LE [DON | 106] 2016 IT 01/134-

Using Data Mining Techniques to Analyze Crime patterns in Sri Lanka National Crime Data

K.P.S.D. Kumarapathirana

139169A

LIBRARY UNIVERSITY OF MORATUMA, SRI LANKA MORATUMA

Dissertation submitted to the

Faculty of Information Technology, University of Moratuwa, Sri Lanka

for the partial fulfillment of the requirements of the

Degree of Master of Science in Information Technology.

March 2016	004 "16
University of Moratuwa TH3169	TH 3169 + IDVD - ROM
TH 3169	(74 3160 - 711 3180

Declaration

We declare that this thesis is our own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

i

Name of Student

K. P. S. D. Kumarapathirana

Signature of Student

Date: 24.04.2016

Supervised by Name of Supervisor S. C. Premaratne

Signature of Supervisor *UOM Verified Signature* Date: 24/04/2016

Acknowledgements

I would like to express my gratitude to my supervisor, Mr. S. C. Premaratne, Senior Lecturer in University of Moratuwa, Sri Lanka whose expertise, understanding, and patience, added considerably to my research experience. I appreciate his vast knowledge and skill in many areas, and his assistance in writing reports.

I would like to thank the other lecturers of University of Moratuwa, Sri Lanka, especially, Prof. Asoka Karunananda for the knowledge and assistance they provided at all levels of the research project.

Moreover, a very special thank should go out to Mr. C. V. Millawithana, Criminologist, Crime Record Division, Department of Police, Sri Lanka and his staff members for assisting me in collecting data sets and giving me their valuable comments on the research goals and objectives.

I would also like to thank all the batch mates of the M.Sc. in IT degree program who gave their valuable feedbacks to improve the results of the research and my family for the support they provided me through my entire life and in particular. I must acknowledge my husband and best friend, Tharindu, without whose love, encouragement and editing assistance, I would not have finished this thesis.

Abstract

Crime is one of the dangerous factors for any country. Although crimes could occur everywhere, it is common that criminals work on crime opportunities they face in most familiar areas for them. The ultimate goal of crime analysis is to identify likely targets for police intervention and prevent crime or solve past crimes by making statistical predictions. Criminals and victims follow common life patterns and most of the time overlaps in those patterns indicate an increased likelihood of crime. Geographic and temporal features influence the where and when of those patterns.

Our proposed solution consists of four major modules namely; Hotspot Analysis Module, Offender Profiling Module, Victim Profiling Module and Predicting Suspects Module. Data related to fast crimes which is used for the analysis is collected from Department of Police, Sri Lanka. Hotspot analysis module identifies crime hotspots considering geographical data of past crime where victim profiling and suspect profiling modules identify the patterns or groups of victims who are most vulnerable and suspects who share same characteristics. First three modules are developed based on simple k-means clustering algorithm where the fourth module is based on simple k-means clustering and j48 algorithm to generate the classifier model which can be used to predict the cluster of suspects of a crime.

The results of this analysis can be used by law enforcers to find general and specific crime trends, patterns, and series in an ongoing, timely manner in order to take advantage of the abundance of information existing in law enforcement agencies, the criminal justice system, and public domain, to maximize the use of limited law enforcement resources, to have an objective means to access crime problems locally, regionally, nationally within and between law enforcement agencies, to be proactive in detecting and preventing crime, to meet the law enforcement needs of a changing society and to understand the criminal behaviors.

Table of Content

Declaration	İ
Acknowledgements	ii
Abstract	iii
Table of Content	iv
List of Figures	viii
List of Tables	ix

Chapter	1	1
Introduc	tion to Crime Record Analysis in National Crime Records in Sri Lanka	1
1.1	Prolegomena	1
1.2	Background and Motivation	1
1.3	Crime and Criminology	3
1.4	Data Mining Approach	4
1.5	Crime Analysis	4
1.6	Goal of the Research	6
1.7	Objectives	7
1.8	Acknowledgments	8
1.9	Overview of the Report	8
1.10	Summary	8

Chapte	r 2	
State of	the Art of Exploring Current Findings in Crime Record Analysis	10
2.1	Introduction	10
2.2	Framework 1	10
2.3	Framework 2	
2.4	Framework 3	
2.5	Framework 4	11
2.6	Framework 05	12
2.7	Framework 6	12

2.8	Framework 7	
2.9	Framework 8	13
2.10	Some Other Frameworks	13
2.11	Summary	

Chapter	3	16
Technol	logy adapted in Crime Record Analysis	16
3.1	Introduction	16
3.2	Methods related to predicting crimes	16
3.3	Methods to identify individuals at high risk of offending in the future	18
3.4	Methods used to identify likely suspects of a new crime	18
3.5	Methods used to identify crime victims	19
3.6	Summary	19

Chapter	4	
A Novel	Approach for Crime Record Analysis in Sri Lanka	20
4.1	Introduction	20
4.2	Proposed Model	20
4.3	System Overview	
4.4	Data Collection	23
4.5	Data Integration	23
4.6	Data Analysis	24
4.7	Making Predictions about Potential Crimes	24
4.8	Predictive Analysis with Data Mining	25
4.9	Spatiotemporal Analysis	26
4.10	Users	26
4.11	Summary	26

Chapter 5		
Analysis	and Design of the Proposed Solution	28
5.1	Introduction	

5.2	System Design	28
5.2.1	Hot spot analysis	29
5.2.2	Offender profiling	29
5.2.3	Victim profiling	31
5.2.4	Predicting suspects	.31
5.3	Summary	32

Chapter	- 6	
Implem	entation of the Solution	
6.1	Introduction	
6.2	Weka	
6.3	Data Collection and Preprocessing	
6.4	Hot Spot Analysis and Crime Mapping	
6.5	Offender Profiling	
6.6	Victim Profiling	41
6.7	Predicting Suspects	
6.8	Summary	

Chapter	7	
Evaluati	on	
7.1	Introduction	
7.2	Evaluation of Hotspot Analysis Module	
7.3	Evaluation of Suspect/Offender Profiling Module	
7.4	Evaluation of Victim Profiling Module	
7.5	Evaluation of Suspect Prediction Module	
7.6	Summary of Evaluation	57

Chapter	8	
Discussi	on	
8.1	Introduction	
8.2	Limitations	

8.3	Further Developments	59
8.4	Summary	60

Chapter 9	
Reference	

Appendix A......63

.

List of Figures

Figure 2.1 Flow chart for Crime Analysis [11]	15
Figure 4.1 Proposed Model	
Figure 4.2 Summarized Model	
Figure 5.1 System Design of the Proposed Solution	
Figure 6.1 WEKA GUI	
Figure 6.2 Sample of Preprocessed Dataset	
Figure 6.3 Hot spot Analysis	
Figure 6.4 Identified Hotspots	
Figure 6. 5 Hot Spot Analysis with k-Means Clustering	
Figure 6. 6 Identified Cluster Centroids of Hotspot Analysis Module	
Figure 6. 7 Sample Input to the Offender Profiling Module	
Figure 6. 8 Identified Cluster Centroids in Offender Profiling Module	
Figure 6. 9 Sample Dataset for the Victim Profiling Module	
Figure 6.10 Identified Clusters and Their Centroids in the Victim Profiling Module	
Figure 6.11 Summary of the new attribute 'cluster' in the dataset	
Figure 6.12 Sample Dataset for the Suspect Prediction Module	
Figure 6.13 Classification Model for the Suspect Prediction Module	
Figure 6.14 Evaluation of the Model for the Suspect Prediction Module	
Figure 7.1 Variation of Squared Errors within Clusters for Different number of clusters	5
Hotsnot Analysis Module	.11
Figure 7.2 Variation of Squared Errors within Clusters for Different number of clusters	in Suspect
Profiling Module	n Suspece
Figure 7 3 Variation of Squared Errors within Clusters for Different number of clusters	in Victim
Profiling Module	52
Figure 7.4 Variation of the Percentage of Correctly Classified Instances for Different nu	mber of
suspect clusters in Suspect Prediction Module	53
Figure 7.5 Variation of the Kanna Statistic for Different number of suspect clusters in Su	isnect
Prediction Module	ISPECE 54
Figure 7.6 Variation of the Mean Absolute Error for Different number of suspect cluster	e in
Suspect Prediction Module	5 111 54
Figure 7.7 Variation of the Root Mean Squared Error for Different Number of Suspect (Thictors in
Suspect Prediction Module	
Figure 7.8 Variation of the Palative Absolute Error for Different Number of Suspect Cl	actors in
Suspect Prediction Module	131013 111
Figure 7.9 Variation of the Root Relative Squared Errors for Different Number of Sure	
Clusters in Suspect Prediction Module	54
Figure 7.10 Variation of the Percentage of Correctly Classified Instances with Different	
Confidence Factors for 148 Algorithm in Suspect Predicting Module	57
Confidence Factors for 546 Algorithm in Suspect Fredicting Module	

List of Tables

Table 5.1The Meaning of Different Approach for the Crime	
Table 5.2 The Meanings of Different Education Levels	

Table 7. 1 Variation of Squared Errors within Clusters for Different number of clusters in Hotspot
Analysis Module
Table 7.2 Variation of Squared Errors within Clusters for Different number of clusters in Suspect
Profiling Module
Table 7.3 Variation of Squared Errors within Clusters for Different number of clusters in Victim
Profiling Module
Table 7.4 Variation of percentage of correctly classified instances, Kappa statistic, mean absolute
error, root mean squared error, relative absolute error and root relative squared error of the
classifier model when different number of clusters for the suspect category is used in Suspect
Prediction Module
Table 7.5 Variation of the Percentage of Correctly Classified Instances with Different Confidence
Factors for J48 Algorithm in Suspect Predicting Module