LB/DOR1 75/2018

DEFINING OF NORMALIZED LOAD PROFILE CURVES FOR DOMESTIC CUSTOMER GROUPS TO ESTIMATE FEEDER POWER LOSS

LIERARY UNIVERSITY OF MORATUWA, SRI LANKA

H.A.C.H.Jayawardhana

(139505 D)

Dissertation submitted in partial fulfillment of the requirements for the Degree Master of Science in Electrical Engineering

TH 3550+ CD ROD

Department of Electrical Engineering

University of Moratuwa

Sri Lanka

May 2018

TH3550

621-3 18

DECLARATION OF THE CANDIDATE AND SUPERVISOR

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature of the candidate

(H.A.C.H. Jayawardhana)

The above candidate has carried out research for the Masters Dissertation under my supervision.

UOM Verified Signature

Signature of the supervisor

(Dr. K.T.M. Udayanga Hemapala)

UOM Verified Signature

Signature of the supervisor (Dr. P.S. Narendra De Silva)


0\$105/2019

08/05/2018

Date:

08/05/2018.

Date:

Abstract

'Estimation of load profiles for domestic customers' is a multi-purpose activity and 'Estimation of daily feeder power loss' is only a one use of customer load profiles. In a country, domestic electricity customer percentage is higher in number wise, but energy usage of one customer is lower compared to other categories. Therefore installation of load profile recording meters for each domestic customer to obtain customer load profile is impractical and not economical.

In this research, set of domestic customers are grouped by clustering their daily load profiles with respect to differences of patterns. Representative normalized load profile is obtained for each group. Same customers were interviewed for collecting family member composition and electric equipment usage information. Relationships between load profile pattern and customer information were investigated. Then a methodology was developed to estimate load profile of a new customer by only using customer information and monthly total energy consumption. These load profiles were used to calculate low voltage feeder power loss.

As outcome of this research, MATLAB GUI software interface was developed to input customer information and selection of best-matched representative load profile of a new customer. An algorithm is proposed to estimate time dependent LV feeder power loss by using estimated customer load profiles.

Acknowledgement

I would like to express my sincere gratitude to those who were behind me in completing this research project.

I am deeply indebted to my supervisors Dr. Narendra De Silva, Head of Engineering, Lanka Electricity Company and Dr. Udayanga Hemapala, Senior Lecturer, Department of Electrical Engineering, University of Moratuwa for their continuous support and encouragement from starting of this project up to writing this dissertation.

In addition, I would like to thank all the lecturers in Department of Electrical Engineering and Post Graduate Office, Faculty of Engineering, who engaged in this MSc Course in various ways to educate us and broaden our vision. Dr. Asoka Korale, Senior Technology Consultant, MIT helped me with his broad knowledge in algorithm development. Thank you very much for allocation time to educate me.

My sincere thanks go to my managers and colleagues at Lanka Electricity Company (Private) Limited who help me in many ways during this period. I specially thanking for colleagues in IT Department, Test Department and Kotte Branch of Lanka Electricity Company who were helped me to collect data from smart meters.

Finally, 1 would be thankful to my friends and family members including my wife and parents who always encourage and help me to complete this research.

Table of Contents

DE	CLA	RATION OF THE CANDIDATE AND SUPERVISORi	
Ab	stract		
Ac	knowl	edgementiii	l
Ta	ble of	Contents iv	r
		igures vi	
		ablesix	
		bbreviationsx	
		ppendicesxi	
		ER 1	
1.		INTRODUCTION 1	
	1.1.	Background 1	
	1.2.	Problem statement 4	ŀ
	1.3.	Objectives of study	7
	1.4.	Motivation	}
	1.5.	Methodology 8	
CI	HAPT	ER 2 11	
2.		LITERATURE REVIEW	
	HAPT	ER 3	
3.		DATA COLLECTION	j
	3.1.	Load profile from smart meters	5
	3.2.	Customer Survey 16	5
C	HAPT	`ER 4 19	
4.		DEFINING OF DOMESTIC CUSTOMER GROUPS)
	4.1.	Numerical representation to identify difference of load profiles)
	4.2.	Clustering of Normalized Load Profile Curves	3
	4.3.	Defining of representative normalized load profile for customer groups 2	
		CER 5	
5.		DETERMINING RELEVANT GROUP OF A NEW CUSTOMER	
	5.1.	Defining of names for clusters	5

	5.2.	Determining relevant cluster according to customer information	38
	5.3.	Method validation	41
CH	IAPT	'ER 6	49
		LV FEEDER POWER LOSS CALCULATION	
CH	ІАРТ	ER 7	54
		CONCLUSION	
	7.1.	Achievement of objective and research outcome	54
	7.2.	Applicable situations	54
	7.3.	Limitations	55
	7.4.	Recommendations for power distribution utility	55
Re	References		

List of Figures

Figure 1.1 kVA Customer Demand Variation	2
Figure 1.2 Feeder Conductor Power Loss	2
Figure 1.3 LV Feeder Metering Points	5
Figure 1.4 LV Feeder Power Loss	6
Figure 2.1 Monthly Energy Consumption Distribution	12
Figure 3.1 Survey Area	13
Figure 3.2 Smart Meter	14
Figure 3.3 Customer Load profiles of Several Days	14
Figure 3.4 After Removing Outliers	15
Figure 3.5 Daily Average Load Profile of a Customer	15
Figure 3.6 Survey Sheet	16
Figure 4.1 Sample Load Profiles	19
Figure 4.2 Daily Load Profile as 3 time slots	20
Figure 4.3 Load Profile in 3D space	20
Figure 4.4 Icons with different shapes and magnitudes	21
Figure 4.5 Clustered without Normalizing	22
Figure 4.6 Clustered After Normalizing	22
Figure 4.7 Optimum Number of Clusters	23
Figure 4.8 Cluster 1	26
Figure 4.9 Cluster 1 Representative Curve	26
Figure 4.10 Cluster 2	27
Figure 4.11 Cluster 2 Representative Curve	27
Figure 4.12 Cluster 6	28
Figure 4.13 Cluster 6 Representative Curve	28

Figure 4.14 Cluster 7	. 29
Figure 4.15 Cluster 7 Representative Curve	. 29
Figure 4.16 Cluster 9	. 30
Figure 4.17 Cluster 9 Representative Curve	. 30
Figure 4.18 Cluster 10	. 31
Figure 4.19 Cluster 10 Representative Curve	. 31
Figure 4.20 Cluster 12	. 32
Figure 4.21 Cluster 12 Representative Curve	. 32
Figure 4.22 Cluster 13	. 33
Figure 4.23 Cluster 13 Representative Curve	. 33
Figure 5.1 Equipment Related Clusters	. 38
Figure 5.2 Customer Information Form	. 39
Figure 5.3 Load Profile Estimation Methodology	.41
Figure 5.4 Cluster Radius	. 42
Figure 5.5 Load Profile Comparison 1	43
Figure 5.6 Load Profile Comparison 2	.44
Figure 5.7 Load Profile Comparison 3	. 44
Figure 5.8 Load Profile Comparison 4	. 45
Figure 5.9 Load Profile Comparison 5	. 45
Figure 5.10 Load Profile Comparison 6	. 46
Figure 5.11 Load Profile Comparison 7	. 46
Figure 5.12 Load Profile Comparison 8	. 47
Figure 6.1 LV Fceder Power Loss	. 49
Figure 6.2 Feeder Starting Voltage Profile	. 50
Figure 6.3 Three Phase Line Loading	51

Figure 6.4 24 Hour LV Feeder Section Power Loss	52
Figure 6.5 Feeder Power Loss Estimation	. 53

List of Tables

Table 1.1 Retail Customer Types	3
Table 4.1 Customer Distribution Among Clusters	24
Table 4.2 Set of Rich Clusters	25
Table 5.1 Family Percentage of Members	35
Table 5.2 Family availability of Members	36
Table 5.3 Clsuter Identification Names	37
Table 5.4 Load Profile Comparison Validation	48

List of Abbreviations

Low Voltage
Lanka Electricity Company (Pvt.) Ltd.
Ceylon Electricity Board
Graphical User Interface
Sum of Square Error
Active Power
Current
Voltage
Resistance
Apparent Power
Kilo Volt Ampere
kilo Watt
Watt

List of Appendices

Appendix	Description
Appendix - A	MATLAB program for GUI
Appendix - B	Customer survey sheets for validated 8 customers
Appendix - C	Smart meter data of validated 8 customers
Appendix – D	Photos of feeder section
Appendix – E	MATLAB program for Loss calculation
Appendix – F	Voltage profile of feeder starting point
Appendix – G	Actual load profiles for 81 customers
Appendix – H	Normalized load profiles for 81 customers
Appendix – I	Representative Load Profile for 8 clusters