05 - Design of Sinhala speech recognition system for Android OS

5.1 Introduction
5.2 Speech recognition design

2
3
3
3
4
4
4
7
8
9

11
11
12
12
14
14
14
16
17
18
18
18
19
20
20
20
21
22
22
22

v



235.3 Data preparation

5.4 Recordings
5.5 Training
5.6 Design assumptions and dependencies

5.7 Summary
Chapter 06 - Implementation process of Speech Recognition System

6.1 Introduction
6.2 Collecting data set
6.3 Creating Language Model File
6.4 Creating Phonetic Dictionary File

6.5 Creating other files
6.6 Training
6.7 Creating Android Environment
6.8 Summary 

Chapter 07 - Evaluation
7.1 Introduction

7.2 During training process

7.3 Testing on Real Application
7.4 Testing Conditions

7.5 Assumptions
7.6 Results

Chapter 08 - Conclusion and Future Work
8.1 Introduction

8.2 Completed work and future work
8.3 Summary 

References

24

25

26

26
27

27

27

27

28

28

28
29
29

31
31

31

31
32

33

33

34

34

34

36

37

Appendix A 

Appendix B 

Appendix C 

Appendix D 

Appendix E 

Appendix F 

Appendix G 

Appendix H 

Appendix I

40

41

42

43

45

46

48

49

50

vi



51Appendix J 

Appendix K 52

vii



List of Tables

08Table 2.1: Summarization

Table 4.1: Android test environment details
Table 5.1: CMUSphinx data file details

Table 7.1: Group of people use to test the system

Table 7.2: Results

20

24

32

33

List of Figures

10Figure 2.1: Search Graph 

Figure 3.1: Pocketsphinx Architecture 

Figure 5.1: Speech recognition system design 

Figure 5.2: CMUSphinx Training Process

16

22

25

viii



Chapter 01

Introduction
During the recent past speech recognition area has become a big attraction to the 

researchers and developers. More accurate speech recognition can lead to do so many 

developments in wide range of areas. Human speech is the most widely used 

communication methodology among humans. So the researchers and developers were 

trying to simulate the human speech into computer systems and try to recognize what is 

being said. This is the beginning of speech recognition systems.

Once the speech recognition systems for PCs become more and more accurate developers 

were trying to focus on implementing speech recognition on mobile phones. With the 

emerging of Android operating system and IOS operating system for Apple iPhones, 

development in speech recognition on mobile phones developed rapidly. The 

development on Google Voice Search and Apple’s SIRI shows higher accuracy rates than 

their earlier versions. Currently Google, Microsoft and Apple are doing a considerable 

amount of work on this context.

Human speech does have a clear difference from person to person as well as it has many 

different languages. It’s said that up to 7,000 different languages are spoken around the 

world [1]. So the speech recognition system developers are trying to increase the number 

of supported languages while they are trying to increase the accuracy

Sinhala is the native language for Sri Lankans. Currently there are many researches and 

developments are under going to implement a good voice recognition system for Sinhala 

language. Sinhala is less resourced non-Latin language and Sinhala language does have 

more letters than English alphabet. Complete Sinhala alphabet contains 60 letters, 20 for 

vowels and 40 for consonants [2]. So when converting speech to text it has some major 

difficulties. This was addressed using Sinhala Uni-codes.

1



1.1 Background and Motivation

For a long time speech-recognition software was poor in recognition human speech. But 

lately it has got much better and most modem smart phones now have a host of voice- 

activated features. Speech activated means you don’t have to use traditional methods like 

typing on a keyboard using fingers or selecting a menu using your finger tip on a touch 

device. All the things can be done using voice commands. It will save time and give the 

capability to do simultaneous tasks like sending an urgent SMS while cooking or driving. 

And also people who don’t have a good knowledge in technical things like mobile phones 

or computer systems will get the benefit to operate them much easier way by giving voice 

commands. Most importantly this speech recognition system concept is beneficial for 

disabled personnel, like blind people. They will be able to operate mobile phones much 

easier.

By introducing Sinhala speech recognizing system Sri Lankan natives will get benefited. 

This can be used to enhance the mobile phone literacy within Sri Lankan community and 

it makes people to have communication facilities much more conveniently. Operating a 

mobile phone has some challenges as stated below,

1. Lack of knowledge to operate mobile devices.

2. People with weak eye sight or with disabilities may face difficulties in text 

messaging using a mobile phone.

4. Language barrier: Most of the mobile devices use English as the default language.

The language barrier issue is common among the Sri Lankans due to the lack of English 

language knowledge. Most of the people in Sri Lanka send SMSs using “Singlish” words, 

like “mama yanawa”. Currently there are lots of Sinhala character typing applications 

introduced for mobile phones, but still there is one difficulty on them. Typing Sinhala 

words is really hard due to Sinhala alphabet. It is a big set of character combinations with 

comparing to English alphabet. Sinhala speech recognition comes handy in these 

situations. By developing a speech recognition application for mobile devices, people in 

Sri Lanka will get benefited. And also the Sinhala Language model created in this project 

can be used for any other speech recognition system which uses CMUSphinx [3].

2



1.2 Aim and Objectives

Aim: The main aim of this research project is to create more accurate Sinhala speech 

recognition system for mobile phones running on Android operating system and thereby 

support mobile users who are not familiar with using mobile phones due to the challenges 

stated above will be able to use mobile phones much easily using their native language.

Objectives:

• To develop an Android mobile phone application that will be capable of 

recognizing human speech in Sinhalese.

• Application is capable of converting recognized Sinhala voice input into Sinhala 

text as a SMS and sending to any mobile number.

• Include speaker independent capabilities to recognize any human voice speak in 

Sinhala language.

1.3 Structure of dissertation

In chapter 02 Current tendency in Speech recognition systems described. And in chapter 

03 technology behind the speech recognition on mobile devices is discussed. Then 

chapter 04 has described the approach to Sinhala speech recognition using Pocketsphinx. 

In chapter 05 Design of the Sinhala speech recognition system for Android OS described. 

After that in chapter 06 explains the implementation process of the system. Then in 

chapter 07 present the evaluation part and chapter 08 describe the conclusion part.

1.4 Summary

Speech recognition systems for mobile phones are rapidly developing to cater day to day 

requirements. As Sri Lankans we also need to develop speech recognition systems for our 

own language. This study is an attempt to create a speech recognition system for Sinhala 

language which can be used for various applications in the future.

3



Chapter 02

Literature Review: Current tendency in Speech 

recognition systems
2.1 Introduction

Until recently, giving voice commands to control computer systems is considered to be a 

pure science fiction. But speech technologies have grown rapidly and the science fiction 

became reality. This is one of the most discussed topics among researchers because of its 

usefulness. Speech recognition systems give people more convenient and more reliable 

source of communication between man and machines. Rather than typing or clicking, 

giving voice commands is much faster and more precise.

Speech recognition has been a most discussed topic and had decades of progress 

including the successful introduction of commercial voice-based systems. Those 

developed systems were capable to convert your speech into text or to control some 

devices like robots, TV, mobile phone etc. Especially in mobile devices due to the small 

sized keyboards speech-to-text systems are widely used. With the emerging of Android 

operating system and 10S operating system for Apple iPhones, development in speech 

recognition on mobile phones developed rapidly.

Human speech does have a clear difference from person to person as well as it has many 

different languages. So the speech recognition system developers are trying to increase 

the number of supported languages while they are trying to increase the accuracy. Now 

there are open source tools available to construct your own speech recognition system for 

any language.

2.2 Comparison

Nadungodage and Weerasinghe developed a continuous speech recognizer to build a 

prototype of a continuous Sinhala speech recognizer developed [4]. The system they built 

is a speaker dependent system which is accurate only for a single voice. Currently the 

speech recognition has developed to a certain level that Automatic Speech recognition[5]

4



successfully implemented for many languages. In this research authors try to apply 

existing speech recognition mechanisms to develop a Sinhala speech recognition system. 

Paper discussed about Speech recognition Network[6] in condensed manner. As 

explained above this paper discussed only about speaker dependent ASR system. It’s 

much easier than speaker independent ASR system. Because in speaker independent ASR 

systems with better accuracy need large vocabulary and voice recordings to create 

Language Models[4] and Acoustic models[4]. Major drawback of this work is that 

authors didn’t try to implement the speech recognition system on a practically usable 

application. They just created the system and test it for accuracy on a testing toolkit 

In a different approach to a speech recognizer development a Speech Corpus for Sinhala 

Speech Recognition system has been developed by Nadungoda and colleagues [7]. 

Speech corpus is a large collection of audio recordings and text transcription of the audio 

recordings [8]. This is the main part of the mathematical model based speech recognition 

developments. Here researchers try to develop a Sinhala speech corpus as a contribution 

to Sinhala speech recognition system development. Authors of the paper describe how to 

design a proper speech corpus focusing better speech recognition accuracy. There are two 

methods to develop a speech corpus. One way is to collect existing speech data and 

manually transcribe those audio recordings to text. Other way is create text transcription 

first and then record the speech by reading the text [7]. In this project they were trying to 

build a music request application so the corpus they created mostly relevant to the 

application they are creating. So it’s not a general corpus. But they have collected various 

categories of Sinhala words like Currency, digits, Boolean data, etc... Perplexity of the 

language model [9] also measured to indicate the quality of the language model. The 

corpus they have built was a good one but in the paper they didn’t discuss about the 

accuracy of the corpus they built.

Sandasarani has discussed about a suitable method to develop a Sinhala speech 

recognition system in a different research project [10]. In order to implement the speech 

recognition this paper suggested 2 methods. One is isolated word recognition and the 

other is continuous speech recognition approach. Isolated word recognition is difficult to 

match with practical scenarios. Because human speech is a continuous flow of words

5



rather than word by word utterance. Here the author uses Artificial Neural Network 

concept for the continuous speech recognition implementation ,and Mel Frequency 

Cepstral Coefficients (MFCC)[11] and Dynamic Time Warping (DTW) [12] techniques 

used for isolated word recognition. In the research results isolated word recognition has 

showed better accuracy with smaller vocabulary. But with the vocabulary increases the 

accuracy rate become low. On the other hand continuous speech recognition showed 

different behavior. It didn’t decrease the accuracy with the vocabulary increase. When 

vocabulary becomes larger the accuracy rate becomes much higher. But this project was 

limited to a small vocabulary of words. So the researcher has to enhance the vocabulary 

to implement better accurate and more general purpose speech recognition applications.

In this speech recognition related research paper Molligoda and Wijerathne discussed 

about the applicability of Hidden Markov Model based pattern recognition algorithms in 

Sinhala Speech recognition [13]. Here authors didn’t try to implement any speech 

recognition applications but do an analysis on HMM and it’s relation to the speech 

recognition with the help of published research papers. Main goal for this study is to 

elaborate the need of a Hidden Markov model and it’s variants to Sinhala Speech 

Recognition development. According to the research paper applicability of HMM is 

measured using 3 methods, which are inclusion, exclusion criteria and search strategy 

.HMM is the most commonly used model in speech recognition research area, it is a tool 

for representing the possibility of occurring an event over a sequence of observation 

[14]. Here authors have talked about variants of HMM like Discrete Hidden Markov 

Model-DHMM and Continuous Density Hidden Markov Model-CDHMM[15]. 

According to the research HMM based recognizer use single Gaussian distribution to 

model the output by assuming feature models are symmetric and single modeled. But in 

reality multiple modes are created due to reasons like speaker, gender, language, accent 

differences. To resolve this problem, researchers introduced Gaussian mixture model 

[16],which is capable of handling asymmetric and multi model speech data. In Sinhala 

Speech recognition context authors found few research papers. In those researches they 

used only the conventional HMM with the support of HTK software packages. In this 

paper researcher discussed only about HMM and it’s usability with related to speech

6



recognition. But paper didn’t discuss about how to apply HMM to speech recognition in 

depth.

Another research has conducted on developing a methodology to translate discrete 

Sinhala speech to Sinhala Unicode text in real time[17]. Here they used HMM approach 

with the support of HTK used speech recognizer. Ability to recognize Sinhala words in 

speaker independent scope and noisy environment are the main achievements they expect 

in this research project. According to the paper speech corpus was created by a single 

person and recorded in a quiet environment for the training. In the data collection stage 

vocabulary of the training was limited to 50 words, which is a medium size vocabulary 

according to the researcher. Once the required data was collected features of the collected 

data has to be analyzed. In order to do a feature analysis in speech recognition domain 

there are several techniques available to use. Some of those techniques are Linear 

Predictive Cepstral Coefficients (LPCC) , Mel-Frequency Cepstral Coefficients (MFCC) 

[18] , Perceptual Linear Predictive Coefficients (PLPC)[19] , Relative Spectra Filtering 

of Log Domain Coefficients (RASTA)[20] and Integrated Phoneme Subspace (IPS) [21]. 

For the feature extraction portion researchers had used MFCC technique because of the 

Julius decoder [22]. They use desktop application to demonstrate the Sinhala speech 

recognition with the support of integrated Sinhala Unicode. Here the researchers didn’t 

thought about variants in the speech training process. Variants in speech recognition can 

be context, speaker and environment and they will increase the accuracy of the speech 

recognition system[23]. At the conclusion researchers indicate the difficulty of 

implementing continuous speech recognition system with Sinhala Unicode support. And 

also this paper points out the usefulness of Sinhala Speech recognition implementation 

for mobile devices.

2.2.1 Problem derivation/statement - Research questions

The above study shows numerous limitations of the speech recognition system. These

issues are summarized in Table 2.1

7



Table 2.1 Summarization

LimitationsResearch

Didn’t implement any usable application for Sinhala

Speech recognition and it is a speaker dependent 

system.

Continuous Sinhala speech 

recognizer [4]

Here paper discussed only about a Sinhala Speech

corpus and they didn’t implement any application to 

demonstrate their findings and accuracy details

Developing a Speech Corpus for 

Sinhala Speech Recognition [7]

This research project vocabulary limited to a small 

amount of words. So the accuracy in continuous 

speech recognition can be a very low.

Sinhala Speech Recognition [10]

In this paper researcher discussed only about HMM 

and it’s usability with related to speech recognition. 

But paper didn’t discuss about how to apply HMM to 

speech recognition in depth.

Applicability Of Hidden Markov 

Model Approach For Sinhala 

Speech Recognition - A 

Systematic Review [13]

Here the researchers didn’t thought about variants in 

the speech training process.

Real time Translation of Discrete 

Sinhala Speech to Unicode Text

[17]

Based on above, the research problem is defines as the inadequate attention given to 

methods of speech recognition.

2.3 Speech Recognition system approach

Speech recognition is a process of identifying the exact match of a voice signal to human 

readable word or a phrase. By understanding the word said by the speaker system will be 

able to print that word or phrase in text format. As for some applications that words 

recognized by the system can be a command or control input to the system.

Speech recognition systems have many different types. Some systems are capable of 

recognizing the continuous speech of a speaker while some other systems need a little 

pause in between two words when speaks. Other than that speech recognition systems 

have many parameters like speaking model, speaking style, vocabulary, language. There

8



are two approaches in speech recognition. One is speaker independent and the other is 

speaker dependent. Speaker dependent method is much simpler than speaker independent 

method. Because speaker dependent method only need to train by a single speaker and 

that person alone can use the system. But for speaker independent method system should 

be trained by more than one person.

There are three main popular methodologies used in speech recognition,

• Hidden Markov model (HMM)-based speech recognition

• Dynamic time warping (DTW)-based speech recognition

• Deep Neural Networking

2.4 Hidden Markov model (HMM)-based speech recognition

This is the most popular modeling method used in speech recognition development. Most 

modem general-purpose speech recognition systems are based on Hidden Markov 

Models. These are statistical models that output a sequence of symbols or quantities.

In HMM-based speech recognizers, each unit of sound (usually called a phoneme) is 

represented by a statistical model that represents the distribution of all the voice data for 

that phoneme. This is called the acoustic model for that sound unit. In acoustic model 

creation, speech signals are transformed into a sequence of vectors at the beginning that 

represent identified characteristics of the speech signal, and the parameters of the 

acoustic model are then estimated using these vectors. Those estimated vectors are called 

features of the speech signal. This process is called training the acoustic models. During 

speech recognition, features are derived from the incoming speech in the same way as in 

the training process. The component of the recognizer that generates these features is 

called the front end. These live features are scored against the acoustic model [24].

The score obtained indicates how likely that a particular set of features (extracted from 

live audio) belongs to the phoneme of the corresponding acoustic model.

The process of speech recognition is to find the best possible sequence of words that will 

match with the given input speech. In HMM-based recognizers this process is called a 

graph search problem. The graph represents all possible sequences of phonemes in the

9



entire vocabulary of the relevant context. The graph is typically composed of the HMMs 

of sound units concatenated in a guided manner, as specified by the grammar of the task. 

As an example, let’s look at a simple search graph that decodes the words "dao" and 

It is composed of the HMMs of the sounds units of the words "Cza" and "@52a":

‘W’-E-K

cv cv
HMM for “K”HMM for “E”

ExirNodeEnW Node
DHZ- E- K

rv (\ rv (X(x ex cvcvcv
HMM for “E” HMM for “K”HMM for “DHZ”

Figure 2.1: Search Graph

Constructing the above graph requires information from various sources. It requires a 

dictionary, which maps the word "cW to the phonemes E and K, and the word "©<j3s>" to 

DHZ, E and K. It requires the acoustic model to obtain the HMMs for the phonemes E, K 

and DHZ.

Usually, the search graph also has information about probability of occurring certain 

words. This information is supplied by the language model. Suppose that, in our example, 

the probability of someone saying "£2a" (e.g. 0.8) is much higher than saying "e^za" 

(e.g. 0.2).Then, in the above graph, the probability of the transition between the entry 

node and the first node of die HMM for E will be 0,8, while die probability of the 

transition between die entry node and the first node of the HMM for DHZ will be 0.2. 

The padi to "62will consequently have a higher score.

10



Once this graph is constructed, the sequence of parameterized speech signals (i.e., the 

features) is matched against different paths through the graph to find the best fit [25]. The 

best fit is usually the least cost or highest scoring path, depending on the implementation. 

As can be seen from the above graph, a lot of the nodes have self transitions. This can 

lead to a very large number of possible paths through the graph. As a result, finding the 

best possible path can take a very long time. The purpose of the pruner is to reduce the 

number of possible paths during the search, using heuristics like pruning away the lowest 

scoring paths.

2.5 Dynamic time warping (DTW)-based speech recognition

Dynamic Time Warpping is an old speech recognition modeling approach. But now it has 

been replaced largely by more successful HMM approach.

DTM is an algorithm to measure the similarity between two sequences that may vary in 

time or speed used in time series analysis. For instance, similarities in walking patterns 

could be detected using DTW, even if one person was walking faster than the other, or if 

there were accelerations and decelerations during the course of an observation. DTW has 

been applied to temporal sequences of video, audio and graphics data — indeed, any data 

which can be turned into a linear sequence can be analyzed with DTW. A well-known 

application has been automatic speech recognition, to cope with different speaking 

speeds. Other applications include speaker recognition and online signature recognition. 

Also it is seen that it can be used in partial shape matching application[26].

2.6 Deep Neural networking

Deep neural network is a combination of multiple hidden layers of units between input 

and output of the network. In this hidden layer units, each of which takes all outputs of 

the lower layer as input and process according to mathematical calculations such as 

sigmoid or tank [27] . DNNs can model complex non-linear relationships which is more 

suitable for speech recognition pattern detection. And the DNN architectures itself gives 

a huge learning capacity and thus the potential of modeling complex patterns of speech

11



data. Currently DNN is in use for large vocabulary speech recognition systems and it 

shows better performance and more accuracy. But implementation of this concept is 

much more complicated than HMM. More sophisticated speech recognition systems such 

as Google Now[27], Apple Siri [28], Microsoft Cortana [29] adopted this DNN concepts 

to improve their recognition capabilities.

For Sinhala language above methodologies can be applied as well. There were researches 

for Sinhala speech recognition using Hidden Markov Method. But there were no proper 

implemented researches for the mobile platforms.

2.7 Similar projects carried out

A similar project was carried out by a group of students at University of Moratuwa. They 

have developed a system called KATHANA. But it was not specifically designed for 

mobile devices. And KATHANA system was designed to recognize isolated words, but 

continuous speech recognition. Further to that there were several developments at the 

Language Research Laboratory at University of Colombo. They have created a large 

corpus of Sinhala words as well for the benefit of speech recognition researches [30]. 

And there were several other developments in Text- to -Speech systems by University of 

Colombo but very few attempts were made to develop speech-to-text systems speaker 

independent systems.

2.8 Summary

There is a rapid development on speech recognition systems in past decade. Now there 

are commercial products capable of recognizing the human. These systems are capable of 

converting the speech to text or control devices.

Speech recognition is a complex process. It can have many parameters like speaking 

model, speaking style, vocabulary, language. Speech recognition systems can be 

categorized as speaker dependent and speaker independent. For all these variations there 

are two main models build by researchers.

12



Hidden Markov Model and Dynamic Time Warping are the two models that use by most 

of the speech recognizer implementations. These two algorithms try to match human 

voice and its correlated word and use it to fulfill the application needs.

13



Chapter 03

Technology enrichment of speech recognition on mobile 

devices
3.1 Introduction

Speech is a complex phenomenon. People rarely understand how is it produced and 

perceived. The naive perception is often that speech is built with words, and each word 

consists of phones. The reality is unfortunately very different. Speech is a dynamic 

process without clearly distinguished parts. All modem descriptions of speech are to 

some degree probabilistic. That means that there are no certain boundaries between units, 

or between words. Speech to text translation and other applications of speech are never 

100% correct.

PocketSphinx is a lightweight open source large vocabulary, speaker-independent, 

language independent continuous speech recognition engine designed by Carnegie 

Mellon University specifically tuned for handheld and mobile devices; though it works 

equally well on the desktop as well [31]. Android operating system is fully supported by 

this recognition engine. Android operating system is most widely used mobile operating 

system on the planet. It powers hundreds of millions mobile devices in more than 190 

countries around the world.

3.2 Pocketsphinx process

The common way to recognize the speech is by taking the waveform, split it on 

utterances by silences then try to recognize what's being said in each utterance. To do that 

system needs to take all possible combinations of words and try to match them with the 

audio. Pocketsphinx engine accept audio data in a form of files (.wav) or live voice input 

from a microphone. Once it takes the input audio signal and puts it through an analysis 

process that includes pre-emphasis, signal segmentation, and frequency analysis. And 

then the matching process starts. In matching process there are three models used,

14



Acoustic Model: Holds extracted information from sound units. These information are 

called data packets. Each data packet represents a part of a sound that we make when we 

say a word. Each data packet represents a piece of a syllable in a word. Collection of few 

data packets will create one syllable and many data packets will eventually create a word. 

This database is large because of the extent of the Sinhala language and the different 

parts that can make up each word.

Phonetic Dictionary: This contains all the Sinhala words recognized by the recognition 

engine and its phonetic mappings. By using this dictionary recognition engine will 

recognize how each and every Sinhala word is pronounced.

Lan2uage Model: This contains information about probabilities of a single word with 

related to the phrase it can be appeared. Given a set of sound data packets, this model will 

help to determine which word that it is likely to be the next. It also holds grammar rules so 

that it can determine what word will likely follow another word in a phrase. This 

methodology is called an N-gram based method of recognition. N-gram consists of three 

types, which are uni-gram, big-gram and tri-gram. Here the language model was build using 

tri-gram model. A tri-gram would look at the previous two words of a phrase and then using 

probability to determine the next likely word to come. To create language model for Sinhala 

language a toolkit call SRILM was used. SLILM is a statistical language modeling toolkit 

which support uni-code. So this was the best tool to create Sinhala language model for the 

purpose of speech recognition system.

Decoder: Brings together all the components to output the results to the user.

Other than the above components Pocketsphinx must have two parts to build into as a 

speech recognition engine. Those two parts are,

1. Sphinxbase - A library which is a prerequisite for the Pocketsphinx to run

2. Sphinx train - An acoustic model training tool, which is used to create the 

language model for the recognition engine.

15



3.3 Sinhala Speech Recognition with Pocketsphinx

Since the Pocketsphinx toolkit is language-independent, it was a perfect choice to develop a 

speech recognition system for Sinhala language. This toolkit is an offline speech recognition 

methodology. So it does not need any online severs to do the recognition process such as 

Google Now or Apple Siri. And also it support Android operating system. So the 

Pocketsphinx is the best option to build a good and accurate speech recognition system for 

mobile devices.

Following is the architectural design of the Pocketsphinx and the explanation of the process.

SMS Application

Voice InputCT 3Control Control

N

XDecoder X

Front End Search Manager Linguist

Active List Acoustic Model

1 1 Dictionary

Scorer Pruner

Language Model

^^Features^^
Search

t\ Configuration Manager /X /\ ✓\ *

Figure 3.1: Pocketsphinx Architecture

16



The recognizer constructs the front end (which extract features from input speech ), the 

decoder, and the linguist generates the search graph according to the configuration specified 

by the user. Some of these components create their own subcomponents also. For example, 

the linguist component will use the combination of the acoustic model, the dictionary, and 

the language model. Decoder will use the knowledge gain from those three components to 

construct a search graph that is used in recognition process. Then it will build the search 

manager, which creates the scorer, the pruner, and the active list using the search manager 

information.

There are lots of parameters in Pocketsphinx that can be fine tuned. For an example sample 

rate of the incoming speech data can be changed accordingly. And also the architecture 

explains itself how this toolkit behaves as language -independent speech recognition engine. 

In the Linguist part Acoustic Model, Language Model and Dictionary are containing the 

words that are going to recognize by the engine. So those file contain Sinhala words and the 

system does not need to understand what are on those files. It just checks the probability and 

other aspect to determine the perfect match for the audio segment

3.4 Summary

Speech is a complex phenomenon which is very difficult to understand even though we 

as humans use it in day to day life. Speech to text translation and other applications of 

speech can never be 100% correct.

PocketSphinx is a lightweight open source speaker-independent, language independent 

continuous speech recognition engine which supports Android operating system. So this 

tool is a perfect option to build a Sinhala speech recognition system for mobile devices 

running on Android Operating system.

Pocketsphinx uses a technique that uses the audio from the user and tries to match 

possible combinations of words and output the result to the user. In order to do the 

matching process Pocketsphinx uses Acoustic Model, Phonetic Dictionary, Language 

model and Decoder.

17



Chapter 04

Approach to Sinhala speech recognition Using 

Pocketsphinx
4.1 Introduction

To implement Sinhala speech recognition capability on Android powered mobile devices 

needs a time consuming complex process. And it gets more complicated when 

implementing speaker- independent speech recognition system. Speaker-independent 

speech recognition systems need large sets of audio files for training the system from 

various human voices. It helps the Pocketsphinx engine to identify the most suitable 

matching word to the audio input.

In order to successfully implement the Sinhala speech recognition system, there are 

several steps to be followed. And also large amount of audio data and related text data 

should be gathered. It is not possible to define the limitation of collecting data set, 

because words in a language can be a huge number. So the data gathering part is the most 

complex and time consuming part in any speech recognition system for any language.

4.2 Proposed setup

Speech recognition with Pocketsphinx requires a huge amount of audio and word corpus. 

This is the main challenge when setting up the system. It is recommended having a 

corpus with relate to the system implementation. In this project the corpus used was 

related to SMS phrases commonly used by the people. Creating a general text corpus will 

be very complicated and time consuming task. For this project the researcher has defined 

the text corpus with related to the application he is going to build. In this case the text 

corpus was created with related to SMS phrases.

After creating the text corpus with the help of survey participants audio recordings for the 

relevant texts have to be recorded. Those recordings should be in mono mode and the 

sampling rate should be 16 KHz [32]. Since the implementation focus on speaker- 

independent speech recognition system, there should be recordings of the same text using

18



LIBRARY
UNIVERSITY OF MORATUWA, SR! LANKA 

MORATUWA

different people. Accuracy of the speech recognizer depends on the number of speakers 

and the amount of audio data and text data. That is the technique used by Pocketsphinx to 

train the system to produce a language model. Once this language model created it can be 

used by any application using CMUsphinx tools (Eg: Pocketsphinx , Sphinx).

After creating the text corpus and the audio files, training process starts. In this training 

process Sphinxtrain tool will assess the word probability and frequency of occurring 

against the audio files. This matching process is very crucial for the final product.

Because the statistical model which creates in this process will be used in the speech 

recognition application.

4.3 Survey

In order to create a text corpus for the purpose of this project, researcher gathered most 

commonly used SMS phrases by conducting a survey. In this survey responses were 

gathered from 100 University students. The reason to select University students for the 

survey is that they are the people who use SMS most of the time. So they have a better 

knowledge about most common SMS phrases used in day to day life. The survey was 

designed using Google form online tool. In the survey there were 9 categories defined 

and participants for the survey has to write whatever they feel to be suitable for each 

category. Defined categories were mentioned in Appendix A and sample questionnaire 

stated in Appendix B.

To guide the survey participants researcher gave example phrases for each category and 

ask participants to write any phrase they like according to the category. The categories 

were defined, because without categories participants may face difficulties in responding 

to the survey. All the phrases were in Sinhala language and the development of this 

speech recognition will be based on the output of the survey. Part of the results from 

survey mentioned in Appendix C. After collecting the data researcher will be able to 

create a good text corpus to train the system accordingly.

19

T H 3163



4.4 Android Testing Environment

Table 4.1: provides the Android testing environment details where the speech 

recognition application will be installed.

Table 4.1 Android test environment details

Samsung Galaxy Star GT-S5282Equipment

Android OS, v4.1.2 (Jelly Bean)OS

1 GHz Cortex-A5CPU

RAM 512 MB

Internal Memory 4 GB

Android OS v 4.1.2 Jelly Bean fully support Sinhala Unicode characters. This was an 

added advantage for this project. Otherwise the Sinhala font has to be installed separately 

by rooting the mobile device. But there is an option in Android programming to add any 

font to the code. Once it is done there is no need to install the Sinhala font to the mobile 

device.

4.5 Android interface development

Designing the Android interface for the speech recognition application was done using 

the following tools,

• Android Studio 1.3.2

• Java jdk 1.7.0

• Android SDK 4.2

4.6 Recording

A speech recording for training is a vital part in training process. In order to record 

speech and manipulate the recordings according to the needs of CMUSphinx was done by 

using a tool call Audacity[33]. Audacity is an open source free to use tool. It has features 

to edit voice recordings much easily.

20



4.7 Summary

In order to implement speech recognition system there should be a good training data set. 

This training data should include a large set of Sinhala words and related audio clips. 

When doing audio recordings there are certain rules to be followed.

Then an Android interface should be created to demonstrate the speech recognition.

Create the Sinhala language model by using the collected data (audio clips, related text 

words) and input that into the speech recognition engine.

21



Chapter 05

Design of Sinhala speech recognition system for 

Android OS
5.1 Introduction
Designing process is the most important in implementing speech recognition system. 

Because the speech recognition is a complex process and need to have covered all the 

possible inputs and outputs of the system.

As the initial step training process for the speech recognition system has to be designed. 

It has to be designed in order to get more accurate output from the speech recognition 

system. Once the training completes then the recognition engine part comes. Recognition 

engine will come under the user application part. In this project it will be the Android 

SMS application. This application acts as the testing environment for accuracy of the 

speech recognition.

5.2 Speech recognition design
Speech recognition process needs to follow a complex process in order to get an accurate 

output. Simple form of speech recognition process adapted into this project is shown 

below. /
Acoustic
Model

iilWo Front-end
Processing Android 

* ApplicationTextPocketsphinx
Algorithm OutputVoice

7
Lexicon Language

Model

Figure 5.1: Speech recognition system design

22



Front-end Processing: The front-end of a speech recognition system is the part that 

transforms speech to a vector of features that is suitable for further processing. In this 

stage features of the input voice will be extracted using CMUsphinx algorithms.

Pocketsphinx Algorithm: This part will process the features extracted in the previous 

step in more details and create a search graph. This graph will be used in audio to text 

matching using acoustic model, language models and lexicon.

Acoustic model: Acoustic model is a database of statistical models. Each statistical 

model represents a single unit of speech such as a word or phoneme. In spoken Sinhala 

language consists of 40 distinct sounds that are useful for speech recognition.

Language Model: Speech recognition system tries to match sounds with word 

sequences. The language model provides context to distinguish between words and 

phrases that sound similar.

Lexicon: Lexicons contain the mapping between the written representations and the 

pronunciations of words or short phrases. And also it contains a list of Sinhala words that 

can be recognized by the Speech recognition engine.

Android Application: This is the user interface for the system. In this project it will be 

the SMS application. User voice inputs will be accepted by this component using the 

microphone and give the text output.

5.3 Data preparation
The first stage of any speech recognizer development project is data preparation. Speech 

data is needed both for training and for testing. Speech recordings were gathered by 

recording using group of people. This group of people includes both male and female and 

also they were in different age groups. The training data is used during the development 

of the system. Test data provides the reference transcriptions against which the 

recognizer’s performance can be measured. For the training data a pronunciation

23



dictionary created to provide initial phone level transcriptions that are needed by the 

HMM training process.

Structure of the data files needed by the CMUsphinx speech recognition system can be 

elaborate as follows,

Table 5.1: CMUSphinx data file details

File Type Detail

db name.dic Phonetic dictionary

db_name.phone Phoneset file

db name.lm Language model

db name, filler List of fillers (eg: silence, cough, noises etc.)

db name train.fileids List of recording’s location for training

db_name_train.transcription Speech recordings and it’s correlated text for training

db name test, fileids List of recording’s location for testing

db_name _test. transcription Speech recordings and it’s correlated text for testing

5.4 Recordings

Speech recordings in this project were done in a quite environment to prepare a better 

training data set. Noises were recorded separately and added to the relevant data files to 

ignore whenever it occurs. Since the project is speaker independent speech recognition 

system, wide varieties of voices need to be recorded. All the recordings should be labeled 

properly to use those in next steps in the process more conveniently. All the recordings 

must be in .wav format, mono mode and 16 kHz sampling rate. Those are the settings 

needed by the CMUsphinx to works properly. Microphone used for recordings must 

product correspondingly uninterrupted voice level within the session of operating. Some 

of the voice recordings and noise recordings recorded from mobile phone. A tool called 

Smart Voice Recorder was used in this situation.

24



5.5 Training

Once the text files and recordings are prepared, the training process can begin. All the 

data should be in compatible form to input as training data. If any inconsistency persists 

in the process of training CMUSphinx tool will show the errors occurred. If any errors 

occurred it has to be manually corrected until the training process successfully complete. 

Most of the errors occur due to training algorithm detect recordings were not matched to 

the corresponding text. In those cases most of the time only solution is to rerecord the 

particular phrase and do the training process again. Basic training process is shown in the 

figure below,

Training Data Set

Language ModelAcoustic Model

TextDecoderFeature Extraction *

Speech

Figure 5.2: CMUSphinx Training Process

Training Data Set: All the text data and recorded voice data.

Feature Extraction: Here it is same as Front-end processing.

Decoder: The most important component of the system is the decoder. It does most of 

the work. It reads features extracted in previous stage, couple those data with the 

knowledge base (Acoustic model and Language model) and performs a search to

25



determine the most appropriate sequence of words that can be represented by those 

features.

5.6 Design assumptions and dependencies

Here discuss about assumptions and dependencies which may relate to hardware, 

software and other things.

Hardware

• Dependencies

Speech recognition system highly depends on the clarity of input wave signal. So a good 

quality microphone will increase the accuracy level to a considerable percentage.

• Assumption

Good quality microphones were used in when recording the voice recordings and when 

testing the speech recognition accuracy.

Operating System

The system works only on Android Operating system.

5.7 Summary

As the initial task data preparation has to be done. Collecting a fair amount of text corpus 

and prepare it according to the CMUSphinx formats is the next step in data preparation. 

Then the voice recordings should be done. Since this speech recognition system is a 

speaker independent system, more than one voice should be recorded for the training. 

Training the system using gathered data is the next step. Here all the data will be checked 

for any inconsistency and trained to achieve better accuracy.

26



Chapter 06

Implementation process of Speech Recognition System
6.1 Introduction

For the implementation process first the data should be prepared for the speech 

recognition system.

Then the gathered data put into the training tool and get the output to use in 

Pocketsphinx.

Once the trained data is prepared the Android interfaces for the testing should be 

prepared. As for the interim stage prepared interface only used as the output interface to 

show recognized words. There are no options to send or receive SMSs as it now.

6.2 Collecting data set

This is the most important and most difficult step in the whole process. Text corpus need 

to be a large one in order to get an accurate speech recognition output. One option to 

collect data is the survey conducted among University students. All the data collected 

used as the testing data set. Other texts were copied from sources like web sites, 

news papers etc...

were

More than 10 people were contributing for the voice recordings both male and female. 

And also different age groups also considered in recording the corpus. Around 1000 

words and more than 400 phrases were recorded in different locations. It was not a total 

silent enviromnent. Some of the noticeable noises were removed using the Audacity tool 

and labeled properly to avoid confusions in next phases.

6.3 Creating Language Model File
In this step the SRILM toolkit used to create the Sinhala language model.

toolkit which gives the probability of words using N-Gram and Tri-Gram

SRILM is an

open source
methodologies. First download the toolkit and installed on Windows 8.1 operating system

27



using Cygwin [34]. Cygwin is a Linux like environment design for Windows platforms. 

Once the toolkit installed, using text corpus created earlier the language model file 

created. Sample format of a Language Model (LM) file can be seen in Appendix D 

the language model file created it has to be sort. To do the sorting a researcher uses a tool 

with sphinxtrain. It will sort the language model based on the N-gram value given 

during the language model creation phase.

. once

comes

6.4 Creating Phonetic Dictionary File

This is another important file which consists of all the words that can be recognized by 

the recognizer and the phonemes for each word. Sample file can be seen in Appendix E. 

and a complete phonetic list of Sinhala letters can be seen in Appendix F[2]. In order to 

create the phonetic representation of the Sinhala words English letters were used. To get 

the correct phonetic letters which corresponds to the Sinhala word a MS Excel macro was 

used.

6.5 Creating other files

All the other files were created manually with the help of MS Excel. The files are,

• db_name.phone - sample shown in Appendix G

• db_name.filler - sample shown in Appendix H

• db_name _.fileids - sample shown in Appendix I

• dbjname_.transcription - sample shown in Appendix J

6.6 Training
This is the most important stage in the whole process. This is where all the data is going 

through an estimation process, which creates a model that can be used in Pocketsphiax 

recognition engine. To setup the training environment a virtualized Ubuntu 14.02 system 

used. In the Ubuntu system all the dependencies and main two components werewas 

installed.

• Sphinxbase

• Sphinxtrain

28



Those two main tools were used to do the training process. Once the training process 

completes output model files were copied to the local PC.

6.7 Creating Android Environment

First step to download Android studio from official Android web site. Once it’s installed 

all the required components for the development of Android applications were installed. 

Components like SDK platform, Android Development Tools and Android Virtual 

Device Emulator installed.

Once the Android Studio installation completes Pocketsphinx recognizer engine 

development can be done. All the Pocketsphinx Libraries can be imported to the program 

using,

Import edu, cm u.pocketsph inx. Hypoth esis; 

import edu. cm u.pocketsph inx,Recogn itionListener; 

import edu. cmu.pocketsphinx^SpeechRecognizer;

All the coding was written using Android studio environment. Detailed coding of the 

recognizer module can be seen in Appendix K.

Once the Android interfaces build model parameters created from the CMUSphinx 

training can be import into the android coding using the Asset folder. The content of the 

model parameters folder in the CMUSphinx training environment copied into the Asset 

folder of the android development folder. Then the recognition system can be tested using 

AVD or a real phone by connecting it to the Android Studio through USB cable.

6.8 Summary
First prepare the text corpus and voice record data for the purpose of training the system. 

Then create the Language Model using the SRILM toolkit. Once the LM created Phonetic 

dictionary and other required files were created with the help of MS Excel.

29



Start the training using prepared data in the training environment created in the Ubuntu 

operating system. Once the training completes it will creates the model parameter set 

according to the input data.

Then create the Android environment using Android Studio software. Android interface 

and Pocketsphinx libraries were imported into the coding. By using the model parameters 

created in the training process Android application can be tested for the accuracy.

30



Chapter 07
Evaluation
7.1 Introduction

Analyzing the results, test it and evaluate the product is the most important part in any 

project. As the final stage of the project researcher did this analyzing part to check the 

system accuracy. Speech recognition accuracy can be measured in two stages.

• During the training process

• Testing on real application (Manual test)

7.2 During training process

In this phase Sphinxtrain tool will output the error rate of the trained dataset at the 

decoding stage of the training process. CMUsphix calculate the error rate using the below 

mentioned formula,

WER = (I + D + S)/N

WER- Word Error Rate 

I - Number of Inserted words 

D - Number of Deleted Words 

S - Number of Substituted Words 

N- Total Number of Words

Using the above formula a script will compute the WER in percentage. If the percentage 

value is low means better accuracy of the system. If it’s very high means very poor 

accuracy in the system.

7.3 Testing on Real Application
Here the testing is done using a manual process. Researcher uses the same android 

application created to demonstrate the project outcome to test the accuracy. According to 

the researcher point of view this is the better accuracy measurement procedure rather than 

the system generated WER. Therefore researcher did the testing using this method to

evaluate the system.

31



In this process 4 people were participated to test the application. Bellow table illustrate 

the conditions of the selected people.

Table 7.1 Group of people use to test the system
Person Gender Status

Person 1 Male Participate in Training Process
Person 2 Male Not Participate in Training Process
Person 3 Female Participate in Training Process
Person 4 Female Not Participate in Training Process

They were given a set of SMS phrases randomly selected from trained data set. Total 

numbers of words in the selected SMS phrases were 144. And then Sinhala speech 

recognition application installed mobile device has given them for the testing. And then 

ask each participant to go inside a room and read out the SMS phrase one by one. Ask the 

participant to repeat the task for 3 iterations to gather more reliable test data set. In the 

room, only the researcher and the participant were present. Once done with the testing 

another participant was asked to come to the room to do the testing.

7.4 Testing Conditions 

Testing conditions were as follows,

• Testing was done by isolating each participant in a room.

• All the people were give same set of SMS phrases used during the testing process.

• 40 randomly selected SMS phrases were given to the participants. (Which is 

nearly 10% of the total number of phrases.)

• All the given 40 SMS phrases were used in training process.

• 3 iterations were tested using the same 40 SMS phrases,

• Noise measuring application was used to measure the environmental noise level 

during the testing and recoiled. (Testing person sound also included in here).

• Accuracy measurements have captured for words uttered by the participants.

• Uses same mobile device during the whole testing process.

32



• If a participant made a mistake in pronouncing a word or struggle to complete a 

sentence perfectly, participant was asked to repeat the same sentence again.

7.5 Assumptions

Following are the assumptions made during the testing process.

• All the participants have same amount of knowledge of this project.

• All the participants have same knowledge in operating mobile devices.

• Any of the participants didn’t have any speech disorders.

7.6 Results

Results of the testing are illustrated in bellow table.

Table 7.2 Results

Participant Number of words Displayed 

correctly in the Application

Average Environmental 

Noise During the Testing

Average

Accuracy

(dB)

AttemptAttempt Attempt AttemptAttempt Attempt

323 121
20.62020 19303029Person 1

20 12.72021191917Person 2
18 19 18.520272726Person 3
21 20 11.319171616Person 4

Researcher uses a simple formula to calculate accuracy in the testing. Following is the 

formula used,

Accuracy = (C/N) x 100%
C - Total Number of words displayed correctly in the SMS application 

N - Total number of words used in tire testing

33



Chapter 08
Conclusion and Future Work
8.1 Introduction

Speech is the most fundamental way of communicating with each other. This has evolved 

thousand years and now there are lots of languages spoken by humans. After the 

discovery of computers researchers and scientists try to couple speech and IT systems. 

Because of these attempts speech recognition concepts, methods and algorithms 

discovered. At the earlier stages accuracy of the speech recognition was so poor and 

researchers try to improve the accuracy of the recognition process. Now there is a huge 

development in speech recognition area. For the commonly used languages like English 

more than 90 % accuracy can be guaranteed. But for the languages like Sinhala lots of 

improvements need to be made.

were

8.2 Completed work and future work

This project is a tryout to improve the recognition accuracy of the Sinhala language using 

an open source toolkit call CMUSphinx. CMUSphinx is a speech recognition engine 

developed by Carnegie Mellon University. It’s a language independent speech 

recognition engine. That was the main reason to select this tool for the development of 

Sinhala speech recognition system. Researchers in Sri Lanka are more into this subject in 

recent past. There are some Sinhala speech recognition developments in Sri Lanka, but 

there couldn’t be found any developments done using CMUSphinx for Android 

Operating system. And also most of the developments are speaker dependent or restricted 

to limited number of words like recognizing digits. But this project doesn’t contain such 

small amount of recognition dictionary. So this system is more generic than other 

systems. Once this project completes any other researcher can improve the model and can 

be used in their applications.

Since the speech recognition for Sinhala language developed only a little I have to do the 

implementation from the scratch. Speech recognition is a complex process. So it was a

34



difficult task to understand the concepts behind the process and the toolkits used for the 

process.

Another challenge was the preparation of data set. Most of the projects on speech 

recognition systems take more than 2 -3 years, because of the data preparation process 

lot of time. Since this project duration limited to a 1 year, scope of the project 

reduced to match with the time limitations. However I have managed to reduce the 

time needed for some tasks by using tools, scripts and applications like MS Excel.

And also collecting audio recordings in a minimum noise environment was a challenge. I 

have tried to do the recordings in a quite environment as much as possible. Editing the 

recorded voice clips also consumes lot of time and effort. In addition to that collecting 

voice recordings from various people was a big challenge. Since the system is speaker 

independent, different voices has to be used to train the system. To overcome the 

challenge I had to get help from my friends and family members.

consumes

was

For the successful implementation of speech recognition systems a huge number of data 

sets need to be created. Both audio and text corpus need to be prepared and it consumes 

lot of time. At the end of this project only a limited number of data sets were created and 

tested. By calculating the test results researcher has come to a conclusion that the average 

accuracy of the system isl5.7%.It has to be improved a lot and should gain less error rate 

by increasing the data set and reduce inconsistencies in audio recordings.

According to the results captured during the testing process, speech recognition system 

build in this project does not produce 100% accuracy. None of the speech recognition 

system reaches to that point so far. Therefore the researchers who are interested in speech 

recognition projects have to improve the speech recognition concepts and methods.

Here the researcher has shared his work with the speech recognition community as a 

contribution to the researchers who are interested in speech recognition area. They can

refer the work done by this project and continue with this work by adding more words to

voice recordings to improve the accuracy. As further workthe corpus and more 
researcher can enhance the application to accept speech commands and controls to

35



operate the SMS application by improving the accuracy, do certain changes in android 

application and add certain files to training process.

8.3 Summary

Here the research tries to implement a better accurate Sinhala Speech recognition system 

for Android powered mobile devices. In his attempt to successfully complete the work he 

faces many difficulties like time limitations, resource limitations etc... speech 

recognition systems cannot be build to produce 100% accurate results. AJi most all the 

speech recognition systems currently available are still improving to get better 

performance and better accuracy.

However researcher has managed to gain a respectable accuracy rate for a language 

which is not used very commonly in speech recognition research works. In addition to 

that researcher has contributed his work for the betterment for the researchers who are 

interested in Sinhala speech recognition developments.

36



References

[1] “Bbc.co.uk, ‘BBC - Languages - Languages - Languages of the world - Interesting 

facts about languages.’” [Online], Available:

http://www.bbc.co.uk/languages/guide/languages.shtml. [Accessed: 14-Nov-2015],
[2] A. Wasala and K. Gamage, “Research Report on Phonetics and Phonology of 

Sinhala,” University of Colombo School of Computing, Colombo.

[3] “CMU Sphinx.”.

[4] T. Nadungodage and R. Weerasinghe, “Continuous Sinhala speech recognizer,” in 

Conference on Human Language Technology for Development, Alexandria, Egypt, 

2011, pp. 2-5.

[5] S. Furui, “AUTOMATIC SPEECH RECOGNITION AND ITS APPLICATION TO 

INFORMATION EXTRACTION.” Tokyo institute of Technology.

[6] “Neural Networks.” [Online]. Available: 

https://www.doc.ic.ac.uk/~nd/surprise_96/joumal/voI4/cs 11/report.html. [Accessed: 

28-Jan-2016].

[7] T. Nadungodage, V. Welgama, and R. Weerasinghe, “Developing a Speech Corpus 

for Sinhala Speech Recognition.”.

[8] C. Richey, “Speech Corpora.” Apr-2000.

[9] S. Chen, D. Beeferman, and R. Rosenfeld, “EVALUATION METRICS FOR 

LANGUAGE MODELS,” Carnegie Mellon University, Pittsburgh, PA 15213.

[10] N. a. C. Sandasarani, “Sinhala Speech Recognition,” Int. J. Eng. Res. Technol., vol. 

Vol. 4, no. Issue 10, pp. 391-394, Oct. 2015.
[11] S. Molau, M. Pitz, R. Schf’uter, and H. Ney, “COMPUTING MEL-FREQUENCY 

CEPSTRAL COEFFICIENTS ON THE POWER SPECTRUM,” RWTH Aachen - 

University of Technology, 52056 Aachen, Germany.
[12] C. A. Ratanamahatana and E. Keogh, “Everything you know about Dynamic Time 

Warping is Wrong,” University of California, Riverside, CA 92521.

[13] L. A. D. S. A. Molligoda and P. G. Wijayarathna, “APPLICABILITY OF HIDDEN 

MARKOV MODEL APPROACH FOR SINHALA SPEECH RECOGNITION - A 

SYSTEMATIC REVIEW,” University of Kelaniya.

37

http://www.bbc.co.uk/languages/guide/languages.shtml
https://www.doc.ic.ac.uk/~nd/surprise_96/joumal/voI4/cs


[14] Z. Ghahramam, “An introduction to Hidden Markov 

Int. J. Pattern Recognit. Artif. Intell.

[15] P. Dymarski, HIDDEN MARKOV MODELS, THEORY AND APPLICATIONS, 

First. India: InTech, 2011.

[16] D. Reynolds, “Gaussian Mixture Models.”

[17] M. K. H. Gunasekara and R. G. N. Meegama, “Real time Translation of Discrete 

Sinhala Speech to Unicode Text,” University of Sri Jayewardenep

[18] T. Gulzar, A. Singh, and S. Sharma, “Comparative Analysis of LPCC, MFCC and 

BFCC for the Recognition of Hindi Words using Artificial Neural Networks,” Int. J. 

Comput. Appl., vol. Volume 101-No.l2, p. 6, Sep. 2014.

[19] F. H onig, G. Stemmer, C. Hacker, and F. Brugnara, “Revising Perceptual Linear 

Prediction (PLP),” Universit at Erlangen-N“umberg, Germany.

[20] U. Shrawankar, “TECHNIQUES FOR FEATURE EXTRACTION IN SPEECH 

RECOGNITION SYSTEM : A COMPARATIVE STUDY,” SGB Amravati 
University, Amravati.

[21] U. Shrawankar and V. Thakare, “Feature Extraction for a Speech Recognition 

System in Noisy Environment: A Study,” 2010, pp. 358-361.

[22] “Open-Source Large Vocabulary CSR Engine Julius.” [Online]. Available: 

http://julius.osdn.jp/en_index.php. [Accessed: 03-Feb-2016].

[23] M. A. Anusuya and S. K. Katti, “Speech Recognition by Machine: A Review,” Int. 

J. Comput. Sci. Inf. Secur., vol. Vol. 6, p. 25,2009.
[24] K. Lee, Context-independent phonetic hidden Markov models for speaker-

independent continuous speech recognition, vol. vol. 38,4 vols. 1990.

[25] K. Lee, “Automatic speech recognition.” Boston,Mass: Kluwer, 1989.

[26] “GenTXWarper - Mining gene expression time series.” .

[27] “The Google app,” The Google app. [Online]. Available:

https://www.google.com/search/about/. [Accessed: 04-Mar-2016].

[28] “iOS - SiriApple. [Online], Available: http://wxvw.apple.com/ios/siri/. [Accessed:

04-Mar-2016].

Model and Bayesian
Networks,”

MIT Lincoln Laboratory.

ura.

38

http://julius.osdn.jp/en_index.php
https://www.google.com/search/about/
http://wxvw.apple.com/ios/siri/


[29] “What is Conan.?. Windows Holp," windows.™,(0„,inc]. Av,ilabte

http://windows.microsoftcom/en-us/windows-10/getstarted-what-is-cortana.

[Accessed: 04-Mar-2016].

[30] “Language Technology Research Laboratory” [Online], Available:

http.//www,ucsc.cmb.ac.lk/ltrl/?page=downloads&la

[Accessed: 04-Mar-2016],

[31] “cmusphinx/pocketsphinx ” GitHub. [Online], Available: 

https://github.com/cmusphinx/pocketsphinx. [Accessed: 04-Mar-2016].

[32] “Training Acoustic Model For CMUSphinx [CMUSphinx Wiki] ” [Online], 

Available: http://cmusphinx.sourceforge.net/wiki/tutorialam. [Accessed: 04-Mar- 

2016].

[33] “Audacity®.”.

[34] “Cygwin.” [Online]. Available: https://www.cygwin.com/. [Accessed: 04-Mar- 

2016].

ng=en&style=default.

39

http://windows.microsoftcom/en-us/windows-10/getstarted-what-is-cortana
https://github.com/cmusphinx/pocketsphinx
http://cmusphinx.sourceforge.net/wiki/tutorialam
https://www.cygwin.com/


Appendix A

1. SMS phrases for Greetings

2. SMS phrases for asking Questions

3. SMS phrases related to Relationshi
4. SMS phrases related to Students & E

5. SMS phrases to mention When & Where
6. SMS phrases for Invitations
7. SMS phrases for appreciation
8. SMS phrases for Emergency

9. SMS phrases to express feelings

ps

xams

40



Appendix B

Page l of 1

Frequently Used SMS Phrases

rr.x'""’-'"'..-“^sssksss:
What are the frequently used SMS phrases for Greetings?
Examples SecxtaE., «SI3J0=f. a* eg-arf, gs! -* E» s* ,E==f

What are the frequently used SMS phrases to ask Questions?
Examples- £a» 6a*. 2cs> e-.O tfexagec* 4*f5S0 edafa, 2a> aa»*e&{ eit, 2® sSsaf cafa>«. 2®

What are the frequently used SMS phrases related to Relationships? 
Examples: 2a> SO e*»dQ;. 2? SS e*»dQ, SS 2®S »©j£saf e*»dS, Sjsf Safa sdi*

41



Appendix C

Frequently (Responses)
Fi!« Ed1 Vw<* Insert FefTOit OK) Too** fan 
* "■ ?

ft£3
Ad*OM H.ij

Ci1 N «. W ,jj *rU1
’• • B t rt *.• s- <*> D K y - x - 2.Ti(P*jI*ts/

0

« WhK *. .he frequently used SMS C*«e* ,o „* Questions? Ml *, „„ ^^

? «* *=■<• t» ».C< «-.»*< jr-se- EJ JajC ,«£«- „,„3 M W -e'K-s-'incs. VA* n the feejetsiy '-1+e St.'S ?.'1!*| •*■*•- Ti S’lJem 1 Ea-1 ’ 
n-: »r*-r „• *5 ’•fmti -.r-i

3
5 _•) i £ai eii«

f 3. e loi •*<*« »e»>n!< •»?. J-J, <JK «?e< , J j, Jt f J »,.s3.

k°7 koh*d,? r‘3 *»•*»«* 1*TJ S «** £3. »*,»*,»« „| *3, *.; ^M3, , £J;r HI!J

f j ei»i l-rt!«lf Iff!» ir: fft-r jjirt -i i;*rf »£,
to titJ «rt irCw »*3 ift*r j;>t 55

4

E!l(

ns *»/ »5»*. d*r J3J- «-<» j*»s* f 3 *<*' *;;r5T *»*> >
ffy* tf* Sii
C-,1 ^ (*«!’
Wmn* /’

ohwo Jf* u? 
, **>«* up Tn

(
^' I Iff.* y«l

t
5 --i in»(( $rf»sr !5 JmS ir>Cnfrti:3

42



Appendix D

\data\
ngram 1=578 

ngram 2=3540 

ngram 3=407

\1-grams:

-5.2121 0-0.1680 

-5.2121 1 -0.1680 

-5.2121 2-0.1680 

-5.2121 3 -0.1680 

-5.2121 4-0.1680 

-5.2121 5-0.1680 

-5.2121 6-0.1680 

-5.2121 7-0.1680 

-5.2121 8-0.1680 

-5.2121 9-0.1680 

-0.5786 </s> 0.0000 

-99.0000 <s>-1.0147 

-3.6439 ep°25)ca -0.4351 

-3.3992 -0.2699

-4.2170 epazrfen 0.0000 

-3.4412 €p2ad®<> -0.6011 

-3.2078 epssfeazsf -0.7666 

-4.1707 -0.1328

-3.3488 q©'2sf -0.2976 

-1.9804 eft -0.3949 

-4.2170 0.0000

-5.2121 c^Ossf -0.3009

43



-2.6619 -1.3828

-3.5589 cpzrfzS® -0.3010 

-4.1707 -0.1657

-4.5131 cp2ft0o#©G32sf© -0.1680 

-3.2436 c^®23 -0.6554 

-3.3036 ep@2rf -0.4151 

-4.5131 €fd©eaO 0.0000 

-1.9793 cpB -0.1885 

-2.7921 qQQ -0.3704 

-1.9561 -0.5345

-2.8055 ep®232s> -0.8056 

-4.2170 ef©25)255© 0.0000 

-4.3670 cf®2s>ste -0.6451

44



Appendix E

epcge'StfOzrf AAZ Y U B 00 V N 

SHZUB

U DHZAAESHZN K 

R AA THZ RA R IY K 

DHZVAALK 

SHZAEN DHZAAEVK 

K 0 H 0 M DHZ 

BUDHZUSHZRNYI 

DHZVSHZK 

V EE V AA

cg<o

doi§ cazsf 

^Ooezsf

@2553®'K)D©^ 

ggesd-S&Q 

$Qeazsf 

&DQo

©<;3 DHZ E VI

45



Appendix F

a
qo aaz

aez

awz

9 i

5 iiz

C u

C* uuz

ri63a

riiz65aa

iluo

iluuzWO

a e

d eez

aiz

© 0

© ooz

auz©a

k255

k9

g©

g«

q©
ngz©

c0
c

jd
jsa)
cnz

46



jcnz
zS njz
o t
c3 t
a d
a d
•<5o n
a ndz

thz25)

a thz

dhz*
a dhz
25) n

ndz5

P
a p

ba
b33

© m

mbz©

y03

r<5

e
v©
shz03

shz

shzes
h8)

I€
fCO

qOo

hos

47



Appendix G
NDZ

AEZ

EEZ

II
OOZ

J
NGZ

IIZ

SIL

+GARBAGE+

+NOISE+
+BREATH+

48



Appendix H
<s> SIL 

</s> SIL 

<sil> SIL

++CHAIRSQUEAK-H- 

++C OUGH++ +NOISE+
+NOISE+

49



Appendix I
tracks/713-Audio_Track 

tracks/714-Audio_Track 

tracks/715-Audio_Track 

tracks/716-Audio_Track 

tracks/717-Audio_Track 

tracks/718-Audio_Track 

tracks/719-Audio_Track 

tracks/720-Audio_Track 

tracks/721 -AudioJTrack 

tracks/722-Audio__Track 

tracks/723- Audio_Track 

tracks/724-Audio_T rack 

tracks/725-Audio_Track 

tracks/726-Audio_Track 

tracks/727-Audio_Track 

tracks/728-Audio Track

50



Appendix J

<S> ©a s>0 Ulc n<t8ta </s> (1390.Audio Track)

<s> ®0 aO 8a»S utossf ®<;afa} </s> (1391-Audio_Track)
<s> 0 </s> (1392-Audio_Track)
<s> 1 </s> (1393-Audio_Track)

<s> 2 </s> (1394-Audio_Track)
<s> 3 </s> (1395- Audio_Track)
-H-SINGING-H- (noise_0001) 
-H-MOVEMENT+4- (noise_0002) 

++TYPING++ (noise_0005)

51



Appendix K

package edu.cmu.pocketsphinx.sinhala;
import java.io.File;

import java.util.concurrent.LinkedBlockingQueue;

import android.media.AudioFormat;

import android.media.AudioRecord;

import android.media.MediaRecorder;
import android.os.Bundle;

import android.os.Environment;
import android.util.Log;

import edu.cmu.pocketsphinx.Config;

import edu.cmu.pocketsphinx.Decoder;
import edu.cmu.pocketsphinx.Hypothesis;

import edu.cmu.pocketsphinx.pocketsphinx;
public class RecognizerTask implements Runnable {

class AudioTask implements Runnable {
/**

Queue on which audio blocks are placed.

*/
LinkedBlockingQueue<short[]> q;

AudioRecord rec; 

int block_size; 

boolean done;

=1024;static final int DEFAULT_BLOCK_SIZE

AudioTask() {
this.init(new LinkedBlockin

gQueue<short[]>0. DEFAULT_BL0CK_S1ZE);

}
52



AudioTask(LinkedBlockingQueue<short[]> q) { 

this.init(q, DEFAULT_BLOCK_SIZE);

}

AudioTask(LinkedBlockingQueue<short[]>q, int block_size) { 
this.init(q, block_size);

}

void init(LinkedBlockingQueue<short[]> q, int block_size) { 
this, done = false; 

this.q = q;

this.block_size = block_size;

//HiepNH - CHANNEL_IN_MONO -> CHANNEL_IN_STEREO 

this.rec = new AudioRecord(MediaRecorder.AudioSource.DEFAULT, 16000, 

AudioFormat.CHANNEL_IN_MONO, 
AudioFormat.ENCODINGJPCM_16BIT, 8192);

}

public int getBlockSizeO { 
return block__size;

}

public void setBlockSize(int block_size) { 

this.block size = block_size;

}

LinkedBlockingQueue<short[]> getQueueQ {
public 

return q;

}

53



public void stop() { 

this.done = true;

}

public void run() { 

this.rec.startRecordingO;
while (! this.done) { 

int nshorts = this.readBlock(); 
if (nshorts <= 0) 

break;

}

this.rec.stopQ;

this.rec.releaseQ;

}

int readBlock() {
short[] buf = new short[this.block_size]; 

int nshorts = this.rec.read(buf, 0, buf.length); 

if (nshorts > 0) {
Log.d(getClass0.getName(), "Posting " + nshorts +" samples to queue"); 

this.q.add(buf);

}
return nshorts;

}

}

* PocketSphinx native decoder object.

*/

Decoder ps;
/**

54



* Audio recording task.

*/

AudioTask audio;

Thread associated with recording task.

*/

Thread audio_thread;
/**

* Queue of audio buffers.

*/

LinkedBlockingQueue<short[]> audioq;
/**

Listener for recognition results.

*/

RecognitionListener rl; 

boolean usejpartials;

enum State {

IDLE, LISTENING

};
enum Event {

NONE, START, STOP, SHUTDOWN

};

Event mailbox;

public RecognitionListener getRecognitionListen rO {

return rl;

}

r(RecognitionListener rl) {
public void setRecognitionListene

55



this.rl = rl;

}
public void setUsePartials(boolean use_partials) { 

this.usejpartials = use_partials;

}
public boolean getUsePartials() { 

return this.use_partials;

}
public RecognizerTask(File sphinxDirectory) {

pocketsphinx.setLogfile(sphinxDirectoiy.getAbsolutePathO+7pocketsphiiix.log");
Config c = new ConfigO;

c.setString("-hmmM, sphinxDirectory V'/hmm/sinhala"); 

c.setString("-dict", sphinxDirectory + 7dict/test06.dic"); 

c.setString(M-lmu, sphinxDirectory + ,,/lm/test06.1m"); 

c.setString("-rawlogdir", sphinxDirectory.getAbsolutePathO); // Only use it to store 

the audio

c.setFloat("-samprate", 16000.0); 

c.setlnt("-maxhmmpf2000);

//c.setlnt(n-maxwpf', 10);

//c.setInt("-pl_window", 2);
//c.setBoolean(M-backtrace", true);

//c.setBoolean(M-bestpath", false); 

this.ps = new Decoder(c); 

this.audio = null;
this.audioq = new LinkedBlockingQueue<short[]>0> 

this.use_jpartials = true; 

this.mailbox = Event.NONE;

}

public void run() {
/* Main loop for this thread. */

56



boolean done = false;

/* State of the main loop. */ 

State state = State.IDLE;

/* Previous partial hypothesis. */ 
String partialjhyp = null;

while (!done) {

Event todo = Event.NONE; 

synchronized (this.mailbox) { 

todo = this.mailbox;

if (state = State.IDLE && todo = Event.NONE) {
try {

Log.d(getClass().getNameO, "waiting");

this.mailbox.waitO;
todo = this.mailbox;

Log.d(getClass().getNameO, "got" + todo);
} catch (InterruptedException e) {

/* Quit main loop. */
Log.e(getClass().getNameO, "Interrupted waiting for mailbox, shutting

down");
todo = Event. SHUTDOWN;

}

}

this.mailbox = Event.NONE;

}
switch (todo) { 

case NONE: 
if (state = State.IDLE)

Log.e(getClass().getName(), "Rece
ived NONE in mailbox when IDLE,

threading error?");

57



break;

case START:

if (state = State.IDLE) {

Log.d(getClass().getName(), "START");
this.audio = new AudioTask(this.audioq, 1024); 
this.audiojhread = new Thread(this.audio); 
this.ps.startUtt();

this.audio_thread.start(); 
state = State.LISTENING;

}
else

Log.e(getClass().getNameQ, "Received START in mailbox when
LISTENING"); 

break; 

case STOP:

if (state = State.IDLE)
Log.e(getClass().getName(), "Received STOP in mailbox when IDLE"); 

else {

Log.d(getClass().getNameO, "STOP"); 

assert this.audio != null; 

this.audio.stopQ;
try {

this.audio_thread.joinO;

}
catch (InterruptedException e) {

Log.e(getClass0.getName(), "Interru
pled waiting for audio thread, shutting

down");

done = true;

}
short[] buf;
while ((buf = this.audioq.poll0)!assnu® *

58



Log.d(getClass0.getNameO, "Reading "
8 + buf. length + " samples fromqueue");

this.ps.processRaw(buf, buf.length, false false);
}

this.ps.endllttO;
this.audio = null; 

this.audio_thread = null;

Hypothesis hyp = this.ps.getHyp(); 
if (this.rl != null) { 

if (hyp = null) {

Log.d(getClass().getName05 "Recognition failure"); 
this.rl.onError(-l);

}
else {

Bundle b = new Bundle();

Log.d(getClass()-getNameO, "Final hypothesis:" + hyp.getHypstrO);

b.putString("hyp", hyp.getHypstrO);

this.rl.onResults(b);

}

}
state = State.IDLE;

}
break;

case SHUTDOWN:
Log.d(getClass0.getName(), "SHUTDOWN ), 

if (this.audio != null) { 

this.audio.stop(); 
assert this.audio_thread != null;

try {
this.audio thread.joinQ;

}

59



catch (InterruptedException e) {

}

}
this.ps.endUttO; 
this.audio = null; 

this.audio_thread = null; 

state = State.IDLE; 

done = true; 

break;

}
if (state = State.LISTENING) { 

assert this.audio != null;

try {

short[] buf = this.audioq.take();

Log.d(getClass().getNameO, "Reading " + buf.Iength + " samples from queue”); 

this.ps.processRaw(buf, buf.Iength, false, false);

Hypothesis hyp = this.ps.getHypO; 

if (hyp != null) {

String hypstr = hyp.getHypstrO; 

if (hypstr != partial_hyp) {
Log.d(getClass().getName(), "Hypothesis:" + hyp.getHypstrO); 

if (this.rl != null && hyp != null) {

Bundle b = new BundleOi 
b.putString("hyp", hyp.getHypstrO),

this.rl.onPartialResults(b);

}

}
partial_hyp = hypstr;

}
} catch (InterruptedException e) { 

Log.d(getClass().getName(), "In
terrupted in audioq.take");

60



}

}

}

}
public void start() {

Log.d(getClass0.getNameO, "signalling START”); 
synchronized (this.mailbox) { 

this.mailbox.notifyAllO; 

Log.d(getClass().getName(), "signalled START"); 
this.mailbox = Event.START;

}

}
public void stopO {

Log.d(getClass().getNameO, "signalling STOP"); 

synchronized (this.mailbox) { 

this.mailbox.notifyAllO; 

Log.d(getClass0.getName(), "signalled STOP"); 

this.mailbox = Event.STOP;

}

}
public void shutdownO {

Log.d(getClass().getNameO, "signalling SHUTDOWN ), 

synchronized (this.mailbox) { 

this.mailbox.notifyAllO;
Log.d(getClass().getNameO, "signalled SHUTDOWN"); 

this.mailbox = Event.SHUTDOWN;

61


