LBI DON / 80/2017

DAY EFFECT IN RETURN AND VOLATILITY OF THE SELECTED SECTOR INDICES IN COLOMBO STOCK EXCHANGE

G.A.C.M.Karunananda

(148905 F)

UNNERSHY OF MOHATUWA, SRILANKA

Thesis Submitted in partial fulfillment of the requirements for the degree Master of Science in Financial Mathematics

> TH3-20+ CD POM

Department of Mathematics

University of Moratuwa Sri Lanka

July 2017

TH3400

51"17 336:51 (043)

Declaration of the Candidate and Supervisor

The work submitted in this thesis is the results of my own investigation, except where otherwise stated.

It has not already been accepted for any degree, and is also not been concurrently submitted for any other degree.

i

G.A.C.M.Karunananda

24/07/2017 Date

I endorse the declaration by the candidate,

14.1 1

UOM Verified Signature

Mr Rohana Dissanayake (Supervisor) Senior Lecturer Department of Mathematics Faculty of Engineering University of Moratuwa

24-07-2017 Date

Acknowledgment

First, I would like to thank God Almighty for being with me and answering all my prayers.

I am heavily indebted to my supervisor, Mr. Rohana Dissanayake, Senior Lecturer, Department of Mathematics, University of Moratuwa for his inspiration and invaluable support throughout my graduate studies at the University of Moratuwa. Undeniably, this work would not have been a success without his directions, guidance and immeasurable contribution. It was really a great honor to have been his student.

Besides my supervisor, I would like to give my sincere thanks to Mr.T M J A Cooray, Senior Lecturer, Department of Mathematics, University of Moratuwa and course coordinator of M.Sc. studies for his support and the encouragements during my study period and the graduate studies at the University of Moratuwa.

Warm appreciation also goes to members of the Department of Mathematical Sciences, Faculty of Applied Sciences, Wayamba University of Sri Lanka for their support and encouragements. Also I would like to thank Mr T. Arudchelvam for his continuous support, throughout the process of writing the thesis.

Most importantly, I would like to express my deepest gratitude to my mother, my father, my brother, my wife and my beloved son for their love, unflinching support and encouragement. Without them, I definitely could not have come this far.

. . .

Abstract

One of the significant anomalies of Efficient Market Hypothesis (EMH) is the seasonal effect. The existence of the seasonal effect implies market inefficiency. Most of the investors, especially international investors are more concerned with the market efficiency. The most common seasonal anomalies are *the Day of the week effect, Day of the month effect, week of the month* and *the month of the year effect.* According to past empirical studies Day of the week is the most talked anomaly among those. When the day of the week effect exists, investors can earn abnormal profit by buying the stock in low return day of the week and selling them at a higher return day of the week.

In Sri Lankan context, all the studies on finding the existence of day of the week effects in stock return and volatility in Colombo Stock Exchange (CSE) are conducted for the whole market using All Share Price Index (ASPI). As all those studies mainly focused on ASPI and no studies focused on sector wise, this study examines the same problem focusing two sectors: Hotels and Travels (H&T), Investment Trusts (INV) in CSE. The daily returns for each sector over a period of two years from 2014 to 2016 are tested using three types of conditional time varying models, namely GARCH, EGARCH, and GJR-GARCH. The study finds strong evidence for the presence of day of the week effect in stock returns are negative in H&T and it is significantly higher than that of other days of the week. Only Monday returns are significant in INV and it is negative. While Monday volatility is significantly positive and higher than that of other days of the week in H&T, Thursdays and Fridays volatility are significantly different from zero and negative in INV.

Key Words: Volatility, Stock Return, All share price index, GARCH, EGARCH, Colombo Stock Exchange, Day of the week effect.

TABLE OF CONTENTS

Decla	ration of the Candidate and Supervisor	i
Ackn	owledgment	ii
Abstr	ract	iii
Table	e of Content	iv
List a	of Figures	viii
List o	of Tables	ix
List o	of Abbreviations	x
Chap	ter 1: Introduction	1
1.1	Colombo Stock Exchange	1
1.2	Stock Market Index	1
	1.2.1 All Share Price Index (ASPI)	2
	12.2 S&P SL20 Index	3
	1.2.3 Sector Indices	3
1.3	Background of the study	4
1.4	Research Problem	6
1.5	Objective of the study	6
1.6	Significance of the study	6
1.7	Data Collection	7
1.8	Outline of the rest of the Chapters	7
Chap	ter 2: Literature Review	8
2.1	Introduction	8
2.2	Theoretical Frame Work	8
	2.2.1 Efficient Market Hypothesis	8
	Weak Form Efficiency	9
	Semi-strong Form Efficiency	9
	Strong Form Efficiency	9

	2.2.2 Random Walk Theory	10
2.3	2.2.3 The Trading Time and Calendar Time Hypothesis	11
	Empirical Review	11
	2.3.1 International Studies on Day of the Week Effect	11
	2.3.2 Local Studies on Day of the Week Effect	13
2.4	Chapter Summary	14

Chapt	ter 3: Methodology	16
3.1	Introduction	16
3.2	Research Design	16
3.3	Descriptive Statistics	16
	3.3.1 Skewness	16
	3.3.2 Kurtosis	17
	3.3.3 Time Series Analysis	17
3.4	Unit Root Test	18
	3.4.1 Dickey-Fuller (DF) test	18
	3.4.2 Augmented Dickey-Fuller (ADF) test	19
3.5	Testing the existence of Volatility Clusters	20
3.6	Testing the presence of asymmetry in volatility clusters	21
3.7	Basic OLS Model	22
3.8	Modified OLS Model	22
3.9	AR(p) Model	23
3.10	MA(q) Model	23
3.11	ARMA(p,q) Model	23
3.12	ARCH/GARCH Model	23
3.13	EGARCH Model	24
3.14	GJR-GARCH Model	24
3.15	Residuals Analysis	25
	3.15.1 Tests for Serial Correlation	25
	Ljung-Box Test	25

	3.15.2 Tests for Heterosedasticity	25
	White Test	26
	ARCH - LM Test	26
	3.15.3 Test for Normality	27
3.16	Information Criteria	27
	3.16.1 Akaike,s Information Criterion (AIC)	28
	3.16.2 Bayesian Information Criterion (BIC)	28
3.17	Day of the week effect	28
Chap	ter 4:Data Analysis and Results	29
4.1	Introduction	29
4.2	Hotel and Travel sector	30
	4.2.1 ADF Unit Root Test: Evaluating Stationary Conditions	31
	4.2.2 Testing Volatility Clusters	33
	4.2.3 Asymmetric/Symmetric Nature of the Volatility	35
	4.2.4 Model I and Model II diagnostic testing	39
	Ljung-Box Q-statistics for standardized residuals	39
	Ljung-Box Q-statistics for standardized returns squared	40
	ARCH LM test	41
	4.2.5 Comparison of Fitted Models	42
	4.2.6 Results	43
4.3	Investment Trusts Sector	44
	4.3.1 ADF Unit Root Test: Evaluating Stationary Conditions	45
	4.3.2 Testing Volatility Clusters	46
	4.3.3 Asymmetric/Symmetric Nature of the Volatility	48
	4.3.4 Model I and Model II diagnostic testing	53
	Ljung-Box Q-statistics for standardized residuals	53
	Ljung-Box Q-statistics for standardized returns squared	54
	ARCH I.M test	55

4.3.5 Comparison of Fitted Models	55
4.3.6 Results	56

Chapter 5: Conclusions and Recommendations		58
5.1	Introduction	58
5.2	Summary of findings	58
	5.2.1 Results on Return	58
	5.2.2 Results on Volatility	59
5.3	Conclusion of the study	59
5.4	Limitations of the study	59
5.5	Recommendations for further research	59

References

61

LIST OF FIGURES

Figure 3.1	Algorithm of fitting the models	17
Figure 4.1	Plot of Daily stock price index of Hotels and Travels Sector	30
Figure 4.2	Time series plot of daily returns of ASPI for Hotels & Travels Sector	33
Figure 4.3	Time series plot of squared daily returns of ASPI for Hotel & Travels Sector	34
Figure 4.4	Plot of Daily stock price index of Investment Trusts Sector	44
Figure 4.5	Time series plot of daily returns of ASPI for Investment Trusts Sector	47
Figure 4.6	Time series plot of squared daily returns of ASPI for Investment Trusts Sector	47

LIST OF TABLES

Table 4.1	Descriptive Statistics of Returns for each day of the week of H&T	31
Table 4.2	ADF Unit Root Test – H&T sector index level series	32
Table 4.3	ADF Unit Root Test - H&T sector index first differenced series	32
Table 4.4	Mean and variance equation of GARCH(2,1) model - H&T sector	36
Table 4.5	Mean and variance equation of EGARCH(3,2) model - H&T sector	37
Table 4.6	Mean and variance equation of GARCH(2,1) and EGARCH(3,2) model - H&T sector	38
Table 4.7	Q-statistics and P value of Ljung-Box test on standard residuals of Model I and Model II	40
Table 4.8	Q-statistics and P value of Ljung-Box test on standard squared residuals of Model I and Model II	41
Table 4.9	ARCH LM test statistic values and P values of Model I and Model II	41
Table 4.10	Information criteria of Model I and Model II	42
Table 4.11	Normality test (on residuals) results of two models	42
Table 4.12	Descriptive Statistics of Returns for each day of the week of INV	44
Table 4.13	ADF Unit Root Test – INV sector index level series	45
Table 4.14	ADF Unit Root Test - INV sector index first differenced series	46
Table 4.15	Mean and variance equation of GARCH(2,1) model - H&T sector	50
Table 4.16	Mean and variance equation of EGARCH(3,2) model - INV sector	51
Table 4.17	Mean and variance equation of GARCH(2,1) and EGARCH(3,2) model - INV sector	52
Table 4.18	Q-statistics and P value of Ljung-Box test on standard residuals of Model I and Model II	53
Table 4.19	Q-statistics and P value of Ljung-Box test on standard squared residuals of Model I and Model II	54
Table 4.20	ARCH LM test statistic values and P values of Model I and Model II	55
Table 4.21	Information criteria of Model I and Model II	55
Table 4.22	Normality test (on residuals) results of two models	56

LIST OF ABBREVIATIONS

Abbreviation	Description
ASPI	All Share Price Index
CSE	Colombo Stock Exchange
ЕМН	Efficient Market Hypothesis
NYSE	New York Stock Exchange
BSE	Bombay Stock Exchange
SAARC	South Asian Association for Regional Cooperation
BET-C	Bucharest Exchange Trading -Composite Index
DWG	Dow Jones Global Total Stock Market Index
OLS	Ordinary Least Square
GARCH	Generalized Auto Regressive Conditional Heteroscedasticity
ARCH	Auto Regressive Conditional Heteroscedasticity
QMLE	Quasi Maximum Likelihood Estimation
KLCI	Kuala Lumpur Composite Index
EGARCH	Exponential Generalized Auto RegressiveConditional Heteroscedasticity
TGARCH	Threshold Generalized Auto Regressive Conditional Heteroscedasticity
DF	Dickey-Fuller
ADF	Augmented Dickey-Fuller
AIC	Akaike's Information Criterion
BIC	Bayesian Information Criterion
GJR GARCH	Glosten Jagannathan Runkle Generalized Auto Regressive Conditional Heteroscedasticity

H&T	Hotels and Travels
INV	Investment Trusts
SBA	Share Brokers' Association
CSBA	Colombo Share Brokers' Association
WTC	World Trade Centre