18 DON 106 2016 1701/142

Decision Support Traffic Controlling System

Pabasara Jeewanthi Wijerathne
139188F

LIBRARY UNIVERSITY OF MORATUWA, SRI LANKA MORATUWA

Dissertation submitted to the Faculty of Information Technology, University of Moratuwa, Sri Lanka for the partial fulfilment of the requirements of the Honours Degree of Bachelor of Science in Information Technology.

March 2016

004 (013)

TH 3177 + I DVD ROM (TH3160 - TH3180)

M 3177

Declaration

We declare that this thesis is our own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

Name of Student

P. J. Wijerathne

Signature of Student

R.

Date: 27/04/2016

Supervised by

Name of Supervisor

Mr. Saminda Premaratne

UOM Verified Signature

Signature of Supervisor

Date: 27/04/2016

Dedication

This dissertation is dedicated to my beloved mother who gave me endless courage whenever I was discouraged and to my family and all friends who gave me all the support and resources to achieve my tasks successfully.

Acknowledgement

I pay my heartiest gratitude to my project supervisor Mr. Saminda Premaratne on behalf of giving valuable guidelines and procedures on how to complete a project successfully and encouraging me with a suitable direction.

I also thank and appreciate Mr. Dasun Samarasiri, Mr. Gratien de Almeda and Ms. Thimali Yasoda for their enormous support and providing me the knowledge and resources to carry out the project effectively.

My heartiest thank goes to my parents who encouraged me to make this project much reliable and productive one.

Finally thanks a lot for lecturers, staff members, all friends and everybody who devoted their time on encouraging and advising me to make this project a great success.

Abstract

In Sri Lanka, Traffic congestion has been a critical problem over the years especially in urban areas which occurs mostly in peak hours and hence it has badly affected day to day life of the people. It increases fuel wastage, vehicle maintenance due to being in the traffic and consequently become responsible for loss of man hours and higher air pollution which will put people's health in danger in near future. As per the background research, the facts available on this traffic management area are lesser. It is found that there is no effective and accurate data collection mechanism and data analysing methods are currently being in use.

The prime mission of "Decision Support Traffic Controlling System" is to provide a solution for the current problem of traffic congestion in Sri Lanka. When it comes to the existing researches, majority of them are fully based on the GPS devices and make the conclusions. The uniqueness of this system is, it not only focusing on GPS data, but also considers accidents, events and road development information. Therefore accuracy of the result of real time analysis is higher compared to the other existing systems. In addition to that, all above data collected for real time analysis are used in prediction module. Therefore accuracy of the predictions will get increased gradually. These predictions allow the users to arrange their future travel schedules avoiding high traffic areas and also it helps the traffic police in decision making.

The system contains mobile application, web application, common backend and a database. Required data will be gathered from Police, Road Development Authority (RDA), GPS devices and event organizers. Some of the technologies used for implementation are Java, Spring framework, MongoDB, Google API, Google Map Direction API, Minitab and Time series model.

Contents

Page

Chapter 1 - Decision Support Traffic Controlling System -DSTCS	. 1
1.1 Introduction	. 1
1.2 Background and Motivation	. 1
1.3 Aim	.3
1.4 Objectives	.3
1.5 Summary	.4
Chapter 2 - Existing Systems	.5
2.1 Introduction	.5
2.2 Existing Systems	.5
2.3 Summary	.8
Chapter 3 - Overview of Technology	.9
3.1 Introduction	.9
3.2 Java as a programming language	.9
3.3 Android to develop mobile application	.9
3.4 Google Map API	10
3.5 Spring framework for backend development	10
3.6 MongoDB as the database	10
3.7 Minitab for data analyzing	11
3.8 Google Direction API	11
3.9 Summery	12
Chapter 4 - System Behaviour	13
4.1 Introduction	13
4.2 User Interaction with the system	13
4.2.1 Road Users	13
4.2.2 Traffic Police	13
4.2.3 Road Development Authority (RDA)	14
4.2.4 System Operator	14
4.3 Summary	15
Chapter 5 - Analysis and Design	
5.1 Introduction	16
5.2 System Architecture	16

5.2.1 RDA interface (web interface)	17
5.2.2 Event interface (web interface)	18
5.2.3 Incident interface (Mobile Application)	18
5.2.4 View current traffic level (Mobile Application)	18
5.2.5 Report module	18
5.2.6 Data collection module	18
5.2.7 Real time analysis module	19
5.2.8 Prediction module	19
5.2.9 GPS devices	20
5.3 Summary	20
Chapter 6 - Development Methodology	21
6.1 Introduction	21
6.2 Web Interface	22
6.3 Mobile Application	22
6.4 Backend	22
6.5 Real time traffic analysis module	23
6.5.1 Equations	24
6.5.2 Find nearest road	28
6.5.3 Find traffic level	31
6.5.4 Generate data	32
6.6 Prediction module	34
Chapter 7 - Discussion	52
7.1 Introduction	52
7.2 Difference from similar systems	52
7.3 Future work	52
7.4 Evaluation plan	53
7.5 Summary	53
References	54
Appendix A - Abbreviations	55
Appendix B - Web Interfaces	56
Appendix C - Source Code	

List of Figures

	Page
Figure 1.1 - Traffic Statistics - No. of Road Vehicles & Road Length	02
Figure 2.1 - Traffic Report for Sri Lanka	07
Figure 4.1 - Use case diagram	15
Figure 5.1 - System Architecture	16
Figure 5.2 - System Diagram	17
Figure 6.1 - Work breakdown structure	21
Figure 6.2 - Select location	22
Figure 6.3 - Vehicle density in specific area	23
Figure 6.4 - Find locations around selected point	28
Figure 6.5 - Select nearest road	29
Figure 6.6 - Define vertical area	29
Figure 6.7 - Define horizontal area	30
Figure 6.8 - Selected vehicles	30
Figure 6.9 - Find distance	31
Figure 6.10 - Road segments	32
Figure 6.11 - Generate GPS data	32
Figure 6.12 - Activity diagram of real time analysis module	33
Figure 6.13 - Data collected area	34
Figure 6.14 - Time series plot against Avg Speed of vehicle and Avg vehicle count	35
Figure 6.15 - Steps in time series analysis	36
Figure 6.16 - Time series plot of average vehicle count	37
Figure 6.17 - Trend analysis plot of average vehicle count	38
Figure 6.18 - The mean of the series	40
Figure 6.19 - The variance of the series	40
Figure 6.20 - The covariance of the series	40
Figure 6.21 - Autocorrelation Function for Avg Veh.Count	41
Figure 6.22 - Partial Auto Correlation Function for Avg. Veh. Count	42
Figure 6.23 - Time series plot after 1st differencing	43
Figure 6.24 - ACF of 1st differenced data	43
Figure 6.25 - PACF of first differenced data	44
Figure 6.26 - Fitted model Vs Actual Time series	48
Figure 6.27 - Residual plots for Fitted model	48

Figure 6.28 - PACF for Residuals of fitted model Figure 6.29 - PACF of residuals of fitted model	49 49

List of Tables

	Page
Table 6.1 - Fitting ARIMA Model	47
Table 6.2 - Forecasts from period 1536	50