LB DON 41 9017

POWER MANAGEMENT ALGORITHM FOR STAND –ALONE HYBRID ENERGY SYSTEM

LIBRARY UNIVERSITY OF MORATUWA, SRI LANKA MORATUWA

Kankanam Gamage Lakmali

(139568 V)

Degree of Master of Science

Electrical Installation

TH 3339+ CD - ROM

Department of Electrical Engineering

University of Moratuwa Sri Lanka

March 2017

TH3339

621. 3 "17 696. 6 (0+3)

DECLARATION

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature: P. falenali (K.G.Lakmali)

Date: 2017-03-16

The above candidate has carried out research for the Masters Dissertation under my supervision.

UOM Verified Signature

Signature of the supervisor: (Dr. W.D. Asanka S. Rodrigo)

Date: 16/03/2017

ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere gratitude to my supervisor, Dr. W.D. Asanka S. Rodrigo for the continuous support of my MSc. study and related research, for his patience, motivation, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis.

Besides my advisor, I would like to thank Dr. Wijekoon and Dr. Lidula for their insightful comments and encouragement, but also for the hard questions which incensed me to widen my research from various perspectives.

My special thanks go to Eng. Dimuthu Darshana, University of Ruhuna who spent his valuable time to guide me and providing valuable information required for this study.

I am also grateful to Planning & Development branch –Distribution Division 1, Operational Engineer of Delft Island and my colleagues in Ceylon Electricity Board, who supported and encouraged me in numerous ways to successful completion of this study.

It is also with great pleasure that I remember the encouragement and support extended by the colleagues in the post graduate program and specially my parents and my husband. May be I could not have completed this research without their valuable support.

ABSTRACT

In Sri Lanka grid-based electrification is possible up to maximum 95% of the population and balance 5% of the electrification has to be mainly depending on off-grid technologies such as solar PV, wind, biomass and micro hydro [2].Mostly these off grid Hybrid Energy systems are used to provide electricity in rural areas which are located far away from the grid connection.

In this research, general power management algorithm has built up for standalone hybrid energy system. It controls the sharing of generated power and optimizes the hybrid operation, maximizes the use of energy produced by renewable sources and minimizes the cost of the energy produced by the system.

The simulation model of stand-alone system is developed from mathematical models of solar photovoltaic system, wind turbines, battery and diesel generators. The model of solar photovoltaic energy conversion system is constructed with maximum power point tracking control to extract maximum power from the solar photovoltaic system.

In order to validate the proposed strategy under real situations, optimized hybrid energy system was designed for Delft Island by considering the future demand. The effect of the capital cost, operation & maintenance cost, life time of the components, load pattern, available renewable resources level has been considered in the optimization. "HOMER" optimization tool was selected for optimization and optimized capacities of each component considered for power management strategy simulation in "MATLAB" simulation tool. The developed firmware permits to determination of diesel consumption and Load Loss probability of different kind of energy systems.

Results obtained from the simulation are presented to validate the control algorithms developed in this work and in order to examine the economic viability of the proposed system, the total net present cost has been calculated for 20 years of systemic lifetime.

Keywords: Off grid Hybrid Energy system, Optimization, Power Management, Rural electrification, Wind/Solar PV/battery/diesel generator

TABLE OF CONTENT

DECI	LARATION	п
ACK	NOWLEDGEMENTS	п
ABST	'RACT	v
TABI	LE OF CONTENT	v
LIST	OF FIGURES	TV.
LIST		A
LIGI	OF ABBREVIATIONS	Π
LIST	OF APPENDICESXI	п
1 I	NTRODUCTION	. 1
1.1	Background	. 1
1.3	TOPIC OF RESEARCH	. 2
1	.3.1 Research Motivation	. 2
1	.3.2 Problem Statement	. 3
1.4	OBJECTIVE OF THE STUDY	. 3
1.5	CONTRIBUTIONS	. 4
1.6	ORGANIZATION	. 4
2 I	ITERATURE REVIEW	. 6
2.1	BACKGROUND	. 6
2.2	TECHNICAL PAPERS REVIEWED	. 6
2.3	Research Gap	11
3 I	RESEARCH METHODOLOGY	12
3.1	INTRODUCTION	12
3.2	IDENTIFICATION OF RESEARCH GAP	12
3.3	CURRENT DEMAND SURVEY	12
3.4	DEMOGRAPHIC DATA ANALYSIS	12
3.5	DATA ANALYSIS OF RENEWABLE RESOURCE	13
3.6	OPTIMUM GENERATION CAPACITIES SELECTION	13

	_		
	3.7 MA ⁻	THEMATICALLY MODELING	13
	3.8 Pro	POSED POWER MANAGEMENT ALGORITHM, SIMULATED IN MATLA	В&
	RESULTS	COMPARISON	13
	3.9 Ecc	NOMIC ANALYSIS FOR PROPOSED HYBRID ENERGY SYSTEM	13
4	DATA	COLLECTION	14
	4.1 INT	RODUCTION	14
	4.1.1	Existing Site Condition	15
	4.1.2	Existing Gen Sets	15
	4.1.3	Grid Infrastructure	15
	4.2 Dem	IOGRAPHIC DATA	15
	4.2.1	Year Vs Population and Number of Families	15
	4.2.2	Consumer mix Vs Year, Purpose and the Connection type	17
	4.3 ENE	RGY SALES DATA	19
	4.4 Pow	ver Demand	20
	4.5 REN	IEWABLE RESOURCES DATA ANALYSIS	22
	4.5.1	Solar radiation Data	22
	4.5.2	Wind Speed Data	23
	4.5.3	Correlation analysis	25
	4.5.	3.1 Correlation ship between solar and wind speed in Delft Island	27
5	HYBF	RID SYSTEM COMPONENTS	28
	5.1 INTI	RODUCTION	28
	5.1.1	DC coupled hybrid system	29
	5.1.2	DC/AC coupled hybrid system	30
	5.1.3	AC coupled Hybrid system	30
	5.2 Wir	ND TURBINE	31
	5.2.1	Modeling of Wind Turbines	32
	5.3 Рнс	DTOVOLTAIC SYSTEM	33
	5.3.1	Power output of a PV Module	35
	5.3.2	Perturb and Observe method	35
	5.4 DIE	SEL GENERATOR	36

	5.5 ST	ORAGE BATTERY	6
6	OPT	IMIZATION	8
	6.1 OP	TIMIZATION SOFTWARE OF	a
	6.1 IN	PUT DATA	8
	6.1.1	Power Demand	9
	6.1.2	Solar Resource	9
	6.1.3	Wind Resource	5
	6.1.4	Solar Photovoltaic Technology	1
	6.1.5	Wind Turbine	2
	6.1.6	Diesel Generator	2
	6.1.7	Battery Storage system	2
	6.1.8	Converter	4
	6.2 SE	ARCH SPACE	4
7	POW		_
'	100	VER MANAGEMIEN I	2
	7.1 IN	TRODUCTION	5
	7.2 Po	WER MANAGEMENT ALGORITHM 4	5
	7.3 SIN	44 44 44 44 44 44 44 44 44 44 44 44 44	8
8	RES	ULTS	0
	8.1 HC	OMER IMPLEMENTATION	0
	8.2 OF	TIMIZATION RESULTS FOR THE PRESENT DEMAND	0
	8.2.1	Monthly Average Electric Production	2
	8.2.2	Cash Flow summary	3
	8.3 M	ATLAB SIMULATION RESULTS	3
	8.3.1	MATLAB Simulation Results- scenario 1	3
	8.3	3.1.1 Standalone Wind PV Battery Diesel System	4
	8.3	3.1.2 Standalone PV Battery Diesel System	6
	8.3	3.1.3 Standalone Wind Battery Diesel System	7
	8.3	3.1.4 Diesel System 5	9
	8.3.3	Different Scenarios	1
9	ECO	NOMIC ANALYSIS6	3

9.1 NET PRESENT VALUE	63
9.2 ECONOMIC VIABILITY	
10 DISCUSSION	
	64
11 CONCLUSIONS AND RECOMMENDATIONS	
11.1 CONCLUSIONS	
11.2 RECOMMENDATIONS	
11.3 FUTURE WORK	
REFERENCES	
APPENDIX A	
APPENDIX B	
APPENDIX C	
APPENDIX D	

LIST OF FIGURES

	Page
Figure 1.1: Hybrid Energy System	2
Figure 2.1: Hybrid energy generation system	10
Figure 4.1: Map of the Delft Island	14
Figure 4.2: Number of Families & Population Vs Year	16
Figure 4.3: Number of Consumers Vs Year	17
Figure 4.4: Existing Consumer Mix Vs Purpose	18
Figure 4.5: Energy Sales Data in 2015	20
Figure 4.6: Maximum Daily Load curves	21
Figure 4.7: Maximum Daily Load curves	22
Figure 4.8: Wind resource map of Sri Lanka	24
Figure 4.9: Average daily wind speed profiles	25
Figure 5.1: Hybrid System Configuration	28
Figure 5.2: DC coupled hybrid system	29
Figure 5.3: DC/AC coupled hybrid system	30
Figure 5.4: AC coupled hybrid system	31
Figure 5.5: Equivalent circuit of a PV module	34
Figure 5.6: Physical model of the battery in charging mode	36
Figure 6.1: Daily and hourly demand map	39
Figure 6.2: Scaled Daily Profile	40
Figure 6.3: Monthly and hourly solar resource	40
Figure 6.4 generated by HOMER after inserting the 24 hour solar radiation data.	41
Figure 6.4: Scaled solar resource data daily profile	41
Figure 6.6: Scaled wind speed daily profile	42
Figure 6.7: Power curve of the wind turbine	43
Figure 7.1: Power Management Algorithm	46
Figure 8.1: Graphical Interface of Hybrid Power system	50
Figure 8.2: Overall HOMER optimization results	51
Figure 8.3: Categorized HOMER optimization results	51
Figure 8.4: Monthly Average Electric Production	52
Figure 8.5: Cash Flow Summary	53

Figure 8.6: Results of standalone Wind PV Battery Diesel system	. 54
Figure 8.7: Battery Charge Power, Discharge Power & State of Charge level	55
Figure 8.8: Results of standalone PV Battery Diesel system	56
Figure 8.9: Battery Charge Power, Discharge Power & State of Charge level	57
Figure 8.10: Results of standalone Wind Diesel system	58
Figure 8.11: Battery Charge Power, Discharge Power & State of Charge level	
Figure 8.12: Results of standalone Wind Diesel system	59
Figure 8.13: Battery Charge Power, Discharge Power & State of Charge level	60
Figure 8.14: Results for Cloudy climate condition	61
Figure 8.15: Results for day with less renewable resource availability	. 62

LIST OF TABLES

	Page
Table 4.1: Number of Families & Population Vs Year	16
Table 4.2: Number of Consumers Vs year	17
Table 4.3: Number of Consumers Vs purpose	18
Table 4.4: Energy Sales Data	19
Table 4.5: Solar Radiation Data	
Table 6.1: Optimization Tool comparison	38
Table 6.2: Input data of Diesel Generator	43
Table 6.3: Input data of Converter	44
Table 6.4: HOMER Search Space	44
Table 8.1: Optimum Hybrid system configuration	52
Table 8.2: Diesel consumption & Battery discharge	55
Table 8.3: Result Comparison	
-	

LIST OF ABBREVIATIONS

Abbreviation	Description
CEB	Ceylon Electricity Board
DG	Diesel Generator
HRES	Hybrid Renewable Energy system
MPPT	Maximum Power Point Tracking
NPV	Net Present Value
O&M	Operation & Maintenance
PI	Proportional Integral
PSO	Particle Swarm Optimization
P&O	Perturb and Observe
PV	Photovoltaic
SOC	State of Charge

LIST OF APPENDICES

Appendix Description	Page
Appendix - A MATLAB Program	60
Appendix – B Input Data for MATLAB Program	68
Appendix - C Economic Analysis	69
Appendix - D HOMER Software Input Summary	70