
/,. 0 / v & / fO CD /J> Ci (_7

JT ©f/i^O

Community Based Train Locating System (CBTLS)

D.N.H Senevirathna

139180A

mrn-,MA‘SR1LAt^

Dissertation submitted to the Faculty of Information Technology, University of

Moratuwa, Sri Lanka for the partial fulfillment of the requirements of the Master of

Science/ Post Graduate Diploma in Information Technology.
004- Cg

004- Co*

rnsnsMarch 2016
/pro - £oM■fUniversity of Moratuwa

_ r\A3iSc)/V>13 / 6 O
TH3175

T^H 3175

Declaration

I declare that this thesis is my own work and has not been submitted in any form for

another degree or diploma at any university or other institution of tertiary education.

Information derived from the published or unpublished work of others has been

acknowledged in the text and a list of references is given.

in €CD- Ni * H * 2e

Name of the Student Signature of the Student

Date: 3.014

Supervised by

Name of the Supervisor Signature of the Supervisor

1-[oH JwLbDate: %

Dedication

This thesis is dedicated to my parents, Mr. D.S. Senevirathna and Mrs. A.P.P

Karunasingha for their endless love, encouragement and support.

Acknowledgements

First and foremost I would like to offer my sincere gratitude to my research supervisor

Mr. S. C. Premaratne, for his guidance, supervision, encouragement and support

throughout this study.

I would also like to thank all the lecturers of Faculty of Information Technology -

University of Moratuwa, for their guidance and encouragement to get maximum use of

knowledge and capabilities.

I am grateful to the management and colleagues at PricewaterhouseCoopers Sri Lanka

for their kind support, encouragement and understanding during this work.

My special thanks must go to Dr. Dilani Wickramaarachchi at University of Kelaniya,

for her kind support, guidance, motivation and encouragement throughout the project.

Finally I would like to extend my deepest gratitude to my parents and family, for their

continuous support given in every possible way to make this project a success.

Abstract

Rail transportation has been considered as a main mode of transportation in Sri Lanka

since a long time. Therefore it is important to further develop and enhance railway

transportation as an alternative method of transportation, especially considering the

traffic congestion that could be observed in city areas. With the advancement of

information technology, over the past time there have been many attempts to enhance

the quality of railway services, but despite of them, some major concerns for the train

passengers in Sri Lanka still remaining unsolved to date.

The main objective of this project is to propose and implement a crowdsourced real

time train tracking system based on GPS named Community Based Train Locating

System (CBTLS), for the benefit of train passengers and train transportation of Sri

Lanka, aiming to address the major concerns and enhance the railway service.

CBTLS is a community based (crowdsourced) system, therefore data is retrieved from

the train passengers, and then organized, processed and analyzed by the system, and

resulting information and predictions is given back to the train passengers.

The proposed system consists of a native Android mobile application and a Web

application. Any train passenger with a smart mobile device or a computer would be

able to access the system through internet, update the train locations, compartment

details, and view current and/or last known locations of a train, view analysis,

predictions and suggestions on train schedules. Other than static train schedules, rest of

the data required for system’s functionality is acquired from the train passengers, hence

the system is community based.

As an additional feature, a location aware alarm clock is integrated into the native

android application, for the use of passengers to indicate when their destination has

been reached.

Other than train passengers, the system consists of an administrative functionality as

well. System administrators hold responsibility to control and overview the user

accounts created by train passengers and manage static master data.

With this system, it is expected to facilitate train passengers to make better travelling

decisions by providing required information for them, hence facilitating efficient usage

of railway services.

i

Table of Contents
1Chapter 1 - CBTLS - Community Based Train Locating System

1.1 Introduction
1.2 Background and Motivation

1.3 Aims and Objectives of the CBTLS
1.4 CBTLS Implementation - how will it address the issues

1.5 Structure of the Dissertation
Chapter 2 - Current approaches available to address the Issues in Railway
Transportation System
2.1 Introduction
2.2 Currently Available Systems for general public in railway transportation
services

2.2.1 eService by The Department of Railways [7]
2.2.2 Android Mobile Applications available in the Google Play
marketplace;
2.2.3 GPRS based Railway Traffic Optimisation System (RTOS) by Sri
Lanka Railway with University of Colombo [11]
2.2.4 A proposed system - GPS/GSM based train tracking system - utilizing
mobile networks to support public transportation [13]
2.2.5 GPS based tracking system for trains in Sri Lanka[14]
2.2.6 Sri Lanka Railways - Future plans - Information Technology [15] 19
2.2.7 Different Types of Vehicle tracking systems

2.3 Summary
Chapter 3 - CBTLS - chosen technologies to cater real time data
3.1 Introduction
3.2 Technologies Available

3.2.1 Web application (User interface and Backend Service)
3.2.2 Mobile Application

3.3 Design Considerations
3.3.1.1 Usage of MVC pattern
3.3.1.2 Integrating localization to the system
3.3.1.3 Supporting major browsers available
3.3.1.4 Variety of Mobile device support
3.3.1 Programming considerations
3.3.2 Database Design Considerations

1
1
5
6

10

11
11

12
12

15

16

18
19

20
21
23
23
23
23
25
25
25
26
26
26
26
26

ii

263.3.2.1 Data model
3.3.2.2 Connection Pooling
3.3.2.3 Database Transaction and rollback handling
3.3.2.4 Support and Facilitating Concurrent access of database
3.3.2.5 Clustering support for scaling up
3.3.3 Logging Facilities for debugging
3.3.4 Security

3.4 Technology Stack
3.5 Summary
Chapter 4 - Crowdsourced system approach for real time train information 30

26
27
27
27
27
27
28

29

304.1 Introduction
4.2 System Structure of CBLS
4.3 Inputs for the Community Based Train location System

4.4 Outputs
4.5 Process
4.6 Users
4.7 Features
4.8 Summary
Chapter 5 - Analysis and Design of CBTLS
5.1 Introduction
5.2 Detailed Architecture Diagram Of CBTLS
5.3 User Interface Wireframes of mobile application
5.4 CBTLS entity relationship diagram
5.5 Class diagram of CBTLS
5.6 Sequence Diagrams of CBTLS
5.7 Summary

Chapter 6 - Implementing CBTLS for real time information
6.1 Introduction

6.2 Implementation Plan for demonstration purpose

6.3 Software and Hardware used in CBTLS implementation
6.4 CBTLS web application implementation
6.5 CBTLS mobile application implementation
6.6 Deployment View
6.7 Summary

Chapter 7 - Evaluation of Community Based Train Locating System

30
30
31
32
32
32
33
34
34
34
36
36
36
36
36
37
37
37
37
38
43
45
46
47

iii

. 477.1 Introduction . . _

7.2 Evaluation Methodology
7.3 Evaluation Forms
7.4 Final Evaluation Results
7.5 Summary
Chapter 8 - Conclusion and further work
8.1 Introduction
8.2 Conclusion

8.3 Future work
8.4 Summary

Appendixes
Appendix A - User interface designs wireframes for mobile application

UI Wireframes of CBTLS mobile application

Appendix B - ER Diagram
Entity Relationship diagram of Community Based Train Locating System

Appendix C - Class Diagram
Class diagram of Community Based Train Locating System

Appendix D - Sequence Diagrams

Sequence diagrams of Community Based Train Locating System

Appendix E - Structure of Domain Classes in CBTLS

Domain Classes of Community Based Train Locating System

Appendix F - user interfaces of Web application

User interfaces of CBTLS web application

Appendix G - System Evaluation Forms

System Evaluation Forms

47
48
48
50
51
51
51
52
53
55
55
55
69
69
70
70
71
71
75
75
93
93

100
100

iv

List of Figures/Tables
2Table 1.1 - Sri Lanka Railways - Operational Statistics[4]

Figure 1.1 - No.of Passengers Carried (in millions) over 2010 - 2013 period
Figure 2.1 - Initial Screen of e-Service Offered by Railway Department^]
Figure 2.2 - Train Detail Screen of e-Service Offered by Railway Department[7]

3
13

14
Figure 2.3 - Search Train Screen of GPRS based Railway Traffic Optimisation
System (RTOS) by Sri Lanka Railway with University of Colombo [11]
Figure 3.2 - Technology Stack
Table 3.2 - Each component of Technology Stack of CBTLS
Figure 5.1 - Overall Architecture of CBTLS
Table 5.1 - Each component of Overall Architecture of CBTLS in Figure 5.1 35
Figure 6.1 - CBTLS Web Application Structure in Eclipse
Figure 6.2 - CBTLS Web Application method to call web service
Figure 6.3 - Code in the presentation layer (controller) to receive the request 40
Figure 6.4 - Code in the business layer (service) to process request
Figure 6.5 - Code in the persistent layer (service) to process request
Figure 6.6 - Structure of the data transfer object
Figure 6.27 - Validation code for GPS coordinates
Figure 6.28 - Validation code for Users
Figure 6.29 - CBTLS Mobile Application Structure in Eclipse ADT
Figure 6.30 - CBTLS Mobile Application GPS Tracker .
Figure 6.49 - CBTLS Web Application Deployment Diagram
Table 7.4 - Final Evaluation Estimation of Mobile Aplication
Table 7.4 - Final Evaluation Estimation of Web Application
Figure 7.1 - Evaluation Chart
Figure 5.1 - CBTLS mobile application initial UI w ireframe
Figure 5.2 - CBTLS mobile application view train schedule wireframe
Figure 5.3 - CBTLS mobile application view recommendations wireframe 57
Figure 5.4 - CBTLS mobile application view train schedule details wireframe 58
Figure 5.5 - CBTLS mobile application active update train location wireframe 59
Figure 5.6 - CBTLS mobile application active update compartment details
wireframe
Figure 5.7 - CBTLS mobile application set notification alarm wireframe 61
Figure 5.8 - CBTLS mobile application passive update train location wireframe

17
28
28
34

39
39

40
41
42
43
43
44
45
46
49
49
50
55
56

60

62
Figure 5.9 - CBTLS mobile application view real-time train location wireframe

63
Figure 5.10 - CBTLS mobile application view compartment details wireframe 64
Figure 5.11 - CBTLS mobile application view analysis of train wireframe
Figure 5.12 - CBTLS mobile application user login wireframe
Figure 5.13 - CBTLS mobile application user profile details wireframe
Figure 5.14 - CBTLS mobile application favorite trains wireframe
Figure 5.15 - CBTLS ER diagram
Figure 5.16 - CBTLS Class diagram

65
66
67
68
69
70

v

71 •Figure 5.17 - CBTLS Sequence diagram for Search train Schedule use case
Figure 5.18 - CBTLS Sequence diagram for view schedule details use case
Figure 5.19 - CBTLS Sequence diagram for view recommendations use case
Figure 5.20 - CBTLS Sequence diagram for active train location update use case

71
71

72
Figure 5.21 - CBTLS Sequence diagram for passive train location update
case
Figure 5.22 - CBTLS Sequence diagram for compartment details update use
case
Figure 5.23 - CBTLS Sequence diagram for set alarm clock use case
Figure 5.24 - CBTLS Sequence diagram for favorite train schedule use case
Figure 5.25 - CBTLS Sequence diagram for view train location use case
Figure 5.26 - CBTLS Sequence diagram for view compartment details use case

use
72

72
73
73
73

74
74Figure 5.27 - CBTLS Sequence diagram for view train analysis use case

Figure 5.28 - CBTLS Sequence diagram for user sign in/profile update use case
74
76Figure 6.8 -The domain class to represent Mobile Device

Figure 6.9 -The domain class to represent System User
Figure 6.10-The domain class to represent System User Alarm
Figure 6.11-The domain class to represent System User Favorite Schedules
Figure 6.12-The domain class to represent System User Rankings
Figure 6.13-The domain class to represent Ticket Price
Figure 6.14-The domain class to represent Train Line
Figure 6.15-The domain class to represent Train Line Station
Figure 6.16-The domain class to represent Train Schedule
Figure 6.17-The domain class to represent Train Schedule Turn
Figure 6.18-The domain class to represent Compartment Update
Figure 6.19-The domain class to represent Train Location Passive Update
Figure 6.20-The domain class to represent Train Location active Update
Figure 6.21-The domain class to represent Train Station
Figure 6.22-The domain class to represent Train Station Schedule
Figure 6.23-The domain class to represent Train Station Schedule Turn
Figure 6.24-The domain class to represent Train Type
Figure 6.25-The domain class to represent User Role
Figure 6.31 - Web application - Search Train basic UI
Figure 6.32 - Web application - Search Train advanced UI
Figure 6.33 - Web application - Localization support
Figure 6.34 - Web application - Train schedule list UI
Figure 6.35 - Web application - View recommendations UI
Figure 6.36 - Web application - Train schedule details UI
Figure 6.37 - Web application - Active location update UI
Figure 6.38 - Web application - Update compartment details UI
Figure 6.39 - Web application - Set alarm clock UI
Figure 6.40 - Web application - Passive train location update UI
Figure 6.41 - Web application - View Train Location UI

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
92
93
93
93
94
94
95
95
95
96
96
96

vi

. . 97Figure 6.42 - Web application - View analysis of Train UI
Figure 6.43 - Web application - Login UI
Figure 6.44 - Web application - Sign up UI
Figure 6.45 - Web application - Administrator Dashboard
Figure 6.46 - Web application - Administrator manage master data
Figure 6.47 - Web application - Administrator master data details
Figure 6.48 - Web application - Administrator master data modification
Table 7.1 - Evaluation forms to validate Usability
Table 7.2 - Evaluation forms to validate System functionality
Table 7.3 - Evaluation forms to validate Overall Impression

97
97
98
98
99
99

100
101
102

vii

Chapter 1

CBTLS - Community Based Train Locating System

1.1 Introduction

This chapter mainly focuses on the motivation, aims and objectives of the community

based train locating system. Here it is described some of the key problematic areas in

the current train transportation system that could be observed in Sri Lanka, mainly in

the train passengers perspective, hence identifying the problem to be addressed. At the

same time, it is briefly explained the proposed method of addressing the problem in this

chapter.

1.2 Background and Motivation

In today’s context, in city areas, especially around and in city of Colombo, a heavy

traffic congestion could be observed daily on the roads, and it has become one of the

major concerns in country as well. School students, University Students, Government

and public sector employees, and general public have been facing a crisis when it comes

to travelling in and out from Colombo daily.

As the study done by A. Kumarage indicates, there can be different approaches

available to solve this issue involving both short term and long term strategies. One of

the key and less time and resource consuming approach would be to enhance and

develop already existing alternative methods of transportation for general public. The

valuable man hours and other resources which are wasted on roads daily could be easily

preserved by introducing proper alternative methods of transportation and by enhancing

the efficiency, reliability and quality of currently available public transport systems [1].

As it indicates in the work by Jayasinghe and Pathiranage, it is very important to support

and enhance railway transportation as an alternative method of transportation^].

When considering such already available alternative transportation methods. Rail

transportation has been considered as a main mode of transportation in Sri Lanka since

a long time.

The significance of enhancing train transportation service has been indicated in the

annual report 2012 of Central Bank of Sri Lanka. In the annual report 2012 of Central

1

Bank of Sri Lanka,.it,has indicated that the Sri Lanka Railway has a great potential to

improve their current services for both passengers and freight, and it will cause the city

traffic congestion to be reduced to a great extent. Further, the report indicates that is

has been already identified that the current issues in the service like inadequate

coverage, lack of carriages, and most importantly the key point '‘inefficiency”. It

indicates that due to the said issues, general public are to seek for other modes of

transportation, causing heavy traffic congestion, and ultimately leading to loss of

productive man hours and energy utilization[3].

As mentioned above, the productive man hours, energy could be saved, and the heavy

traffic congestion could be avoided to a certain extent, especially around city areas, by

enhancing rail transportation service. The current issues mentioned above, inadequate

coverage and lack of carriages should be addressed by providing required physical

infrastructural resources for the service.

The issue “inefficiency” could be considered as a main reason for general public to

consider other modes of transportation in place of trains. The main objective of the

system proposed here (CBTLS) would be to provide a means for the general public to

use this “inefficient service” efficiently.

When considering the statistics provided by Ministry of Internal Transport - Sri Lanka,

which is given in the table below, no. of passengers who has chosen train, increasing

annually [4].

20132010 2011 2012

Total trips operated (Both passenger and Goods trains) 122,269116.912 119,392 12L7S2

No.of Passengers Carried (in millions) 118.71106.05101.45 96.11

5.039.45 6,257.38Length the passengers carried on (Km in million) 4,574.194.352.83

Table 1.1 - Sri Lanka Railways - Operational Statistics[4]

Considering data shown in Table 1 above, the important figure in this context would be

the “No.of Passengers Carried”. The variation of this figure is given below.

2

N6!bf Passengers Carried {in millions)

Figure 1.1 - No.of Passengers Carried (in millions) over 2010 - 2013 period

The increased number of passengers over the years indicates the increasing demand for

the train as a mode of transportation.

In order for Sri Lanka Railway Service to draw and retain more passengers with their

service, there are several issues which need to be immediately addressed. Delay of

Trains in Sri Lanka is a very common situation, which train passengers have to face

daily. It has turned in to be an unavoidable scenario over the time and the train

passengers who are frequently using the service, have got used to it. As a transportation

service, railway should maintain its reliability, and it’s important in country’s economic

aspects as well. The mentioned issues here should be resolved within Railway

Department of Sri Lanka after doing a proper analysis of the causes, but the aim of the

proposed system (CBTLS), here is to facilitate the train passengers to use this existing

inefficient service efficiently with the aid of the system.

Usually, a train might get delayed from few minutes to many hours in Sri Lanka and in

certain commonly observable scenarios, trains gets cancelled as well. This is without

any prior notification for the train passengers. According to media, even in recent

history in Sri Lanka, in such situations clashes has occurred among the passengers and

the railway administration. But the problems still remain unresolved to date.

A fixed schedule is maintained by the Railways department of Sri Lanka on train arrival

and departure, it is available online as a web application and also as mobile applications.

The major issue with the static schedule is, it does not get updated based on potential

delays and cancellations.

3

As a result the commuters face many problems and waste time and energy that could

have been used more productively. For people who are using trains for their daily

travelling, there’s no means of recovery of their time in scenarios which trains are

delayed or cancelled.

If the passengers could know beforehand, whether the train they expect to travel is on

time or not, preferably before coming in to the station, they would be able to make a

better decision on their method and time of transportation. An ideal situation for them

would be to know the current location of the train.

In railway administration’s point of view, if they could collect the train details on each

and every schedule daily, along the entire route, that data could be used to analyse the

existing issues in the system, the reasons for the train delays, locations where trains gets

delayed. Then that analytical information can be used to identify the issues, find

solutions to them and finally enhance the service.

Similarly, such information is important for passengers as well, especially when

deciding which train to travel on, since the expected time of arrival at the destination

indicated in the railway’s timetable would be somewhat different from the actual time

of arrival.

There are passengers who uses trains for their daily travelling, or frequently, who are

much familiar with the railway system, specially the stations. There are some

passengers who might seldom use railway transportation, especially like tourists. Such

people might not be aware of the location of destination stations they want to travel to.

Such scenarios could be observed while travelling in train, people get in to the wrong

train, which will not stop at their destination station, or people who have missed their
destination station.

Usually in train stations in Sri Lanka, an announcement is made when a train is arrived

in the station, indicating the next set of stations in where it would stop along with the

final destination. But these announcements are not very clear sometimes, and most of

the time is in Sinhala language only in smaller stations. Therefore people like tourists,

who are not familiar with Sinhala language, would face issues when finding the correct

train and destination stations. If there was a way for them to get an indication when they

are reaching their destination, it would be a great help and they would grow in

confidence to use railway service more frequently.

4

1.3 Aim and Objectives of the CBTLS

The aim of this research is to provide a comprehensive software application solution -

named as Community Based Train Locating System (CBTLS), for the train passengers

in Sri Lanka, which would help them for an efficient usage of current train

transportation service in Sri Lanka.

CBTLS would be aiming at enhancing the usage of rail transportation service in Sri

Lanka for passengers, by introducing new features for them which are not available in

current systems as given below,

• Facility for the passengers to update train’s current location actively or passively

• Searching and locating trains in real time

• Providing information about the passenger density in each compartment of the

selected train

• Predicting and suggesting most suitable train to take based on destination, and

time of arrival at destination desired by the passenger.

• Analysis of data collected over a period on a given train, and indicate more

accurate travelling times.

• Location based alarm to indicate if the passenger has reached the destination.

The proposed system will also be an enhancement and combination over the features

available in currently available systems for the same purpose.

Additionally, the CBTLS would facilitate the storage and analysis of historical data

related with each train by storing them in a centralized database. With this facility,

authorized users would be allowed analyze patterns of train travelling daily, hence the

delays could be observed.

As a community based system, it would allow registered users to post their comments,

criticisms and suggestions regarding a selected train. Authorized users would be

allowed to view these comments, criticisms or suggestions by the passengers.

5

1.4 CBTLS Implementation - how will it address the issues

The proposed system would be consist of a web application and a mobile application.

Web application would cater as the backend for the mobile application, while

facilitating all the functionalities available in the mobile application as well. Web

application backend and native android mobile application would communicate

through a REST (Representational State Transfer) API (Application Program

Interface).

When it comes to the web application, when actively updating train locations and

compartment details (while travelling in the train), the user’s location would be tracked

through the web browser in contrast to the native android application, in which the

location would be gathered through GPS and the Network Location Provider of

Android.

Initially, the available static train schedule details from Sri Lanka Railways would be

inserted to the system as master data. This data would be considered as a base line

through the rest of the application. For this purpose, the data integration module is

available in the system and the web service available from Railway Department through

Information and Communication Technology Agency of Sri Lanka (ICTA) is used.

A proper database structure is defined in order to store these kind of master data and

the data received from passengers on each occurrence of this train schedule. Design of

this data structure is a key part of the system.

A location aware android mobile application consisting of a train details (location,

compartment details) update and a train details view part would be developed for the

use of passengers.

Considering train details update part for the system from passengers,

• A simple user interface would be provided for them to indicate if a selected train

has arrived or not at their location, when updating the train locations, it could

be done in two ways in the system

o Actively update - The passengers who are already on board the train

could actively update the train’s location. This could be done once or

else a facility is available for the users to keep updating the location

6

automatically along the entire journey. In this process, the train location

would be determined based on user’s current location

o Passively update - The passengers or anyone who’s aware of train’s

location (e.g. People who live around train stations, rail roads) could use

this facility to update train’s location, and in this process, the train

location would not be determined based on user’s current location, rather

it would be determined based on last train station, along with the data, if

train is in the station, moving or stopped after the station.

• The data inserted would be validated against the predefined geo coordinates of

the selected rail route, before accepting into the system.

• A simple user interface would be provided for passengers to indicate the

passenger density of their current compartment, or the overall density in the

entire train. Sometimes a user may not aware of the current compartment

number he is in, in such situations, a general indication could be updated. The

total number of compartments is also retrieved from user, therefore an average

number would be indicated as the total number of compartments in the given

train turn.

• The crowd density states are predefined as levels - Low, Medium, High, Very

High, and user can easily select the compartment number and select a level and

update.

• The compartment number could be selected within a given range, and in the

same way, total number of compartments in the train could also be selected.

• Since these data is updated by general public, there’s a great possibility for

entering inconsistent and inaccurate data in to the system, and to clean such data

validations are placed in every possible scenario.

• The train passengers could setup a location aware alarm using the native android

application, by choosing the destination train station and at which time the alarm

should notify - before a certain distance to the destination station, at the train

station or after the train station.

• A user interface would be provided for passengers to enter their

comments/suggestions/criticisms into the system regarding a selected train, this

is supposed to be cater as a review for other passengers. This data is stored on a

train schedule basis rather than a single occurrence of a train schedule, this data

7

could be. provided to the users along with other analytical data available

regarding the train schedule.

• Using this application, passengers would be able to mark their frequently used

train schedules as “Favorites”, and after that they would have easy access to the

most frequently used train schedules, rather than searching always.

• A user will have to login to the system to use certain customized functionalities

like favorites, and also to update train locations. A single user account could be

created using a user name and a password, and using that, a user can log in to

the system using any android mobile device. With this design, the user’s

preferences would be saved across multiple android devices and/or web

application.

Considering data view part of the system for passengers,

• A UI would be provided to search for a train, this is similar to the functionalities

of existing systems, that’s is to select a start station, end station and if preferred

a date and a time range. With the given criteria, a set of train schedules will be

loaded, from master data obtained from Sri Lanka Railway sendees.

• With the “Favorites” facility, for regular passengers this search functionality

could be skipped and the required train schedules could be directly loaded to the

system.

• The rest of system’s functionality will mainly base on the schedule selected

here.

• The passengers would be able to view last known location of the train to the

system (must have been reported by another passenger), for a selected train,

together with the crowd density details reported for each compartment.

• The scheduled time for the train to reach the user’s station (or the nearest station

for the user), and the general deviation of it along the time, and predicted

reaching time would be displayed for the passenger.

• When viewing details reported by other passengers, an indicator about the

confidentiality would also be displayed for the passenger

A web application would be developed specifically for the admin functionalities like

maintaining master data, moderating user comments in addition to the functions

available in the mobile application. It would also provide the analytical functions

8

related with data mining, in order to analyze the patterns of transportation of. a single

train. This would allow the authenticated users to determine any delays at specific

points of journey. The same set of users would be able to see the feedback from

passengers regarding the selected trains.

The mobile application would be a native android application, and the web application

would be developed mainly based on Java EE. Spring and Hibernate Frameworks

used in the web application, and for the UI, bootstrap and JQuery is used.

Railway transportation service has been popular among various types of passengers.

Based on how frequently the train has been used, various types of passengers can be

categorized roughly as below,

• Daily Users - train is used as the main method of transportation daily

are

e.g.:-

o Workers in both private and government sectors, travelling daily to the

working places

o School students,

o University students

• Weekly users - train is used as the main method of transportation weekly

e.g.:-

o Workers, of whom the working places are in Colombo, travelling from
faraway places like Galle, Kandy, and Anuradhapura.

• Occasional users - train is used as the main method of transportation
occasionally

e.g.:-

o Tourists

When the passenger type - daily users is considered, it can be observed most of the time

their travelling pattern has been similar along time. The train, the compartment,

sometimes even the seat row which is being used to travel has been the same. The

system which is proposed here has mainly targeted this passenger type.

Other user types also could be highly benefited through this system, since its features

like location aware alarm, and analysis of train schedules.

9

When the factors-mentioned above, the importance of rail transportation,, and the

increasing demand and usage of rail transportation in Sri Lanka, are considered, any

contribution to enhance it as a service for general public would be of great value. The

system proposed here has been aimed to be a contribution for that.

1.5 Structure of the Dissertation

The next chapter (Chapter 2) describes the review of similar systems currently available

and the similar systems proposed to address the same issue. There are several systems

available currently for the same purpose as CBTLS - to enhance Railway

Transportation system in terms of efficiency and reliability, also there are researches

done for the same purpose. Some of these were reviewed before proposing the CBTLS

and the review details are indicated in this chapter. After that in Chapter 3, the

technologies adapted in this CBTLS system would be explained. The overall

architecture of the system, and the reasons to justify the selection of technologies would

be described here. Chapter 4 would describe the proposed CBTLS system’s approach

. to address the efficiency and reliability issues in current.railway transportation system

which are described in detail in the section above “aims and objectives of CBTLS”,
along with the technologies adapted which is described in Chapter 3. In chapter 5,

system design is described for the community based train locating system. The

wireframes for the mobile UI, the class diagram, ER diagram and the sequence

diagrams are included and described in this chapter. Also the modules available in the

system and the interaction among them is also described in detail here. Chapter 6 would

describe the implementation details each module which was described in chapter 5.

Here the details about software, hardware used for the system is mentioned, and at the

same time details of critical algorithms used in system are described. In Chapter 7 the

evaluation methods used for this system will be described in detail. The design of the

questionnaire, selection of users and final results would be described in this chapter.

Chapter 8 is about the overall achievements of CBTLS, problems that had to be

addressed while developing the system, and limitations of CBTLS and how it could be

enhanced further in the future.

10

- Chapter 2

Current approaches available to address the Issues in

Railway Transportation System

2.1 Introduction

Railway Transportation service in Sri Lanka is owned by the government of Sri Lanka

and functions as a public service offered to citizens by Sri Lanka railways Department.

To use this public service efficiently, the availability, and easy access of information

regarding the service is a critical factor for train passengers. Based on the available

information, the passengers would be able to make decisions on their travel plans.

Since the railway transportation service in Sri Lanka is owned by the public sector of

the country, the government authorities have been seeking methods to improve the

efficiency of this service. The main objective of such efforts is to provide a better

service to the train passengers.

According to the work done by G. Bradley, it suggest that in most of countries the

governments have already recognized the potential and importance of the

implementation of Information Communication Technology in the key areas of their

services for general public. At present, Information Communication Technology is

playing a key role as a main tool used to enhance the quality and allow easy access to

government services with the aim of providing a better and efficient service for the

general public[5].

As a result, e-Govemment and m-Govemment like concepts have been introduced to

use Information Communication Technology as an interface to provide services offered

by the public sector as well as to distribute the required information to general public

of the country.

As it is indicated in the work by S.Rainford, at present, in Sri Lanka most of the key

public services has been integrated with ICT already and as a still ongoing project, rest

of the services are also planned to be integrated in the future. As an example, public

services like revenue license issuance, wildlife bungalow reservation service are

already available as e-Services, furthermore public information services like the exam

result publishing service, vehicle information service, and train schedule information

11

service are available, as.e^Services. Through the currently available service, public has

access to the static train schedules[6].

Based on this e-Service provided by Sri Lanka railways Department, with the support

of Information and Communication Technology Agency of Sri Lanka (ICTA), there are

several applications build, both mobile and web applications for the benefit of train

passengers. Some of these systems are reviewed in this section.

In addition to the currently available system, there are some proposed systems available

for the purpose of enhancing the railway services, and they would be also reviewed

here.

2.2 Currently Available Systems for general public in railway transportation

services

When the currently available methods of information retrieval by train passengers are

considered, certain drawbacks could be seen in them. A list of such services that could

be found online is listed below

2.2.1 eService by The Department of Railways [7]

This is the main service offered by Department of Railways, with the support of

Information and Communication Technology Agency of Sri Lanka (ICTA), even for

CBTLS, the master data was obtained from this system. The backend for this service is

hosted as a web service, and same service is used in both mobile and web applications.

Here the web application is analysed and the mobile application is reviewed in the

section below.

This provided e-Service can be accessed via the given url here

http ://ww w.eserv ices, ra i 1 wa v. gov. 1 k/schedu le.

Same service has been implemented as several different mobile applications and they

are listed after this.

This service is aimed mainly at displaying the static train schedule for the users -

anyone who has access to the service. According to the instructions given in the service

below are the steps to use this service and information which could be obtained from

it.

12

An enquiry can be placed by providing start and destination stations. -This service

allows viewing Train schedules with time/ station details and ticket prices according to

the search criteria.

In this service, mandatory details to search for train would be start and end railway

stations as in schedules.

Search Train Schedule Procedure in the system is given as below,

• Start station should be selected from drop down menu -mandatory.

• End station should be selected from drop down menu -mandatory.

• If required Start and end time can be selected, otherwise if the date is current

date, train schedules would be displayed from next available train.

• If required to search for a train on different date other than current date, a search

date from the calendar could be selected.

• After clicking on ‘Search’ button, a list of train schedules would be displayed.

□□ e$ervicesjailway.gov.lk/sdHr;u!<;/nomc;Actiotvia>on?ier^j - on

Search Train O

— Select — — Scisct —Start Sutton: • End SUtton:'

Select — — SeedStart Time: Ena t ons;

mSearch Date:

’ niarxcd SeWs are mandatary

Search

Is***
B£3@H

* Wit Sellar*. Raftragr. (SLR) U nm Raunid Si Lair Ctortd.
CotaflOolO SnlanM

Figure 2.1 - Initial Screen of e-Service Offered by Railway Department[7]

The above System will display Train time table with following details

• Direct Trains

13

Arrival time

Departure time

Destination/ Time

End station/ Time

Frequency

Name
#

Type

Available Classes &

Train number

Connecting Trains(if available) - Same as above details

Ticket Prices

Class name

Price (Rs.)

Total Distance

[i eservices.roilway.gov.lk/schediile/sertrchTrain.action?lang - on

Search Train

j Search results from JA-ELA to MARADANA on 23'11/2015 between 06:00:00 Hrs and 03:00:00 Hrs
3 Irain(s) available

Direct Trains

jA-eiA
Avails!** Classes: jiO Clan

06 48 00 06.49 00 MARADANA 07 30 00 MARADANA 07 J’00
TroUi ends at MAR ADANA at 0J.31 00

MONDAY TO FS'OAY COLOMBO COMMUTER
Tram He. 3333

1 JA-ELA
Available Classes: 3rd Clast

07 26 00 0725 00 MARADANA 07 59 00 COLOMBO FORT 03 04 00 DAILY
Tram end* at COLOMBO FORT ai 09 04 00

C OLOMEO CCTO TER
Tiai.1 No 3S0'J

| JA-ELA 07 3600 07 17 00
Available Classes: 2ml Class 3nJ Class

MARADANA 03 09 00 MARADANA 03 1103
Train ends at MARADANA at 03:1100

MONDAY TOFKlOAS COLOMBO COMMUTER
Train No: 3TJ3

I
Ticket Prices
Class Name Price |Rs.)

' 2nd Clan
. 3rd Cuss

20 00
1000

total Distance: 20 2611m

Figure 2.2 - Train Detail Screen of e-Service Offered by Railway Department[7]

14

Drawbacks as observed,

In this system, only the static schedule data is displayed, and there’s no way of

confirming if the train is available or not in real time. The system does not offer a

method to view train delays. And there’s no way to locate the trains in real time.

2.2.2 Android Mobile Applications available in the Google Play marketplace;

• Sri Lanka Train Schedule [8]

This application is provided by Railway Department of Sri Lanka with the help of

Information and Communication Technology Agency of Sri Lanka (ICTA). As

mentioned in the above section, this is the mobile presentation of the service offered by

government. This application can be installed in android mobile devices, as same as the

web application, it requires an active internet connection to work. Since this is a mobile

application, it facilitate the train passengers to access train schedules while they are

moving.

The application is available in google play store in the following location: -

hUps://plav.google.com/stQre/apps/details?id=lk.icta.mobile.apps.railwav

The following information is available in the google play store regarding the

application, ,

“Sri Lanka Train Schedule application is developed under the initiative of delivering

government e-services which are connected to Lanka Gate through smart phone mobile

interface. From this application you can get Train Schedule and Ticket Price

information from Sri Lanka Railways. ”[8]

Drawbacks as observed,

In this system, only the static schedule data is displayed, and there’s no way of

confirming if the train is available or not in real time. The system does not offer a

method to view train delays. And there’s no way to locate the trains in real time.

• Train Schedules of Sri Lanka [9]

Train Schedules of Sri Lanka provides another mobile user interface for the same

service as above. Additional features are added to this system such as the facility to add

train schedules to favorites and to store last 10 searches in history.

15

The application., is available in google play store in the following Location: -

htlps://plav.gooale.coin/store/apps/cletails?id=com.aselalce.trainschedule

Drawbacks as observed,

In this system, only the static schedule data is displayed, and there’s no way of

confirming if the train is available or not in real time. The system does not offer a

method to view train delays. And there’s no way to locate the trains in real time.

• Train Guide - Sri Lanka [10]

Train Guide - Sri Lanka is another mobile application which is to provide another

mobile user interface for the web service offered by Railway Department of Sri Lanka.

To this system, certain additional features are added as search history to be available

offline access, and the location awareness to find the nearest train station.

The application is available in google play store in the following location: -

https://play.goode.com/store/apps/detai ls?id=k.dw.timetable

Drawbacks as observed,

In this system, only the static schedule data is displayed, and there’s no way of

confirming if the train is available or not in real time. The system does not offer a

method to view train delays. And there’s no way to locate the trains in real time.

In addition to the mobile applications indicated here, there are several more

applications, but all of them share the same basic set of features and therefore share

same drawbacks. The above mentioned systems have integrated some additional

customized functionality to the system in addition to the features available in the offered

service from Railway Department of Sri Lanka.

2.2.3 GPRS based Railway Traffic Optimisation System (RTOS) by Sri Lanka

Railway with University of Colombo [11]

In 2014, a new train tracking system named Railway Traffic Optimisation System

(RTOS) was launched for the coastline enabling the general public to view train

movements by the Railway Department Sri Lanka with the association of University of

Colombo’s School of Computing (UCSC) [12]. The system was available for the

general public via the link - www.slrail.info. It has been indicated that the system was

developed after a study done on technical issues. The research study has been carried

16

https://play.goode.com/store/apps/detai
https://play.goode.com/store/apps/detai
http://www.slrail.info

out by jninecLeffort.of undergraduates from UCSC and the National .Research Council

of the Department of railways of Sri Lanka. As a solution for the issues encountered in

the research, which are train delays and safety issues, the Railway Traffic Optimisation

System (RTOS) has been developed.

The Railway Traffic Optimisation System (RTOS) has been mentioned as based on

General Packet Radio Service (GPRS), and information such as the train destinations,

train speeds, train schedule and information on cancellations provided through this

system. Additionally to general public, the information from the system is available for

the internal staff like engine drivers and station masters, facilitating them to monitor

train movement.

This system could be accessed via - http://\vww.sIrail.info/, but on a special note, at

present the system is unavailable via the given URL (Uniform Resource Locator).

Below is a screen shot of the system taken while it was available online.

- O J £ -C ft '.!• vrtvvwlr;.tsp

Vi-J ' -+ “Search Train n
CJ C3a a

Sum su-.w- ■ '' — S»j«i Orectcn —• — PtiM $.;•?«« “i «V .
o cnfra T<r«:IVuITrm; — —

’Cl_!□ •iZZ mPufli O**: C23
C3 S3• piJi> * 9 r.f'-iv ..a

Viqi

Coiorr.to rrrs

- V—.ra £_1W : j o <v"V74e Pul OOW.H: CSst*; Fw. tsVf.iU CS-*..,;,(3

- ■'

vE
\ ci fr-utwi

o
: 53Vi :--x

f-v; •.

} s\
:■ © &

'•;fi r.n i»i.« iuKC*;v

■

r-Jt
■«V« <

iw*i CJ
- ■;

tan!Go -gK .CP?-*; <*&» >.

Figure 2.3 - Search Train Screen of GPRS based Railway Traffic Optimisation

System (RTOS) by Sri Lanka Railway with University of Colombo [11]

The system is implemented only for Coastal Line, and the current location of the train

could be seen on a map. An enquiry can be placed by providing start position and

destination stations. Compared to the other system available for general public to access

information on train details, this system contains considerable advanced features such

as to view train locations in real time and get details about train delays

Drawbacks as observed,

17

http:///vww.sIrail.info/

Implemented only ..for Coastal Line and currently the system is not-functional.via.the.

given URL, system maintain ace is not properly in place as it is observed.

2.2.4 A proposed system - GPS/GSM based train tracking system - utilizing

mobile networks to support public transportation [13]

Dileepa Jayakody, Mananu Gunawardana and coworkers have proposed an intelligent

train tracking and management system to be implemented in Sri Lanka for the purpose

of improving the existing railway transportation system. According to their study, the

proposed system is a combination of technologies like Global System for Mobile

Communication (GSM), Geographical Information System (GIS), Global Positioning

System (GPS) and a custom software. The train location is to be identified using the

Global Positioning System (GPS) technology, and for this purpose a GPS module is

proposed to be installed inside the train. Furthermore, the obtained train location using

the installed GPS module inside the train is proposed to be transferred to a central

system using the Global System for Mobile Communication (GSM) technology. Once

the data of train’s current location is received, the data is proposed to be processed using

the custom software, and provide a visual positioning of train on maps using

Geographical Information System (GIS) technology. In their study, they have

mentioned that with the availability of this information, the administrative staff of

Railway Department, like train controllers would be able to obtain more accurate details

about train location and hence take more accurate decisions. At the same time, due to

the availability of accurate, real time information including speeds of trains, the

administrative staff is to be able to identify and address safety issues more effectively

which occur in railway transportation system in a considerable frequency in Sri Lanka.

Their study also shows that the collected data using the proposed system could be used

for accurate scheduling considering the train arrival time and departure time at each

station[13].

This system can be considered as a comprehensive solution for the current issues

observed in the train transportation system. It is proposed to facilitate the real time train

tracking, and to provide collected data to the railway administration to enhance the

efficiency and safety of their service. But it mainly focuses on train administrative staff

rather than the passengers, and also the cost of implementation and infrastructure cost

will be considerably large. Furthermore, this system should be implemented within the

railway department itself.

18

2.2.5 GPS based tracking system for trains in Sri Lanka[14] - -

Gunasekara, N.S has proposed a system named “trianTracker” to function as an

auxiliary system inside the control center of Railway Department of Sri Lanka, for the

use of internal technical staff. The system is proposed to monitor the train movements

electronically using Global Positioning System (GPS) technology. In his study, he has

pointed out the importance of having the exact location of a train, especially during

disastrous situations. In the proposed “trianTracker” system, the locations of trains are

to be displayed on a digital map, for the reference of staff inside the train control center

in of Railway Department of Sri Lanka. For this purpose, the retrieved location of a

train using Global Positioning System (GPS) technology, is to be transferred using the

Short Message Service (SMS) service of the wireless telecommunications service

provider[14].

The main disadvantage of the proposed system here is, it is available for the train control

staff only. In this work, the train passengers have not been taken in to consideration. In

contrast, the main objective of the CBTLS is to provide train location information to

the general public.

2.2.6 Sri Lanka Railways - Future plans - Information Technology [15]

In the official web site of Sri Lanka Railways developed with the association of

Information and Communication Technology Agency of Sri Lanka (ICTA), under the

section of Future Plans and under the subsection of Information Technology, it has

mentioned a planned project named “Train Tracking and Operating Information

System”. According to the information available in their official web site, Sri Lanka

Railways is planning this project with the association of Information and

Communication Technology Agency of Sri Lanka (ICTA), and the planned duration is

mentioned as two (02) years. It has been proposed for the system to be installed at the

railway control center at Maradana Train Station. As the technologies planned to use,

it has mentioned the Global Positioning System (GPS) technology to get the location

of the train and, Global System for Mobile Communication (GSM) to transfer the

captured location and Speedometer Units to get the data on train speeds. The objective

of the proposed system is mentioned as to enhance the functionality of train controlling

and at the same time to provide exact train location to the general public[15].

19

CJ1.3175

This proposed system is a comprehensive solution for the issues identified in the.current .

railway transportation system in this project. Since the system is implemented by Sri

Lanka railways itself, the reliability and maintainability will be high and the conflicts

that could arise when introducing such a new system would be much less, compared to

an outside party doing the implementation.

The major concern regarding this proposed system is that still it is not implemented or

available. According the official web site of Sri Lanka Railways, the last updated date

of the site is mentioned as Tuesday, 20 September 2011, since the estimated time for

the project is mentioned as two (02) years, the system should have implemented by

now.

2.2.7 Different Types of Vehicle tracking systems

Benjamin Coifman, David Beymer, and coworkers have proposed a real time computer

vision system for vehicle tracking and traffic surveillance on the basis of video image

processing. Their work is focused on a feature-based tracking system for detecting

vehicles under challenging conditions[16]. A similar study has done by D.J. Dailey and

his coworkers to extract vehicular speed information from a given sequence of real

time traffic images. According to their study, the existing systems for similar purpose

have problems with accurately tracking vehicles[17]. Therefore the purpose of

Benjamin Coifman, David Beymer, and coworkers is to develop a system to address

these problems. They have proposed to track vehicle features instead of tracking entire

vehicles, making the system robust and the system less sensitive to the problem of

partial occlusion. In their work, they have developed an algorithm and by tracking in

daylight and nighttime conditions, the system itself will choose the most appropriate

features for the given conditions. The resulting vehicle trajectories from this system can

be used to provide traditional traffic parameters as well as new metrics such as lane

changes. This vehicle tracking system is suited both for permanent surveillance

installations and for short term traffic studies[16].

Noppadol Chadil and his coworkers, they have proposed an open source GPS tracking

system named as Goo-Tracking system, using hardware and open source software [18].

It is a different approach than of system proposed by Benjamin Coifman, David

Beymer, and coworkers based on image processing[16]. Their proposed system

includes a Global Positioning System (GPS) module to locate vehicle and a General

20

Packet.Radio Service (GPRS) for message transmission, Multi Media.Card (MMC) .to

temporary store location information, and an 8-bit AVR microcontroller. Their system

is claimed to have shown great stability when it was tested, and by using the robust

message transfer protocol most of locations were accurately acquired and transmitted

to the server in real-time. They have proposed the Goo-tracking system to be used in

fleet management in the future, and as a further enhancement, they have proposed it to

be used for lost vehicle tracking by integrating with a car alarm system. The sensors are

to report vehicle status information to the server, which will be useful for information

processing and for intelligent tracking management 18].

By comparing two different approaches on vehicle tracking, the second approach based

on GPS/GPRS appears to be simpler and feasible to implement with minimum effort

and cost.

The above study shows certain limitations of both approaches on vehicle tracking.

Research Limitation

One major limitation of this system is the cost

related with implementing

Real time computer vision

system for vehicle tracking

(Coifman et al., 1998)

GPS tracking system (Goo-

Tracking system) (Chadil et al.,

2008)

A limitation of this system in practical usage is, it

requires a GPS module to be implemented inside

the vehicle. Therefore this method will not be

suitable in applications like public traffic

management.

2.3 Summary

According to the review of other similar work done here, it is clear there are number of

solutions already implemented and available, and also some comprehensive systems

have been proposed to try and address the same set of issues the proposed system

Community Based train locating System (CBTLS) is trying to address in this work. But,

as discussed above, still there’s not a single solution successfully implemented to

address the current issues in Railway Service Sri Lanka. As indicated above, each one

21

of therruare having.its own unique features which is beneficial for the train passengers

as well as train controlling staff. But the lack of one comprehensive system, including

all good features of all above systems is still a pending requirement.

The many mobile application which are available in Google Play, are based on same

service offered by Information and Communication Technology Agency of Sri Lanka

(ICTA) and Sri Lanka Railways, therefore all of them share the same issue, not having

real time updated data.

CBTLS is addressing this issue by keeping data from ICTA and Sri Lanka Railways as

master data, and get updated on them through the community. By maintaining its own

data store, CBTLS is capable of handling the issues which other systems described

above are not able to handle.

In contrast to the systems mentioned above, the implementation cost would be

minimum for CBTLS.

The following chapter - Chapter 3 will describe the tools and technologies used to

implement the CBTLS.

22

Chapter3

CBTLS - chosen technologies to cater real time data

3.1 Introduction

In the previous chapter, various existing systems and proposed systems to address the

same issues which CBTLS is supposed to solve were analyzed. Each of their features

and disadvantages were listed.

In this chapter, the technologies, and architectural features will be described regarding

the proposed community based train locating system. CBTLS should be designed in a

way to allow maximum possible number of users to access the system. The system will

receive data from a large number of users simultaneously, and therefore should be

capable of handling such large amounts of requests through the web clients as well as

the mobile clients.

When considering the mobile application, the system requires internet access to operate

its functionality properly, but at least the cached static data of recent searched should

be available in the mobile device as well. Therefore a temporary database would be

stored in mobile device as well. A more detailed description of such concerns and

technologies adapted to address them are described in this chapter.

3.2 Technologies Available

Web application (User interface and Backend Service)

When considering the proposed web application, there are number of technologies

available to which could be adapted in to the proposed system. There are several

commonly used and popular techniques such as 'PHP, ASP.net, Java EE used. For this

project Java EE has been selected. Considering the requirements, ability to cater a large

amount of users simultaneously, the scalability of the system is crucial, at the same time

with the solid Object Oriented Programming nature of Java, it facilitates the modeling

of real world object into the system more conveniently. Also there are many web based

frameworks available for Java, facilitating rapid developments once properly

configured. Since Java is open source and freely available it does not contribute to the

cost of software. At the same time powerful and widely used open source IDEs

(Integrated Development Environments) like Eclipse are available freely for

3.2.1

23

development. These factors contribute to the cost of implementation and therefore open

source software were selected in every scenario.

The backend service was developed as a REST (Representational State Transfer)

service, this is because both mobile and web applications shares the same functionality.

For the user interface development of the web application, JQuery, Bootstrap and CSS

was used. The purpose of using bootstrap is to provide a similar look and feel across

most browsers available. The purpose of using JQuery for Ajax calls and other normal

JavaScript functions as well is to support similar functionality across all the main

browsers available.

In order to support rapid development by maintain the coding standards like design

patterns, Spring framework and Hibernate framework has been used. In Spring

framework, the available features, Spring security, Spring MVC (Model View

Controller), Spring web module, Spring tag library, Spring support for hibernate, Spring

REST services and Spring core container has been selected to be used in CBTLS.

This application requires a user authentication module, and since Spring provides an

easily configurable, yet very powerful security module, it has been used in the system.

Since CBTLS consists of two parts, a mobile application and a web based application,

it necessarily requires the separation of Model - View - Controller components. Due

to this requirement, the MVC module of Spring framework was used in CBTLS.

For the web application, the Web module of Spring and the Spring tag library was

required. The spring web module was required for the rest services as well. In addition

to the Spring tag library, the JSTL tags, and FMT (formatting tags) were also used for

common functionalities like to iterate a collection inside JSP(Java Server Pages), to

format date like functionalities.

In this system, Hibernate framework has been integrated as an ORM (Object Relational

Mapping) tool to facilitate the easy mapping as access of RDBMS (Relational database

management systems) tables to the domain objects available in java. Spring hibernate

support module is added to support the integration of spring framework with java.

Spring REST services has been used in the system to facilitate the system integration

with the mobile application, through the provided REST (Representational State

Transfer) API (Application Program Interface), the mobile application communicate

24

with the web application. The spring core container has been integrated to handle the .

dependency injection and inversion of control of beans in the system.

MySQL was used as the relational database for the system, it is free and open source

software with a considerable community support. It caters the most crucial features like

scalability and flexibility. Open source tools like MySQL workbench is available to

access and view data in MySQL conveniently. It also provides features like reverse

engineering of databases. MySQL databases supports complete ACID (atomic,
consistent, isolated, durable) robust transactions. MySQL databases can be easily

clustered and hence support large scale systems. The convenient integration support

available with java of MySQL was another main reason to be selected as the database

for CBTLS.

3.2.2 Mobile Application

When deciding on the technology to be used to develop mobile application, the main

factor which was taken in to consideration was the current usage percentage of the

technology and the future trends. There are few popular mobile application platforms

in the world at present including Android, Apple IPhone, Windows mobile and

Blackberry. Of these, in general in Sri Lanka and also in other countries, Android has

a considerable market share compared to other platforms. The main purpose of CBTLS

is to facilitate as much as possible train passengers to use the system, and therefore the

widely available mobile platform was selected. Additionally, it provides strong built in

functionalities and as well as has larger community support. Development using

android is relatively low cost compared to platforms like IPhone, which requires their

specific Operating System and tools for development. The development tools for

android (ADT - Android development Tool built upon Eclipse IDE) is freely available

to download.

3.3 Design Considerations

Following design considerations were made during the design process of CBTLS User

Interface Design

3.3.1.1 Usage of MVC pattern

As described above, for the web application - Model View Controller (MVC) Pattern

was used with the aid of Spring MVC. Since both mobile and web client should be

catered using same services, the presentation layer is separated from the business layer.

25

3.3.1.2 Integrating localization to the system -

Since one of CBTLS systems main objective is to address the difficulties faced by train

passengers due to linguistic issues, both mobile and web applications are developed in

a way to support localization. Both Spring and Android platforms are supporting this

feature by default.

3.3.1.3 Supporting major browsers available

Since CBTLS is a community based application, it supposed to be accessed by a large

variety of users, and therefore it is a main requirement for the system to support the

main browsers and their latest versions. For this purpose, a user interface framework

like bootstrap, and JavaScript framework like JQuery is used.

3.3.1.4 Variety of Mobile device support

Again, for the purpose of catering large number of users, the native android mobile

application would support earliest possible android version, in order to cater as much

as devices.

3.3.1 Programming considerations

When developing the system, in every possible location, design patterns would be used.

Most of this mentioned design patterns are already available with the integration of

spring and hibernate frameworks. The Business component uses Data access Object

(DAO) pattern, Factory Pattern, Singleton Pattern. The presentation layer uses MVC

pattern. The purpose of using design patterns is to increase the reusability and

maintainability at the code level.

3.3.2 Database Design Considerations

3.3.2.1 Data model

The physical data model is done considering MySQL database. The selection RDBMS

(Relational Database management system) is done due to the requirement of

maintaining the relationships of data for the easy analysis later.

3.3.2.2 Connection Pooling

A Connection pool is used for obtaining database connections & those connections are

released back to the pool after usage. This process is handled automatically with the

introduction of Hibernate as Object Relational Mapping and data access framework to

26

the system...This is to cater the simultaneous usage of the system by large number of .

users.

3.3.2.3 Database Transaction and rollback handling

In order to maintain the ACID (atomic, consistent, isolated, durable) properties of the

database transactions, the transaction layer has been moved to the service layer of the

application. It ensures no partially committed transactions are available.

3.3.2.4 Support and Facilitating Concurrent access of database

Since data in CBTLS are be concurrently accesses in a very high frequency. Therefore

to handle concurrent updates and to avoid data being overwritten from other sessions

optimistic locking of database records through the version column will be used.

3.3.2.5 Clustering support for scaling up

The application is designed to support clustering, to facilitate scaling up when required.

To facilitate this the business classes are made to be stateless and singleton in nature.

Therefore the application supports single instance or cluster environment deployment.

3.3.3 Logging Facilities for debugging

Log4j logging framework will be integrated to the system to capture system logs into

file system for any kind of operation in the system. This feature is required to fix the

bugs raising after the systems launch.

3.3.4 Security

The web application is secured with Spring security framework and only authorized

users will be able to access the system, and even the authorized users will have

restrictions when it comes to system’s functionality.

27

3.4 Technology Stack..........

r\!

Spring
Hibernal#
Sjpport MySQL

5.6.26
>;

Apache2

wildfly-9.0.2.Final

JDK 1.8.0 60

[• - ~" "• "i
Database Server

Proxy Server Application Server

CBTLS Technology Stack

Figure 3.2 - Technology Stack

Component
Proxy Server

Description________ _____________
The physical server dedicated to handle requests from client

and do load balancing, which is crucial in systems like CBTLS

CentOS 6.7,x86_64 64 bit CentOS- a Linux operating system as the OS in servers

Apache2 To be used as the proxy server

Application Server The dedicated physical server/servers to handle application

server - WildFly

JDK 1.8.0 60 Java framework version 8, on top which CBTLS is

implemented and will execute,

Wildfly Application

Server
Application server which hosts the CBTLS Web application

Table 3.2 - Each component of Technology Stack of CBTLS

28

Usage of the other components available in the above diagram - Spring security, Spring

Core container, Spring MVC, Spring hibernate support, Hibernate, Bootstrap/CSS and

JSP/Javascript/jQuery, MySQL are describe in detail earlier in this section.

3.5 Summary

In this chapter the technologies used in CBTLS and main factors which were taken into

consideration when designing the system were described. Furthermore, along with the

selected technologies in the implemented system, the reasons for their selection was

also described.

In the following chapter, the approach to implement CBTLS will be described.

29

Chapter 4

Crowdsourced system approach for real time train

information

4.1 Introduction

In the previous chapter the design considerations and technologies selected to be used

in implementation of CBTLS was described.

In this chapter, the approach taken to solve the mentioned issues in chapter 1 and

chapter 2 is described in terms of inputs to the CBTLS, expected outputs, processes

available inside the system, additional features and also the targeted set of users of the

system.

4.2 System Structure of CBLS

The proposed system would consist of a web application and a mobile application.

Mobile application would be used to collect data about trains from passengers and the

same is used to display data upon enquiries. Same functionality is available in the web

application as well, and additionally administrative functionality. The mobile

application would be a native, location-aware application for Android which would

support geo locating the user. Therefore this mobile system would only be available for
android users. Since the web application consists of all the functionality of mobile

application, rest of users can access the web application if required.

4.3 Inputs for the Community Based Train location System

Initial data of selected train schedules would be fed to system using the data integration

module. This static schedule data is retrieved from the web service available from ICTA

and Department of railways. Once the master data on train schedules is available, users

would be able to look up schedules initially. The proposed system is mainly based on

data provided by general public (the community of train passengers), on each

occurrence of train schedule. Therefore the critical data required for system’s

functionality is captured from rain passengers who would choose to use the system.

Therefore, a challenging part of the system would be to validate the received data before

it gets displayed for other users.

30

For this validation purposes, and for data analytical purposes, geo coordinates of train

stations along the selected route, and the geo coordinates of the selected rail route would

be have to be inserted into the system along with master data. Since such data is not

already available, it should be done manually using the features available in Google

Map API. Unlike for a normal route, for rail roads in Sri Lanka, the series of geo

coordinates is not available.

The users of CBTLS can update the current location of a selected train using the mobile

application or web application. This could be done actively or passively, and for each

two methods different parameters will be taken in to the system as inputs. Active update

is available for the users who are already inside the train, they could either update the

location once or can allow the system to keep track of the location continuously. Here

the location of the user would be captured. Passive update is for the users who are

outside the train, but still aware of the location of the train. They are allowed only to

update once, and when updating, instead of their lactation data, the last station passed,
the located time and current moving status of the train should be provided.

Furthermore, users can update the compartment details of the train as well, and this is

in terms of crowd density. They can provide one oif the predefined crowd density status

for a selected compartment and for the overall train. They should provide the

compartment number of their reporting and the total number of compartments in the

whole train as well.

As an additional feature, a location aware alarm clock is integrated and users can set

the alarm based on their preference.

4.4 Outputs

Initially, similar to the currently available systems which were reviewed in chapter 2,

users will only have access to view the static train schedules as provided by the web

service offered by ICTA and Department of railways. Once the system is updated by

train passengers, the real time data would be available for the general public.

The CBTLS facilitate users to view real time train locations on a map, and also allows

to view compartment details of a selected train. Additionally, it provides the facility to

view analysis and predictions on a selected train schedule.

If the location aware alarm is set by the user, it will be activated once the set destination

has been arrived.

31

4.5 Process.

The initial static train schedule data is integrated in to the system using the data

integration module. By using either mobile or web application, users could search for

train schedules. For this purpose, a basic search and an advanced search both will be

available for the convenience of users, once they view the train schedules, they could

access the list of recommendations for the same criteria. This recommended list is

prepared by analyzing the historical data collected in the system.

The user authentication module will authenticate users by the backend service, allowing

to use same credentials to be used both in web and mobile applications.

In the mobile system, the user location would be acquired through GPS and Android's

Network Location Provider and is sent to the web application as a series of geo

coordinates. The retrieved location data into the web backend is to be validated against

a set of predefined geo location data set before being recorded in the system. As an

additional measure, the data will be validated against user’s ranking in the system as

well.

4.6 Users

Three major types of users are identified in the CBTLS system as anonymous users,

registered train passengers (normal system users) and system administrators. Based on

the type of user, access levels to certain functionalities of the system is varying. Only

the system administrators are allowed to view and use the administrator module, and

only the registered users are allowed to update the system with data. Anonymous users

are allowed to use the viewing functionalities only, this measure has been taken ensure

the reliability of the system.

4.7 Features

The most distinguished feature of CBTLS among the reset of services available or

proposed for the same purpose is its source of information that is the community based

nature of the system. Due to this factor, the implementation cost is kept at a minimal

rate compared to the rest of systems using GPS/GPRS like technologies. Since no

involvement from railway Department is required, the implementation would not be

complicated. Once the web system is hosted and mobile application is added to the

Google Play app store, general public can easily access and use the system. Only an

initial cost for the hosting environment is to be applied. Over the time CBTLS is

32

expected to.be grown mature, since large amount of valuable data will be collected

through the system, which is not already available. Such data could be used for the

analytical purpose and to generate new knowledge.

Although CBTLS contains static train schedule data, unlike the existing systems which

are calling the remote service each time a user access the system, CBTLS would be

consists of its own data set after the initial integration. This is to prevent the dependency

on a third party service, specially a service which is not reliable. For the sake of

accuracy and updated data, the integration process could be done periodically.

Therefore CBTLS is expected to be a self-managing system without depending on any

of external systems.

4.8 Summary

In this chapter the community based train locating system has been described in terms

of its inputs and outputs, users who are involved and the system’s specific features and

processes.

With the detailed description of the system’s key aspects in this chapter, in the next
chapter analysis and design part of CBTLS would be described along with diagrams to

aid. The design diagrams would be incorporated in to this document at the appendix.

33

Chapter 5

Analysis and Design of CBTLS

5.1 Introduction

In the previous chapter, the approach to develop CBTLS was described in terms of its

key components, expected inputs to the system, expected outcomes, planned processes

and features of the system.

In this chapter detailed design of CBTLS would be illustrated. For the design purposes,

the UI wireframes of mobile application, the Entity relationship diagram of CBTLS,

the class diagram of CBTLS, sequence diagrams related with mobile application

functionalities are illustrated below.

5.2 Detailed Architecture Diagram Of CBTLS

BESS
© S'S
aliim xM&j

o
r

Mobile User (Mobile Application) _v_ Web User/Wsb Application

Internet >—r

i
CBTLS Web Application

1

Wildfly application serveri
:
r.

Overall Architecture

Figure 5.1 - Overall Architecture of CBTLS

34

Component.
CBTLS Web application

Description __
Used by the general public through web
clients and as well as mobile clients

Application server which hosts the
CBTLS Web application

Relational database to store CBTLS data

Native android application which would
communicate with the web application

—
Wildfly Application Server

MySQL
i-

Mobile User/Mobile Application

I Web user/Web application Web application as the client itself

Table 5.1 - Each component of Overall Architecture of CBTLS in Figure 5.1

As it is explained in the chapters 1 and 3, the CBTLS consist of a mobile application

and a web application. The web application caters as the backend for the mobile

application as well. As it is indicated in the Figure 5.1, the mobile application will

connect to the backend system hosted through internet. In the same way, the web client

component of the web application is to be connected to the backend through internet.
This feature has become feasible due to the separation of presentation logic from

business logic by the implementation of Model View Controller pattern. As it is

indicated in the Figure 5.1, the backend of the CBTLS is layered and separated the

presentation layer, business layer and the database layer. This approach has been taken

to facilitate high flexibility, maintainability, and scalability of the system. The web

application is designed to be hosted in wildly application server, and the system is to

connect to MySQL database through data access layer of the application.

The request received by the presentation layer of the web based application is validated,

and checked for authentication and based on the validity of request, it is passed through

to the business layer. Business layer of the application would contain the core business

logics to process and respond to the received request, and for this processing if any data

is required from the database, the request will be passed to the database through the

data access layer of the application, where it would manage the database transactions.

The requested data is returned back to the business layer, and after processing the

received request is responded with the processed information through the presentation

layer. According to the design of CBTLS, the business layer and the data access layer

35

would be stateless, and the user session related data would be maintained at the

presentation layer of the system, hence it would be stateful.

As it was mentioned in chapter I, the core functionalities of the system would be

exposed to the mobile and web application through a REST (Representational State

Transfer) API (Application Program Interface).

5.3 User Interface Wireframes of mobile application

Please refer Appendix A for the User Interface design diagrams of the mobile

application of CBTLS. In the section, each user interface is explained in detail related

to its functionality and the navigation from one user interface to another.

5.4 CBTLS entity relationship diagram

Please refer Appendix B for the entity relationship diagram (ER Diagram) of CBTLS.

5.5 Class diagram of CBTLS

Please refer Appendix C for the class diagram of Community based train locating

system.

5.6 Sequence Diagrams of CBTLS

Please refer Appendix D for the class diagram of Community based train locating

system.

5.7 Summary

This chapter was mainly focused on design diagrams and design details of CBTLS.
Here the architectural design of the system was explained in details along with reasons

for the design. Also, the user interface design of the mobile application (this is

applicable to web application as well) were explained in detail with the navigation

process and purpose of each interface design. Furthermore, rest of the design diagrams

of the system like class diagram, entity relationship diagram, and sequence diagrams of

CBTLS is listed in this section.

The following chapter is mainly focused on implementation details of CBTLS, it
contains the curtail code segments,

36

Chapter 6

Implementing CBTLS for real time information

6.1 Introduction

In the above chapter, chapter 5, the design details of CBTLS was described in detail. In

this chapter, it will be explained the details of implementation done based on that
design.

Here the implementation details would be discussed in terms of software, hardware

used for the implementation, important algorithms and code segments used for the

implementation of CBTLS.

6.2 Implementation Plan for demonstration purpose

For the demonstration purpose of research, only a single train route (Colombo -Puttlam

line) was selected, this is in terms of integrating master data including static train

schedules, to geo coordinates of the train route. Of that train route, train schedules are

selected to cover both weekdays and weekends, for office times where the trains are

mostly crowded, and to cover regularly crowded times, when generating data to

stimulate data that should be retrieved from the train passengers.

6.3 Software and Hardware used in CBTLS implementation

At the time of implementation a set of tools were used for the development purposes as

described in this section. To maintain the code base for both mobile and web

application, the decentralized version controlling system - GitHub was used. As the git

client for windows “TortoiseGit 2.0.0.0” software was used together with “git version

2.6.2” for windows.

For the web application, as the integrated development environment (IDE), Eclipse

“Mars Release (4.5.0)” was used. This is because. Since CBTLS is developed using

Java “jdkl.8.0_60”, of Eclipse IDEs available, the latest version Eclipse Mars is the

only Eclipse IDE which fully supports java 8. Eclipse IDE was selected for

37

development as.it is a comprehensive development tools with a large number of plugins

available and a widely used IDE.

For the mobile application the Android Developer Tools (ADT) built upon Eclipse was

used. For the application development, the android version 5.0 was used (Lollipop -

API level 21). Even though a latest version of android was used for development, it

facilitates the backward compatibility for android devices.

Since MySQL database was used in CBTLS, for the development, MySQL Community

Server - version: 5.5.28 was used. To access this server via a graphical user interface,

MySQL workbench 5.2.47 was used.

To run and test the web application, wildfly “9.0.2.Final” version was used. The

application was run and tested using Firefox web browser “41.0.2” version.

To run and test the mobile application, an android device with android version 5.1

(Lollipop OS) was used.

At the development stage, the application server and database server both were in the

same computer, but at the actual deployment they could be easily separated as described

in the session below named “Deployment View”. Since the application was hosted in

the local environment (localhost), for the mobile device to access the REST web

service, both devices were connected to a same router in a local area network.

6.4 CBTLS web application implementation

Initially the project is set up using the technologies explained in the chapter 3. The

project setup inside the eclipse is viewed as below in figure 6.1.

38

Oj Java Et - Eetpae
ri!s CiJcT ll-iv.g»!: 5t*uh f-s: J.'ij'sw H*

>'•
e «o I i- v “ ui£j Project Explorer K

« cbtli Jr.btSs ni.n:tr.-|
& ZSh JavaScript Resources
a gj src/main/java

. /}j com.nadee.cbtls.anelytics
: 95 com.nadee.cbtls.constant
•> /fj com.nadee.cbtls.controller
• com.nedee.ebtls.deo
> tfl com.nadee.cbtls.dlo
: 95 eom.nadee.cbtls.initbinder
> tfj com.nedee.cbtls.masterdata.domain
:< 95 com nadee.cbtIs masterdata.function;
; ,;'H com.nadee-cbtls.masterdata.service
.• 95 com.nadee.cbtls.model
: 95 com.nedee.cbtls.service
■ «fi com.nadee.cbtls util
: 95 com.nadee.cbtls velidator

t> 6J src/main/resources
l*5 src/test^ava

i> &l JRE System Library (jr«l JJ jO_C5]
: Maven Dependencies
■* Sb »«

a £5 main
> £"* j«v®
(> C-J lib
> £ j resources
> £ i v/ebapp

> Cj test
r> Cs target

5^ pomjml

Figure 6.1 - CBTLS Web Application Structure in Eclipse

The static schedule data was integrated into the system initially using the web service

provided by Railway Department and 1CTA, the web service URL is given below.

“http://l 03.11.35.13:9080/services/RailwayWebServiceV2Proxy.RailwayWebService
V2ProxyHttpSoapl 2 Endpoint ”

In order to call this web service, the following method was used,

]
private static SoapObject callWebService(String action?Jame, ScapObject request) throws Exception {

SoapSerializationEnvelope envelope « new SoapSerializaticnEnvelope(SoapEnvelcpe.VTffll);
envelope.setOutputSoapObject(request);
AndroidHttpTransport androidHttpTransport = new AndroidHttpTransport (EA0POIA.T);
androidHttpTransport. call(actionNan;e, envelope);
System, out. println("result" + envelope. bodyOut.toString());
SoapObject results = null;
try {

results = (SoapObject) envelope.bcdyln;
> catch (ClassCastExcefrtion e) {

SoapFault fault ■ (SoapFault) envelope.bodyln;
throw e;

>
return results;

>

Figure 6.2 - CBTLS Web Application method to call web service

After the initial master data is included in the system, users can search for train

schedules. As an example code to represent rest of the services as well, in below Figure

6.3, Figure 6.4 and Figure 6.5, the code samples to represent the flow inside the system

from presentation layer (Figure 6.3) to business layer (Figure 6.4) to the persistent layer
(Figure 6.5) is indicated.

39

http://l

ftC on trailer.
public class TrainStationScheduleController {

gAvtcvared
private TrainStationScheduleService trainStaticnScheduleService;

^•RequestMappingtvalue = "/searchTrainScheduIes”, irethod = Request'-teThcd.POST)
public SResponseBodyl List<TrainStationScheduleDTO> search7rainSchedules(

§RequestBody TrainScheduleSearchDTO t'-ainSchedjleSesrchDTO){
List<TrainStationScheduleDTO> list*new ArrayList<7rainStaticnScheduleD70>();
try {

System.out.println("trainScheduleSearcbD70 + TrainScheduleSearchDTO);
list»trainStationScheduleService.serach7rainStaticnSchedules(trainScheduie5earchI>'r0);

} catch (Exception e) {
e.printStack7race();

>
return list;

>
>

Figure 6.3 - Code in the presentation layer (controller) to receive the request

As it is indicated in Figure 6.3, with the use of annotation “@ResponseBody” this

controller will function as a rest service provider.

.?Se.*vice(”trainStaticnScheduleS«rvicO
3i>ans3ctlonoi(propiigatton » Propagation.SUPPORTS, readonly « true)
public class TrainStationScheduleServicelspl iTploients TrainStationScheduleService {

jSAutowirod
private TrainStationScheduleDAO trainStationScheduleOAO;

iJAuto.iired
private CcnronDAO cccronDAO;

^Override
public List<TrainStationScheduleOTO> serachTrainStationSchedules(TrainScheduleSearchOTO trainScheduleSearchOTO)

throws Exception {
List<TrainStatlonSchedule> stationSchedule'.«trainStation5cheduleOAO.serachTrainStationSchedules(train5<hedulrSes.*;H-OTC);
if(l(stationSched,jles«.null)){

List<TrainStaticnScheduleOTO> list*neu ArrayList<TrainStationScheduleOTO>();
for (TrainStaticnSchedule trainStaticnSchedule : stationSchedules) {

TrainStationScHeduleOTO trainStationScheduleOTC*new TrainStaticnScheduleOTO(trainStaticn3c!:e'.iule);
trainStationScheduleOTO.setTic'<etPrices(new ArrayList<Tic<etPriceDTO>());
List<TicketPrice> ticl;«tPrices«trainStationScheduleDA0.getTicV:etPrices(t^ainStaticnScnecjle.getTrainStationSchedule:dO);
for (TicketPrice ticketPricc : tickctPriccs) {

trainStaticnSchcduleOTO.getTicketPrices().add(new TicketPriceDTO(tickttPricc));
>
iist.add(trainStation$cheduleOTO);

}
return list;

)
return null;

})l

Figure 6.4 - Code in the business layer (sendee) to process request

As it has been indicated in Figure 6.4, after service layer receives request from

controller as indicated in Figure 6.3, it will access the persistent layer indicated as

“TrainStationScheduleDAO” and “CommonDAO” in Figure 6.4, get the requested

information, process them and pass back to the controller layer, so it could give

response back to the web client or the mobile client. This flow has been clearly

described in chapter 4 and 5. With use of “©Transactional” annotation, the database

transaction management is taken in to the service layer.

40

;3'.?pcsitcry(value“"trainStationScheduleDAQ'')
public class TrainStationScheduleDAOItrpl implements TrainStationScheduleDAO {

§Autowircd
private SessionFactory sessionractory;

^Override
public List<TrainStationSchedule> serachTrainStationSchedules(TrainScnedjIeSearchDTO trainScheduleSearc-iOTO)

throws Exception
Criteria criteria = 5e5sicnFactory.getCurrentSessicn().createCrite“ia(TrainSTaticnSchedule.class);
criteria.createAlias("trainScheduie“, “trainSchedule");
criteria.createAlias("frcraTrainStaticn", "frcmTrainStaticn");
criteria.createAlias("toTrainStatien", “tcTrainStation");

Conjunction and-Restrictions.ccnj'unctio/i();
dnd.add(Restrictions.ge("arrivalTi/r.e",trainScheduieSearchDTO.retieveFrcmTire()));
and.add(Restrictions.le("departure!ire",trainScheduleSearchD!D.retieve!cTice()))/
and.add(Restrictions.eg("froni!rainStation.trainStationId",trainSched'jleSearch0!0.getrro«BStaticnIdO))J
and.add(Restrictions.«q("toTrainStation.trainStationId’,trainScheduleSea-chOTO.getToStaticnId()))j
criteria.add(and);

List<TrainFrequency> list=t'-ainScheduleSea-cIiDTO.retrieve!rainFrequencies();
if(!(list«null || li5t.isEmpty())){

Disjunction or - Restrictions.disjunct\on();
for (TrainFrequency trainFrequency : list) {

or.add(Restrictions.eq(“trainSchedule.trainfrequency",trainFrequency));
}
criteria.add(or);

}
return criteria.list()j

}

Figure 6.5 - Code in the persistent layer (service) to process request

Here the persistent layer is accessing database with the aid of Hibernate framework and

fetch data based on defined criteria and returns the requested data back into the service

layer. When considering the structure of “TrainScheduleSearchDTO” as indicated in

above figures (Figure 6.3, Figure 6.4 and Figure 6.5), it is a Data transfer Object (DTO)
used for the sole purpose of passing data through a layered architecture. The structure

of the “TrainScheduleSearchDTO” is shown is belovy, Figure 6.6.

41

public class TrainScheduleSearchDTO implements Serializable { .
private static final long serialVersionUID = 1L;

private long frcmStationld;
private long toStationld;
private String searchedDate; // in dd/.’Vi/y y.
private String frcmTime; // in KHirss
private String toTime; // in HH:rrn

public Date retieverro?nTiir,e() {
Date fromTimeDate = null;
if (StringUtils. isNotErrpty(frcrRJirre)) {

SiirpleDateFonrat tf = new SimpleDateronrat("HH:.Tm: ss");
try {

frorr.TiireDate = tf .parse(frojr.Tisre);
} catch (ParseException e) {

e.print5tackTrace();
}

>
return fromTimeDate;

>
public Date retieveToTime() {

Date toTimeDate = null;
if (StringUtils.isNotEmpty(toTiir.e)) {

SimpleDaterormat tf = new Sirr.pleDateFonratC.HHrrnrrss’*);
try {

toTimeDate = tf .parse(toTifre);
} catch (ParseException e) {

e. printStack-T race ();
>

>
return toTimeDate;

>

Figure 6.6 - Structure of the data transfer object

The flow of the rest of the functionalities in the system would be identical to the

structure shown in above figures (Figure 6.3, Figure 6.4 and Figure 6.5 and Figure 6.6).

The domain classes of CBTLS serves as the backbone of the system, all the logics, code

structuring is done based on them, and with the use of Hibernate framework, the table

structure is also auto generated from the defined domain classes with the use of

annotations.

Please refer Appendix E for the structure of domain classes of Community based train

locating system.

One of the crucial feature of CBTLS is to maintain the validity of its information, since

data is retrieved from general public. For this purpose, the geo coordinates received

from a user is validated in the system as given in below Figure 6.27,

42

:(.cn-ponent(“gf,SValidotor")
public clasa GPSValidato’- {

//within
private static final double itandarRadluS’Q.S;

boolean isInRectangle(double center*, double centerY, double radius, double », double y) {
return x >» centerx - radius 33 >. <• center/ ♦ radius 43 y >■ center/ - radius 43 y <* cente'/ * radius;

>
// test if coordinate (x, y) is within a radius frcs coordinate fcenter_x,
// center_y)
public boolean checkIfPoint!nCircle(doublc ccntcrCcordX, double cents.-Ccc'-dv, double -adi-s, double coo'd/, double co=*ar) [

if (isInRectangle(centcrCoordX, centcrCocrdf, radius, coo.-dX, cco-d')) (
double dcublcXCoord - ccntorCoc’,dX - ccordX;
double doublcYCoord - centorCocrdY - cocrdr;
doubleXCoord *■ doubleXCoo-d;
doubleVCcord *- doubleYCoord;
double distanceSquared - doubleXCcord ♦ doubleVCcord;
double radiusSqoared - radius ' radius;
return distanceSquared <■ radiusSquared;

}
return false;

)
public boolean checkIfValidLocationInput(GeoLocation inputLocaticn, List<Geo.ocaticn> ,-er,ccat:o-.o){

boolean isValid-false;
for (Geolocation centerLocation : geoLocaticns) {

if((checkIfPointInCircle(centerLocation.getlatitude(), center-location. getLcngituce(),
standarRadius, inputLocation.getLatitude(), inputLccaticn.getLangitude')))){

isValid-true;
Y>

return LsValid;

Figure 6.27 - Validation code for GPS coordinates

Since CBTLS allows the users to be ranked, that parameter is used to validate users as

given blow in Figure 6.28.

//^br^sbhpld user ranking
private static final float minUserRanking=2.Si;
j X
* The formula for calculating the weighted rating of a user, Bayesian estimate:

weighted rating (HR) = (v A- (v+m)) A- R + (it. A* (v-he)) A- C
where:
* R = average for the user (mean) = (Rating)
v v = number of votes for the user = (feedbacks)
* m = minimum votes required to be considered as a trusted user - eg:- 19
* C = the mean vote across the whole report
for the Top 250, only votes from regular voters are considered.

* V
public boolean checkIfUserIsTrusted(long userld){

float avergeUserRanking=systemUserRankingService.getAverageSystecUserRanking(userId);
if(avergeUserRanking>=minUserRank\ng){

return true;
>
return false;

>

Figure 6.28 - Validation code for Users

6.5 CBTLS mobile application implementation

The project was set up using the technologies explained in the chapter 3. The project
setup inside the eclipse is viewed as below in figure 6.29

43

Java - Edip.se' '

File Edit Refactor Source Navigate Search j

Z A
E3 &L J

•p <feB Package Explorer £3 \ □
a J0 cbtls-mcbile

i> Efi Android 6.0
i> E& Android Private Libraries
P fiji Referenced Libraries
^ £9 src

> JJ} com.nadee.cbtls.activity
> J0 com.nadee.cbtls.dto
l> S com.nadee.cbtls.fragment
> {4} com.nadee.cbtls.util

f> jlj9 gen [Generated Java Files]
tlfr assets

t> bin
t> & libs
a ^ res

1
:

> & dravvable-hdpi
> drawable-Idpi
i> & drawable-mdpi
0 07 drawable-xhdpi
t> 0> drawable-xxhdpi
t> 0- layout
t> 0 menu
;> 0 values
i> 0 values-vll
i> 0 values-vl4
> 0 values-w820dp
^ AndroidManifestjemI
BE icjauncher-web.png
J) proguard-project.txt
H| project.properties

1
:
I

I
I.

i

Figure 6.29 - CBTLS Mobile Application Structure in Eclipse ADT

The user location would be acquired through GPS and Android's Network Location

Provider. Although GPS is most accurate, it only works outdoors, it quickly consumes

battery power, and doesn't return the location as quickly as desired. Android's Network

Location Provider determines user location using cell tower and Wi-Fi signals,

providing location information in a way that works indoors and outdoors, responds

faster, and uses less battery power. Therefore, to obtain the user location in this

application, both GPS and the Network Location Provider are used as shown in figure

6.30.

44

//Minimum distance to change updates in Tc-ters
private Static final long HIN_DlS7fixCt_Cn*JJGE_T0_UPDATE » 18; >' 13 rete'-s

//Miniff.vr cire between updates in niiiisecond;
private static final long WN_TI!-'.E_BEV.<EEtf^_UPDATE5 = 1880 ■ 60 * 1; .7 I sinyts
/-*
* Try to get rny current location by GPS or Network Provider
-7

public void getCurrentLocationOfUser() {
try {

locationManager = (LocationManager) irCcntext
. getSysterrService (LOCATION_SERVICE);

// check and get GPS status
isGPSEnabled = locationManager.isProvider£nabled(Location.Manager,GPS_PROVIDER)i
U check and get network status
isNetworkEnabled = locationManager. isProvidercnabled(LocationHanager.AfETIilGfl/(_P/?0VT0£/?) J
// Try to get location
if (isGPSEnabled) {

this.isGPSTrackingcnabled = true;
// GPS is used to get GPS coordinates
provider_info = LocationManager. GPS_PROVIDER;

) else if (isNetworkEnabled) { // Try to get location
this.isGPSTrackingcnabled = true;
// Network State is used get GPS coordinates
provider_info = LocationManager. NET.\QRK_PROVIDER',

>
// Application can use GPS or Network Provider
if (!provider_info.isEmpty()) {

locationManager.requestLocationUpdates(provider_info,
MN_ TII-’.E_BETUEENW_UPDATES,
HINDISTMICE_CHANGE_TOJJPDATE, this);

if (locationManager != null) {
location = locationManager

.getLastKncwnLocation(provider_info);
updateGPSCcordinatesQ;

>
>

} catch (Exception e) {

Figure 6.30 - CBTLS Mobile Application GPS Tracker

The web application contain all the features of mobile application, except for the facility

to provide the location of the train or the compartment details. The general public would

be able to search for trains, get the estimation and predictions. At the same time they

could provide feedback on each selected trains.

In the web application, there would be a part with restricted access for admin

functionalities.

Please refer Appendix F for user interfaces available in the web application.

6.6 Deployment View

The following diagram illustrates the deployment environment for the CBTLS, required

resources and networks.

45

Internet6L C>'
| Mobile User (Application) |

____.
jWUdfly Application Server [Firewall

“i

| Apache2 Proxy server]Web User/Application]

Internet

| Web User/Application |
| MySQL Database Server]

Mobile User (Application)

CBTLS Deployment View

Figure 6.49 - CBTLS Web Application Deployment Diagram

Above figure depicts the deployment architecture of the servers and the sendees

required for the CBTLS Application. As it has been indicated in Figure 6.1, Apache 2

server is integrated in to the deployment structure for the load balancing purposes.

As it was stated in chapter 3 as well, the web based system is hosted in Wildfly

application server, based on the requirements and growth of the system, this application

server could be clustered and load balancing techniques could be introduced.

Since MySQL database is used for the implementation of CBTLS, it will be hosted in

a separate server in the production environment and that server could be separately

clustered or replicated based on the requirements. In Figure 6.1 this MySQL server has

been labelled as “MySQL” database server.

6.7 Summary

In this chapter, it was explained in detail how the implementation done for CBTLS,

based on the design which was describe in Chapter 5. In next chapter it will be discussed

how this implemented system was evaluated by a selected set of users.

46

Chapter 7

Evaluation of Community Based Train Locating

System

7.1 Introduction

In the previous chapter the implementation details of the CBTLS system was discussed

in details, and in this chapter, the evaluation of the implemented system would be

discussed.

7.2 Evaluation Methodology

In order to evaluate the complete system’s functionality properly by allowing a set of

users, it would require the system to be deployed in an actual production environment.

Therefore, the methodology used here is to allow a set of selected users to use and give

a feedback on system using a predefined set of question in a questionnaire. For this

evaluation purpose, the system was deployed in a local environment. Since CBTLS

consists of a mobile and a web based application, both systems were evaluated

separately, using the same set of questions.

The following areas were evaluated in the system evaluation.

• Web Application Evaluation
o In terms of system functionality (5 questions)
o In terms of Usability (5 questions)
o In terms of Overall Impression (5 questions)

• Mobile Application Evaluation
o In terms of system functionality (5 questions)
o In terms of Usability (5 questions)
o In terms of Overall Impression (5 questions)

For each question on system evaluation sections, following evaluation factors were

assigned.

1 - Very poor (1), 2 - Poor (3), 3 - Average (6), 4 - Good (8), 5 - Excellent (10)

47

The target of the evaluation is to make a decision through a statistical analytical method.
A critical line is defined and the calculated average pint for each question will be

checked against the critical line to make a decision.

Number of users who has given the feedback - U

Number of questions on evaluation feature - Qi

Number of items marked as Very poor - VPi

Number of items marked as Poor - Pi

Number of items marked as Average - Ai

Number of items marked as Good - Gi

Number of items marked as Excellent - Ei

Average points per evaluation item= (Ei* 10 + Gi*8 + Ai*6 + Pi*3-r VPi *1)/U

The critical line = 40%

7.3 Evaluation Forms

Please refer Appendix G for evaluation forms

7.4 Final Evaluation Results

Mobile Application: -

Total number of users who provided their feedback: - 17

Evaluation factors Weight

assigned to

each option

Usability

Evaluation

System

Functionality

Evaluation

Overall

Impression

of the

system

No of questions in each section 55 5

Very poor 1 0l 5

3Poor 5 5 10

6 50Average 55 50

48

15Good 8 1520

5Excellent 10 9 10

29Average points 33 33

59%Average Percentage 66% 66%

Table 7.4 - Final Evaluation Estimation of Mobile Application

Web Application: -

Total number of users who provided their feedback: - 17

OverallEvaluation factors Weight

assigned

to each

option

Usability

Evaluation

System

Functionality
Evaluation

Impression

of the
system

No of questions in each section 5 5 5

Very poor 1 1 01

6Poor 3 23

Average 6 5145 20

Good 8 1325 40

Excellent 10 1411 23

Average points 3334 39

69% 67%Average Percentage 79%

Table 7.4 - Final Evaluation Estimation of Web Application

49

Evaluation Chart
90%
80%a>

QO
id 70%
g 60%
£ 50%

SSSSssssaniMMi
'«as

40%0)oo
to 30%
£ 20% < 10%

0%
Usability system functionality Overall Impression

Evaluation Feature
■

critical line Web application Mobile Application

Figure 7.1 - Evaluation Chart

According to the evaluation chart given here, in Figure 7.1, all the evaluation points are

above the defined critical point and therefore system has approached its target
evaluation points.

7.5 Summary

According to the evaluation done in this chapter, the system has maintained its

evaluation above the critical point in all aspects of the evaluation for both mobile and

web application. In the following chapter, the conclusion and the future possible

enhancements for CBTLS would be discussed.

50

Chapter 8

Conclusion and further work

8.1 Introduction

In the above chapter 7, the system was validated by selecting a set of users. In this

chapter the implementation details, experience and validation results are discussed and

the identified enhancements are described as future work.

8.2 Conclusion

The party whom are mainly benefited by this system would be the passengers. With the

currently available systems, they are only capable to see the static train schedules. This

new system will provide the following information to a passenger, regarding a selected

train.

• Indication if the train is available or not (for current trains).
• The current position of the desired train.
• The crowd density in each compartment.
• Recommendations for trains based on historical data
• Facility to provide the passenger’s suggestions, comments and

criticisms regarding a selected train
• A location aware alarm to indicate when the desired destination is

reached
• Facility to add train schedules in to a “Favorites List’5 for easy access

The above features would allow passengers to save the waiting time at the stations for
a train. It would also allow to select an alternative method of transportation, in case a

train is not available for the desired time, or the train has been delayed or cancelled.

This can save many productive man hours for the country.

A set of authorized users for the web application, would be able to analyze patterns of

train transportation and to identify the points where delays occur. The past stored data

could be also analyzed and studied to provide a better train transportation service which

will serve the need of passengers better.

The main risk for the system would be the possible inaccuracy and reliability issues of

the data retrieved from the passengers. The inaccuracy could be reduced by through

validation, but the reliability of data could only be determined through the amount of

51

similar data retrieved from different sources. To enhance the reliability, a rating system

for users has been introduced.

The location awareness of the mobile application for passengers would require GPS or
Android's Network Location Provider activated in the mobile application. Also the

application would require an active internet connection to use this application. These

could be considered as limitations of the system, since some users would not be agreed

with these terms.

All the existing and proposed systems mentioned currently available, would require an

involvement from Sri Lanka Railways (SLR), mainly for locating trains. It has been

done by placing a GPS tracking device inside the train. In this CBTLS, there won’t be

a requirement for any involvement of SRL, since the data is expected to be fed by train

passengers.

For the passengers, to use the mobile system, it would require an android mobile device

with either GPS or Android's Network Location Provider activated, and an active

internet connection.

For the web application, it would require, a high performance server to host the

application to handle the expected large amount of requests, since this is accessed by

general public. At the same time, since the current locations of trains should be updated

at regular intervals, requests for locations updates would be sent frequently to the

server.

8.3 Future work

Though the CBTLS system, a set of data regarding each train would be collected daily,

and this would be a new set of data, which were not available before in Sri Lanka.
Therefore such a set of data could be used to generate new knowledge.

If the railway services would want to involve or accommodate this system, they could

have done it without having to bear an additional cost, or at a minimal cost, since only

requirement would be to place a smart mobile device inside the train.

To analyses and study the pattern of train transportation varying with the factor of

weather conditions, or to determine if there’s a relationship between weather conditions

and train delays, another dimension could be integrated in to this system as to collect

52

weather.information along with train location updates. For this purpose, a third party,

service could be easily integrated with the system.

Through the facility to provide their feedback regarding the train, passengers would be

able to convey their suggestions, comments and criticisms for other passengers. This

feature could be used by some responsible authority to get to know the feedback of

general public on their services.

8.4 Summary

In this chapter the overview of CBTLS project was discussed along with the evaluation

results. Furthermore an insight on future enhancements was also discussed.

53

References

[1] A. Kumarage, "Urban traffic congestion, the problem and its solutions/' 2002.
[2] A. B. Jayasinghe and N. Pathiranage, "Centrality measures' as a tool to identify the

transist demand at railway stations: the case of railway network, Sri Lanka/' 2015.
[3] "Economic and social infrastructure - Central Bank of Sri Lanka - ANNUAL REPORT 2012,"

CENTRAL BANK OF SRI LANKA, ANNUAL REPORT 2012, Mar. 2013.
[4] "Statistics, Ministry of Internal Transport," Ministry of Transport and Civil Aviation - Sri

Lanka, 28-Oct-2015. [Online]. Available:
http://www.transport.gov.lk/web/index.php?option=com_content&view=article&id=14
l<emid=113&lang=en. [Accessed: 13-Mar-2016].

[5] G. Bradley, International Association for Development of the Information Society, and
Albert-Ludwigs-Universitat Freiburg, Eds., Proceedings of the IADIS International
Conference ICY, Society and Human Beings 2010: part of the IADIS Multi Conference on
Computer Science and Information Systems 2010; Freiburg, Germany, July 29 - 31,2010.
Lisboa: IADIS Press, 2010.

[6] S. Rainford, "e-Sri Lanka: An integrated approach to e-government case study," Reg.
Dev. Dialogue, vol. 27, no. 2, pp. 209-218, 2006.

[7] ICTA, "Sri Lanka Railways - Train Schedule," Sri Lanka Railways, 2011. [Online]. Available:
http://eservices.railway.gov.lk/schedule. [Accessed: 13-Mar-2016].

[8] G. Bhashitha Nadun, "Sri Lanka Train Schedule - Android Apps on Google Play," Google
Play, 04-Mar-2014. [Online], Available:
https://play.google.com/store/apps/details7idHk.icta.mobile.apps.railway. [Accessed:
13- Mar-2016].

[9] Leelaratne, "Train Schedules of Sri Lanka - Android Apps on Google Play," Google Play,
14- Oct-2014. [Online]. Available:
https://play.google.com/store/apps/detai!s?id=com.aselalee.trainschedule. [Accessed:
13-Mar-2016].

[10] K. Mobiles, "Train Guide - Sri Lanka," Google Play, 30-Jul-2014. [Online]. Available:
https://play.google.com/store/apps/details?id=k.dw.timetable. [Accessed: 13-Mar-
2016].

[11] "Railway Traffic Optimisation System," Sri Lanka Railways, 01-Aug-2014. [Online].
Available: www.slrail.info/tracking/timetable.php. [Accessed: 22-Nov-2015].

[12] Prasanna, "How to search where the train is in Sri lanka (system to keep track of trains),"
Synergy Y, 17-Ju 1-2014.

[13] D. Jayakody, M. Gunawardana, N. W. Surendra, D. G. Jayasekara, C. Upendra, and R. De
Silva, "GPS/GSM based train tracking system - utilizing mobile networks to support
public transportation," 2011.

[14] N. S. Gunasekara, "GPS based tracking system for trains in Sri Lanka." 07-Jan-2006.
[15] ICTA, "Future Plans - Information Technology," Sri Lanka Railways, ll-Sep-2011.

[Online]. Available:
http://www.railway.gov.lk/web/index.php?option=com_content&view=article&id=126
<emid=180&lang=en#IT. [Accessed: 13-Mar-2016],

[16] B. Coifman, D. Beymer, P. McLauchlan, and J. Malik, "A real-time computer vision
system for vehicle tracking and traffic surveillance," Transp. Res. Part C Emerg. TechnoL,
vol. 6, no. 4, pp. 271-288,1998.

[17] D. J. Dailey, L. Li, T. Northwest, and others, "Video image processing to create a speed
sensor," Washington State Department of Transportation, 2000.

[18] N. Chadil, A. Russameesawang, and P. Keeratiwintakorn, "Real-time tracking
management system using GPS, GPRS and Google earth," 2008, pp. 393-396.

54

http://www.transport.gov.lk/web/index.php?option=com_content&view=article&id=14
http://eservices.railway.gov.lk/schedule
https://play.google.com/store/apps/details7idHk.icta.mobile.apps.railway
https://play.google.com/store/apps/detai!s?id=com.aselalee.trainschedule
https://play.google.com/store/apps/details?id=k.dw.timetable
http://www.slrail.info/tracking/timetable.php
http://www.railway.gov.lk/web/index.php?option=com_content&view=article&id=126

Appendixes

Appendix A - User interface designs wireframes for mobile application

UI Wireframes of CBTLS mobile application

Train Schedule My Profile Favorites

From Station d

To Station
d

Next Train Today Schedule Advanced Filter

•>
: Pick a Date

Pick A Time
I

From Time To Time

t Search

Figure 5.1 - CBTLS mobile application initial UI wireframe

Figure 5.1 would be the initial UI loaded to the mobile user, and this can serve as other

existing system to search for train schedules. This UI was built to preserve that
functionality and user experience. From here, by picking a start station and an end

station, and an optional date and time range, users can search for train schedules.

55

Train Schedule My Profile Favorites .
...

View Train Schedules

Station 1 - Station 2
dd/mm/yyyy from hh:mm to hh:mm

Departure Arrival Duration(h) View

10.30 am 11.00 am 0 30 Select

10.30 am 11.00 am 0.30 Select

10.30 am 11.00 am 0 30 Select

10.30 a.m 11.00 a m 0 30 Select

Search AgainView Recommendations
!____ ________ _.

Figure 5.2 - CBTLS mobile application view train schedule wireframe

Once the schedules are searched through the initial user interface (in Figure 5.1), they

will be get listed like in the above Figure 5.2. Up to this level, system behaves as an

ordinary existing train schedule searching mobile application. Through this UI,

advanced features like recommendations user interface (in Figure 5.3), and real time

location UIs could be accessed. If the user accessed the “select” feature listed in each

schedule, user will be directed to the user interface “View train details” (Figure 5.4)

56

- r

My Profile FavoritesTrain Schedule
v-t. -

View Recommendations

Station 1 - Station 2
dd/mm/yyyy from hh:mm to hh:mm

Trains are listed based on ranking from best to worst
The rankings based on analysis of historical data

Rank Arr. at Dest. Avd. Delay Crowd

1 11.15 a m 5 mins Medium

2 11.00 a.m 10 mins High

OKi

Figure 5.3 - CBTLS mobile application view recommendations wireframe

In the user interface indicated in Figure 5.3 here through an internal algorithm, system

will order the train schedules for user, the considered facts are included like daily delay,

crowd density, time of arrival at destination.

57

Train Schedule My Profile Favorites

Train Schedule Details

ETA at Station 1 - 10.30 a m

ETA at Station 2 -11 00 a m

Total Distance 10km Duration - 30 mm

*
Train Type:- Long Distance Frequency - Daily

m
v.

5||g||giggp

i flam in the train)

«\<’c?t*°n 0 arn outside the train)

>n ‘H

Figure 5.4 - CBTLS mobile application view train schedule details wireframe

In this user interface indicated in Figure 5.4, the user has selected a single train

schedule. Therefor user can view the static data regarding selected schedule, and at the

same time this UI provides access to the other major UIs as indicated.

The button named “Update train location (I am in the train)” would provide the access

to the user interface (in Figure 5.5) where the user can actively update train location.

The button named “Update train location (I am outside the train)” would provide the

access to the user interface (in Figure 5.8) where the user can passively update train

location.

“View Train location” button would provide access to the user interface where user can

view current location of the train (in Figure 5.9).

The button named “View analysis of the train” would provide access to the user

interface (in Figure 5.11) where user can view analytical details of the train.

“Add to favorites” button will direct user to the interface where favorite schedules are

listed for the user (in Figure 5.14).

58

Favorites•j. My Profile - s-ny.

Update Train Location (I am in the train)

Previous Station
A

; In the station/On the move/Stopped
A

ate and Track Tain

Figure 5.5 - CBTLS mobile application active update train location wireframe

The user interface in Figure 5.5 is mainly to actively update the current location of the

train. Additionally it provides access to other user interfaces like update compartment

details (in Figure 5.6) and set alarm clock (in Figure 5.7).

Rest of the Uls wireframes are listed below,

59

Train Schedule My Profile Favorites
. •

Update Compartment Details

Compartment Number - Total Compartments

2 2

Comp.Crowd Density (low/rnedium/highA/ery high;
A

Overall Crowd Density (lovv/medium-'high.very high;
A

Update

Figure 5.6 - CBTLS mobile application active update compartment details
wireframe

The user interface in Figure 5.6, facilitate user to update compartment details, by

selecting appropriate values from a predefined set as indicated in Figure 5.6 . “Update”

button will sent the selected details to the backend server and direct user to the user
interface named “View current compartment details” (Figure 5.10).

60

1mggggmmmm
My Profile Favorites

Set Notification Alarm

Select Destination Station
J

© Set Distance to Ring Alarm

Ring Alarm Before One Station

Ring Alarm at the Station€?

Distance to Set Alarm (in Km)

Figure 5.7 - CBTLS mobile application set notification alarm wireframe

The user interface in Figure 5.7 is to set the location based alarm clock for the user.

61

Train Schedule My Profile Favorites~r-':

Update Train Location (I am outside the train'

Last Station Passed
I_____________ A

Select Located Time

In the station/On the move/Stopped
A

Update The Location

Figure 5.8 - CBTLS mobile application passive update train location wireframe

The user interface indicated in Figure 5.8 is to update the train location passively.

Through this interface the location is not captured of the user instead it allows user to

give an approximate location of the train.

62

GIS

FavoritesMy Profile
- , '

Train Schedule
.. . . • .

View Train Location (current/last known)

A*

k ,
' \

i ;v
' I*-*—

. f«1 ------

' c:

Ti

3k :%-■ •"♦
. \ ;;

fr» ■■ 2 :c IT;-c .v S: uv.sk
a*** ,

•V #»-•«» •***
• vr-: . ft «T

*- 'i ; * Helsinki .v--.--
~7~rU

■/<, t; «m-Ti

i\S2
.. ^'sirs'
• ■

W

r 1
. ..-o'- . . ' !'»- .»• —-7-V »; c:

.«■

S| . v' ' ' 3
ira \ *v .a

«»*•LrfVa -

V i
♦ A T• I

View Compartment Details
v,kk'*

Figure 5.9 - CBTLS mobile application view real-time train location wireframe

In the user interface indicated in Figure 5.9 the current location of the selected train will
be indicated on a map, for current trains if the data is available with the system.

The “Refresh” button is to manually refresh the map for the user.

The button “View Compartment details” will direct the user to user interface available

to view compartment details, in figure (Figure 5.10);

63

■

3 My Profile Favorites[Jil

.

View Current Compartment Details

Total Compartments - 10 (Approx Average)

Information Available on Follvvmg Compartments Only

Compartment Number Crowd Density

3 High

6 Medium

8 Very High

Overall Crowd Density - High

Above Details are Based on 5 Feedbacks

Figure 5.10 - CBTLS mobile application view compartment details wireframe

This user interface indicated in Figure 5.10 is to view the current reported compart

details of the selected train.

“View Next Train” button will lead the user back in to the Figure 5.2 - “View Train

Schedule” interface, where user can select a different train if required.

64

My Profile Favorite*

View Analysis of the Train

ETA at Station 1 - 10 30 a m

ETA at Station 2 -11 00 a m

Total Distance -10Km Duration - 30 min

Train Type - Long Distance Frequency - Daily

Average Delay past 10 days -10 mins

Average Crowd Density past 10 days - High

Ticket Prices - 1st Class - 250. 2nd class -150

Figure 5.11 - CBTLS mobile application view analysis of train wireframe

The user interface indicated in Figure 5.11 facilitate the user to view further details of

the selected train.

65

::
Train Schedule.] My Profile . Favorites

Profile Details Please sign in

User Name

Password

Sign In/Srgn Up

Figure 5.12 - CBTLS mobile application user login wireframe

Figure 5.12 user interface is to provide the login functionality for the user, in order to

access limited functionalities of the system, user will have to login through this

interface.

66

!Trail. Schedule My Profile Favorites

Profile Details - signed in as ABC

Profile Name

Passenger Type (DailyA/Veekl//Occasional;
A

Update

Total Location Updates - 5

Total Crowd Density Updates - 10

Overall Ranking -

Your Mobile Devices -

Android Phone 1

Android Tad 1

Figure 5.13 - CBTLS mobile application user profile details wireframe

As it indicated in Figure 5.13, this user interface facilitate the logged in user to update

his/her profile.

67

Train Schedule My Profile
--- •■■ •- . .

Favorites

Start Staion Destination Time View Remove

Kandana Maradana 11 30 Select A

Maradana Ja-Ela 15 2: Select X

Figure 5.14 - CBTLS mobile application favorite trains wireframe

The user interface indicated in “Figure 5.14” is to list down the train schedules marked

as “favorite” by the user, it is purely for the convenient usage of the system user.

68

................ Appendix B - ER Diagram
Entity Relationship diagram of Community Based Train Locating System

i

Ifi
•|IS l i°
Jlilhiippu
‘is mu

11 ~ *»

r—r~

II:r i*
if] |(LfclPllL .

Ifllilli I Ijljliji iLr.uf . .
* if:* f 1515 s 8 8s- sf i , t!

rslliijUiisH: i iJsSii
,f] liiliiiiililli
£ J ---------- 4----- , I I | J J J

{ i

;
!

i
.. 3. ns

:

2
I

t I I
II
II >f : s = *

! I I ll
I 5 1
I Mli!

►JilSI

i!ll:

I I
> F II

iiiijP

11!
i
i‘i

! e] s a » s«mu
i ,1I I

I I
I6 i 2 s l

?Si}J •

id.L-liill.fcj

i ii:I I
I I I •» sI II II II I II I l-I I I1

& iAl—i i— ii i > ? V:i6 i ii oi ! 1 53T ! II?II

ill- i
i I'Ull f:,r_ fuu :hm

> fiM ^
:1 Siilfmmw!h 5 CL..;..

“1 IIIi II-r-JL

i’ll■all 2

11ti l l!: 2? I!• !m s
jillffl ff; i1*3 IS i i I- ;
iMUM}* l I?: HI f

J. i*+• 5
5 : ii I i

■*

fv Iiilllff III HI
X

I
I

Mr

'P
|sg a

1:3 IS
}ii\ \fella

L ------- rrr
11

i

i

Figure 5.15 - CBTLS ER diagram

69

Appendix C-Class Diagram
Class diagram of Community Based Train Locating System

5

,3.1
! 111(1! Hililll

a
3

!

1
3

! 1 liiV

Figure 5.16 - CBTLS Class diagram

70

Appendix D - Sequence Diagrams
Sequence diagrams of Community Based Train Locating System

* c | lntJa*vCx:

i va:i!f.suTO:i ‘

11 irr.i.rxjuy-n .
I 1 '

1 —»'•111

1 ' 1 i 1*1*
■'

T r
i

^ 1-J IC-TtjriSUw*' 0 !
1^2 tM<7')rjukni>

3 ,a^,^.<JufcSpjT-v;r, 1
1

3brf SuSajfir j
W5uwjit*wi.'**i
wna Sirj'jV

iiS

4K
i'i H-’-ivC -*«- -V- -yr-

iic-23 lu<Tai'5a«Um.<- 0

Figure 5.17 - CBTLS Sequence diagram for Search train Schedule use case

0 CPTiHWla^MMcCaiKte T<.«;<rv-V «S«vxa TM&MMaON}
j

Ta n Pium/» 1
1 -.QolTraiSetieluBOuHQwionirSctaoKclJ) [1.1 g<ftfj(RScXOi.0Ia;vtr-91r»'ia:'*}J«W

11: atfW’OooOj.cCul.ilj.-^ f-*5 J«e.
11.1.: jefanSrwulsS/OieR-j txooinSJ

li«I T-a.-ScncCA.

11 2 TiVSBttU

5 11.1 Ptrc»J»T<«rS»»*jrO
1.14. TutS? •.-CJiCXl-J;

?■

I 1 S. Trii>S»«>JeDiit.>*»
■c-

9

Figure 5.18 - CBTLS Sequence diagram for view schedule details use case

C*T5»T**k.*n*C*0<lK»ra*niy«n$t'i'cB

Ti
Tn'nPiu&igtf ji /e*t»ocory>y>jaKru{tysi idiMLClCj |2 vci>RKar<rcrt3atc/isity9sJit«V<Htil^

1.1.1: j.iTsii'Sc?«ai*8«!c;.T^ Kf*a.sic:

111 ^ Tisr&r**te

UTnr&*w£*

^ I 13 jwvjsRecc.'wwftUnj] Q
U liK’Rcccc'cxriiwn’

<3 Ufl<»toowiwi»to»'
c- -f • 9v«»: r -I

i

Figure 5.19 - CBTLS Sequence diagram for view recommendations use case

71

,.L UcavujiCCr.-*->«,
j UHS■at.'730+zxr^ 3T JZ6 1•.«

L_ j
1 Ke*»^«W»rwVinA-«yj4*vO! ,

----- ►jV" oato as rt'Jpe.*'

t

C3iyAsl«Uvjjv.'0

^~~| 1 * > {j

'UtiMtf<.>!A:s-:cvri.? xt-oakr C*us»

i

lit mlKfr'.'/i T,r'y-ezjl*r-'^Utt.:<rrv.

• ’ 3 ; «s*»s' s-y
11) Sul»iir--.»

12 axcejvcra11 wntt'tni c- 1<-
.

Figure 5.20 CBTLS Sequence diagram for active train location update use case

lTrail T’aacistf
or.Pa w. lOy.r^'o^-c rPr,* .ri.'Ma ■& vo I

lxj WPm xtO&m bawPawneCM aVCfc

^ | t.M prac*i<dusc rijxiu p
2 ».daxorO>:‘Caol'.Turt■*xy?y.s.*X-.,V. r

3i x»« X'»sfi;i<x"r.ie.vJkv..;.;

I • ’22 Kaiv ryt 1J
I'

12 iito}»Si*''c» 1I J. vxoaitfsna C-<£■

-*- $i

Figure 5.21 - CBTLS Sequence diagram for passive train location update use
case

1 Cor&xrw&uhStw j Cary<wl<>*h5>B j0wc*r«'*3J;Cc>-Mfc»

I
Ta'nPaswrj* ,

" cfC tieCccrpimrt 0c Ul s? W pal wSMiVO} j
L^xCo^««OcWi<Xfi|afiw£-iU?.C^

~~~[ 1.11: poon.Ca'W^ct’plA'

tl 3 itcwrs
—i|wvC5TTT«rt;«as'.T»r.3i?*e>crirC

1 \2li^*atrv
<-<- I

liwa.'iisra
13 sucat&'orof v

v *i'
ii

Figure 5.22 - CBTLS Sequence diagram for compartment details update use
case

72



£ WA Asl mgiiftttA
TsnPiiisr^f :i

II aXW'^ixAIW'isfajxAs-ar^t
■

I »9?itfafcrteTr;rs5«axf/ir»r'.tij*
I> 1!* * I sm&Gtak.’ij 0

ri T ■: : .rr*r'•13 SM,j*'A *-■!,*. xr\J: •!■ :n |
*Jk ' ’3 2 x;s'.* m113kgs."?£

V12 SjCir.vcnvX13 vxcnincf ■r ;
ii ! *ii »

Figure 5.23 — CBTLS Sequence diagram for set alarm clock use case

A ~.. ]7af»^nw/yf

I. ■-.•»«•. r.:. .. .. j. ‘•M ..t
I 1 na lifj A.-W'tsr VAc-i-w)♦

L >]u ' ’ ' J MCMira

*
*-i «tAOm»«crgr

1 J <-
2 lcoA«/x^iwTatr^uur(d) 2 I hATj'.vHTun .wlii

1!11J Uninn^nvMsMilih'c-
212. In^itirVwf•rt.’kCc.xtfir^

€•
21 la>K«><ln><n>.'itK'n.‘»><-

2 J: l«l<r,is«'0wr»«u.»i5a«jjvii»

3 »er<KifRr>Fa*c«rfcj>6nStfoJify)
X1 nmx«?ioaf* Mjter’*rS*rnz-xX)

11.1 wr«'vifMir»J»!lr««H:

1]1.1 ■ 2<-
111 uauiro

111 IUCCTIWW

JJ ixmiSfij

Figure 5.24 - CBTLS Sequence diagram for favorite train schedule use case

! oun'!3[ i

;T»t1 PllttflqW
1 . 11 ,»*Iiwlao*cr)e«<>Sin«>».»T«rui >

1.1 J t»^T'j<vXi3<.0JO>« >X-v«

•HI’ll UhVw.Kfc>Oiui'
11 f U:>1ra^0k»K’O«*»'

5 1.1 J!
1 I 4 UKV'»*>«SonOH»l»-

1 11 ..lk-
%. j •* j - 9* *•!

Figure 5.25 - CBTLS Sequence diagram for view train location use case

73



* '-rr\\
Tan Pinv^o

I

►- »»CarjJi IIKS<MJIW5claUtT/;4| 1
►r

’ i • nirjrwrt^fifvm^iaiAjC.-eigi r,> »* 1]- l***T«»rS«*ai»7ir Cv:»rc-j-^c<^<- 1.11 2 y.'"ir:.-<v > VCr: m-^s cop

1 13. .■> 1<< >I I ; «I l I

Figure 5.26 CBTLS Sequence diagram for view compartment details use case

l 7in>Vi7«Corjrot*r To r/n > viinvsr : imC'fci

Tan Paucrvo
I •cTiarA/jf, sj,'S»foO>l irrt) I

11 vcT rjrArx) ai(lwSatttMM,

1
111 > ITT'. Oi,K:x«C Cj<r>rf 3*0*./'  c,

1t M 3 U>T:«isedJr;«u&>
I.U Ui>Trati<-eaO<t<f <-<-̂ | 11 3 cn»rxTar*-»w3Ki (j1.1 4 IflKTlJrAroUlt'OJ’J*

1.1 S. Urt<TwAf jV^Cyj- <-*

Figure 5.27 - CBTLS Sequence diagram for view train analysis use case

A'lUlliaOj'.'dU ■j»ta *<*.»•> .m
i

Tah Ptvwps I

Pa
t lo^nOrf!.^ ■. k» 1.V OoC'.<p 1 11

1 1'll? S«aHui
to I n

J<?
j l I 1 waoct at

l.i«. awstSnW'UM'INwV.w'
11 * 1

' « 3 Sl*rwCaiii
11 » ^OrtrOwOrtMt$I 3 SytturUtnOiUa

1 3 SihkUkMi. c-
V

I
tncy..wv-y 0*«D1W) 11 upMWT'Kili’it'^itO.aj 3:11: t»ia«,**itiuws»vi«rw> 2 • 1 1. vmJ 'Jhmnv«<Uinsaawr.wtr>1

1J * ' • Sn>Hiw•-
112 fcaWSiui

<r

I 2 l.»
Mi «\WS*--•

1
;23 MOtti". .--- —

i
•\w3 3. ina«'«'J

<■

Figure 5.28 - CBTLS Sequence diagram for user sign in/profile update use case

74



Appendix E - Structure of Domain Classes in CBTLS 
Domain Classes of Community Based Train Locating Syst

@Entity(name = "geoLocation")
"geoLocation id"0})0})ti0^,,, uniqueConstraints = { @UniqueConstrair.t (columnNames = { 

public class GeoLocation implements Serializable, Comparable<GeoLocation> {

private static final long seriaLVersionUID =
@Id
@GeneratedValue(strategy = GenerationType.4(770)
@Column(name = "geo_location_id", 
private long geoLocationld;

@Column(name = "latitude", nullable = false) 
private double latitude;

@Column(name = "longitude", nullable = false) 
private double longitude;

@Transient
private DecimalFormat format;

^Version
@Column(name = "version_id") 
private int versionld;

public GeoLocationQ { 
super();
this.format = new DecimalFormat("##.######");

em

1L;

nullable = false)

>

public GeoLocation(boolean defaultConstructor) { 
this();
if(!(defaultConstructor)){

this.latitude=00.000000; 
this.longitude=00.000000;

}
>

}

Figure 6.7 -The domain class to represent the Geo Location

75



(®Entity (name="mobileDevice")
^unique^mobile_device~number''''))Un^UeCOnStraintS =5u-'it?ueConstraint(columnNames =

public class MobileDevice implements Serializable { 

private static final long seriaLVersionUID = 1L;
(Slid

@GeneratedValue(strategy = GenerationType.AUTO) 
@Column(name = nmqbile_deviceJLd", 

private long mobileDeviceldj
nullable = false)

@Column(name = "unique_mobile_device_number“) 
private String uniqueMobileDeviceNumber;

@Enumerated(EnumType.STRING)
@Column(name="active_status") 

private YesNoStatus activeStatus;

@OneToMany(mappedBy = "mobileDevice", fetch = FetchType. EflGE/?) 
@Cascade(org. hibernate, annotations. CascadeTy pe.SAVE__UPDATE) 

private List<SystemUserMobileDevice> systemUserMobileDevices;

^Version
@Column(name = "version_id") 

private int versionld;

Figure 6.8 -The domain class to represent Mobile Device

76



@Entity(name = "systemUser")
@Table(name = "system uspr" Mn• _
public class SystemUser implements'005*^1**5 = ^Vf’ic5ueConstraint(co^ufflnNarnes = “user_naTe”)) 

private static final long seriatPersionUIo'^uf ^ {

@Id
gGeneratedValuetstrategy = GenerationType.AUTO)
^Column(name = user_id", nullable = false) ' 

private long userid; ;

@Column(name = "user_name", nullable = 
private String userName;

@Column(name = "password", nullable = 
private String password;

@Column(name = "user_display_name") 
private String userDisplayName;

@Column(name = "email_address") 
private String emailAddress;

@Column(name = "profile_image_url") 
private String profilelmageUrl;

@Column(name = "ranking") 
private float averageRanking;

@Column(name = "total_number_of_feed_backs") 
private int totalNumberOfFeedBacks;

@OneToMany(mappedBy = "systemUser", fetch = FetchType.EAGE/?) 
@Cascade(org.hibernate.annotations.CascadeType.ALL)

@Fetch(value = FetchMode.SUBSELECT)
private List<SystemUserRankings> systemUserRankings;

false)

false)

@OneToMany(mappedBy = "systemUser", fetch = FetchType.EAGER)
@Cascade(org.hibernate.annotations.CascadeType.ALL)

@Fetch(value = FetchMode.SUBSELECT)
private List<SystemUserMobileDevice> systemUserMobileDevices;

@OneToMany(mappedBy = "systemUser", fetch = FetchType.EAGER)
@Cascade(org.hibernate.annotations.CascadeType.  ALL)

@Fetch(value = FetchMode.SUBSELECT)
private List<SystemUserFavouriteSchedules> systemUserFavouriteSchedules; 

(SManyToMany (fetch = FetchType. EAGER)
@loinTable(name = "system_user_roles", joinColumns = §!oinColumn(name = "user_id"), 

inverseloinColumns = @JoinColumn(name = "user_role_id ))
^Cascade (org. hibernate. annotations. CascadeType. SAVE_UPDATE)
@Fetch(value = FetchMode.SUBSELECT) 
private List<UserRole> userRoles;

@Enumerated(EnumType.STRING)
@Column(name = "yes_no_status") 
private YesNoStatus activeStatus;

(2Enumerated(EnumType,S77?IAKJ)
@Column(name = "passenger_type") 
private PassengerType passengerType;

(aversion
@Column(name = "version_id") 
private int versionld;

Figure 6.9 -The domain class to represent System User

77



.@Entity(name="systemUserAlarm")
0Table(name = "system_user_alarm")
PU 1C pCrivVteSystrtmicSfr*la|rmi impleme.nts Serializable {

final long seriaLVersionlllD = 11;

(Sid
(3Generated\/alue( strategy =
@Column(name = „ GenerationType. Al/70)

. system_usen_alarm id",
private long systemUserAlarmld; nullable = false)

(SManyToOne (fetch = FetchType. l/izy)
"systemiuserUmobileed= • referencedColumnName =

(SCascade^org. hibernate, annotations. CascadeType. «£/?GE) 
private SystemUserMobileDevice systemUserMobileDevice;

@ManyToOne(fetch = FetchType. LAZY)
@DoinColumn(name = "train_station_id", referencedColumnName = "train_station_id")
@Cascade(org.hibernate.annotations.CascadeType.MEflGE)

private TrainStation destinationStation;

^Enumerated(EnumType.STRING)
@Column(name="alarm_type") 

private AlarmType alarmType;

@Column(name="distance_to_station") 
private float distanceToStation;

@Enumerated(EnumType.STRING) 
@Column(name="active_statusu')

private YesNoStatus activeStatus;

^Version
@Column(name = "version_id") 

private int versionld;

Figure 6.10-The domain class to represent System User Alarm

78



Hg^sssa. ..„.private static final long seriaLVersionUID = 1L;

@Id
@GeneratedValue(strategy = GenerationType.AUTO)

privateT ' system-user_favourite_schedule id", nullable = false) 
private long systemUserFavouriteScheduleld;~

= FetchType./.dZY')
train_schedule_id"} referencedColumnName =

@ManyToOne(fetch 
@3oinColumn(name = 

"train_schedule_id")
@Cascade(org.hibernate. annotations.CascadeType.MERGE) 

private TrainSchedule trainSchedule;

@ManyToOne (fetch = FetchType././lZY)
@DoinColumn(name = "system_user__id", referencedColumnName = "user_id") 
@Cascade(org.hibernate.annotations.CascadeType.MERGE) 

private SystemUser systemllser;

(^Enumerated (EnumType.5T7?I/VG)
@Column(name="active_status")

private YesNoStatus activeStatus;

@Version
(5)Column(name = "version_id") 

private int versionld;

Figure 6.11-The domain class to represent System User Favorite Schedules

79



Serializable { 
long seriaiVersionUID = 1L;

@Id
(S)GeneratedValue( strategy = 
@Column(name = 

private

@Column(name = "ranking", nullable 
private int ranking;

1( GenerationType./U/ro)
system_user_ranking_id", 

long systemllserRankingld;
nullable = false)

= false)

@Column(name = "ranked_user" 
private long rankedUser;

@Temporal(TemporalType.TIMESTAMP)
@Column(name = "ranked_date", nullable = 
private Date rankedDate;

@Column(name = "average_rate", nullable = false) 
private float averageRate;

@Enumerated(EnumType.STRING)
@Column(name="active_status")

private YesNoStatus activeStatus;

@ManyToOne(fetch = FetchType.LAZY)
@loinColumn(name = "system_user_id", referencedColumnName = "user_id") 
@Cascade (org. hibernate. annotations. CascadeType. MERGE) 

private Systemllser systemUser;

nullable = true)

true)

^Version
@Column(name = "version_id") 

private int versionld;

Figure 6.12-The domain class to represent System User Rankings

80



. @Entity(name = "ticketPrice")
@Table(name = "ticket price" 
{"ticket_price_id"})}) '
public class TicketPrice i-nplenents Serializable 

private static final

uniqueConstraints = {(§Uniq'jeConstraint(columnNames =

{

long seriaLVersionUID = 1L;@Id
@GeneratedValue(strategy =
@Column(name = GenerationType.AUTO) 

ticket_price id", nullable 
private long ticketPriceld; « false)

BSf~S~=SB~private TrainStationSchedule trainStationSchedule;

@Enumerated(EnumType.S77?IA/G)
(^Column (name = "user_role_type") 
private TicketType ticketType;

@Column(name = "ticket_price") 
private float ticketPrice;

^Version
@Column(name = "version_id") 
private int versionld;

Figure 6.13-The domain class to represent Ticket Price

81



(5>Entity(name=" trainLine")
@Table(name = "train line"
"train_line_id")) ~ '
public clasl TrainLine implements 

private static final

(Sid

private long trainLineld; }

@Column(name = ^trainJLineJntegrationJLd") 
private int trainLinelntegrationld;

@Column(name = "train_line_name") 
private String trainLineName;

@Enumerated(EnumType.S77?I7VG)
(SColumn (name="active_status")

private YesNoStatus activeStatusj

(SOneToMany(mappedBy = "trainLine", fetch = FetchType.LAZY) 
@Cascade(org. hibernate, annotations. CascadeType. SA VEJJPDATE) 

private List<TrainLineStation> trainLineStations;

@!vlanyToOne(fetch=FetchType.I/lZY)
@Cascade(org. hibernate, annotations. CascadeType. MERGE)
@3oinColumn(name="start_station_id")
private TrainStation startStation;

@JsonIgnore
@ManyToOne(fetch=FetchType.LAZY) 
@loinColumn(name="end_station_id")
@Cascade(org. hibernate, annotations. CascadeType. MERGE) 
private TrainStation endStation;

(SVersion
@Column(name = "version_id") 

private int versionld;

uniqueConstraints =@UniqueConstraint(columnNames =

Serializable { 
long seriaLVersionUID = 1L;

i

j

|

Figure 6.14-The domain class to represent Train Line :

82



(SEntity (name="trainLineStation"1
(STable(name = "train_line station"
- train_line_station id")) ’
public class TrainLineStation impiements

private static final

uniqueConstraints =£UniqueCor.straint(columnNames 

Serializable { 

long seriaiVersionUID = 1L;
@Id

@GeneratedValue(strategy = 
@Column(name = GenerationType. AUTO) 

. ^ train_line_station id", 
private long trainLineStationld; nullable = false)

@Column(name = "distance_from_start_station") 
private double distanceFromStartStation;

@Column(name = "distance_from_end_station") 
private double distanceFromEndStation;

(^Enumerated (EnumType. STRING) 
@Column(name="active_status") 

private YesNoStatus activeStatus;

sonIgnore
@ManyToOne(fetch=FetchType. LAZY, optional=false) 
@loinColumn(name="train_line_id" ,nullable=false) 
@Cascade(org. hibernate, annotations. CascadeType.MERGE) 
private TrainLine trainLinej

(aOsonlgnore
@ManyToOne(fetch=FetchType. EAGER, optional=false) 
@loinColumn(name="train_station_id",nullable=false) 
@Cascade(org.hibernate.annotations.CascadeType.MERGE) 
private TrainStation trainStation;

@ManyToOne(fetch=FetchType.LAZY) 
@loinColumn(name="next_station_id")
@Cascade(org. hibernate, annotations.CascadeType.MERGE)
private TrainStation nextStation;

@Column(name = "distance_to_next_station ) 
private double distanceToNextStation;

@ManyToOne(fetch=FetchType.LAZY)
@Cascade(org. hibernate, annotations. CascadeType. MERGE)
@loinColumn(name="previous_station_id')
private TrainStation previousStation;

@Column(name = "distance_to_previous station") 
private double distanceToPreviousStation,

(aversion .
@Column(name = "version id ) 

private int versionld;

esent Train Line Station6J5-The domain class to reprFigure

83



@Entity(name="trainScheSuleV

(®Table(name = "train schedule" 
"train_schedule_id")) '
public class TrainSchedule 

private static final

master data

uniqueConstraints =@UniqueConstraint(columnNames =

implements Serializable { 
long seriatVersionUID = 1L;

@Id
@GeneratedValue(strategy = 
@Column(name = GenerationType.AUTO)

p«v.t, i.„g as-- ™n,M' ■ “»>
@Enumerated(EnumType.577?l7VG) 

@Column(name= 'train_frequency")
private TrainFrequency trainFrequency;

^Column (name="train_name") 
private String trainName;

@Column(name="train_number") 
private String trainNumber;

@ManyToOne(fetch=FetchType.f/lGff?Joptional=false) 
@3oinColumn(name="start__station_id",nullable=false) 
private TrainStation startStation;

@ManyToOne(fetch=FetchType. EAGER, optional=false)
@DoinColumn (name="end_station_id", nullable=false) 
private TrainStation endStation;

@ManyToOne(fetch=FetchType.E/lGERJoptional=false)
(S)3oinColumn(name=,,train_type_id",nullable=false)
@Cascade(org. hibernate, annotations. CascadeType.MERGE) 
private TrainType trainType;

@OneToMany(mappedBy = "trainSchedule", fetch = FetchType.Z.4ZY) 
@Cascade(org. hibernate, annotations. CascadeJype. SAVE_UPDATE) 

private List<TrainStationSchedule> trainStationSchedules;

(8)0neToMany(mappedBy = "trainSchedule", fetch = FetchType.LAZY) 
^Cascade (org. hibernate. annotations. CascadeType. SAVE_UPDATE) 

private List<TrainScheduleTurn> trainScheduleTurns;

(SEnumerated (EnumType .STRING)
@Column(name="active_status )

private YesNoStatus activeStatusj

(aversion 
@Column(name =

private int versionld;
"version__id")

6.16-The domain class to represent Train ScheduleFigure

84



^Entity (name="trainScheduleT„rn“ \ 
@Table(name = ''tnain_schedule } 

tram_schedule__turn id")') 
public class TrainScheduleTurn 

private static final

-turn", uniqueConstraints =£UniqueConsiraint(columnNames
implements Serializable {

A°ng seriaLVersionUID = 1L;
@ld

private long trainScheduleTurnldf ' 

So-^n?ne(^Ch=FetChTyPe-“^^Ptional=false)

@Column(name="train_schedule_turn_date") 
@Temporal(TemporalType.7TAfES7VW) 
private Date trainScheduleTurnDate;

@Column(name="departure_time")
(^Temporal (Temporally pe. 7IAfES7>WP) 
private Date departureTime;

^Column(name="arrival_time")
(©Temporal (TemporalType. 7TAfESr,AAfP) 
private Date arrivalTime;

@OneToMany(mappedBy = "trainScheduleTurn", fetch = FetchType.L/tZY) 
^Cascade (org. hibernate. annotations. CascadeType. SAVE_UPDATE)

private List<TrainStationScheduleTurn> trainStationScheduleTurn;

@OneToMany(mappedBy = "trainScheduleTurn", fetch = FetchType.LAZY) 
@Cascade(org. hibernate, annotations. CascadeType. SAVE_UPDATE) 

private List<TrainScheduleTurnLocationUpdate> 
trainScheduleTurnLocationUpdates;

@OneToMany(mappedBy = "trainScheduleTurn", fetch = FetchType.MZV) 
(SlCascade (org. hibernate, annotations. CascadeType. SAVE_UPDATE) 

private List<TrainScheduleTurnLocationPassiveUpdate> 
trainScheduleTurn LocationPassivellpdates;

@Enumerated(EnumType.577?IAK7)
@Column(name="active_status")

private YesNoStatus activeStatus;

@Version 
@Column(name =

private int versionld;

nullable = false)

"version_id")

ent Train Schedule TurnFigure 6.17-The domain class to repres

85



@Entity(name =
|®Table(name = "traii'inschedu]pT+rnCOnlpar1:,,'entuPclate")

§UniqueConstraint(colUmnNan.es'-T-5SP^nt-Update'* uniqueConstraints = {
public class TrainSchpriuioT.. ld » »neduleTurnCompartmentUpdate

private static final
implements Serializable{

long seriaLVersionUID = 1L;@Id
@GeneratedValue(strate
@Column(name = 
private long id;

@Column(name = 
private int

gy = GenerationType. AUTO) 
’ = false)"id", nullable

"compartment_number", 
compartmentNumber;

@Enumerated(EnumType.STRING) 
@Column(name = "compartment_density") 
private CrowdDensity compartmentDensity;

^Column (name = "total_compartments", 
private int totalCompartments;

nullable = false)

nullable = false)

(^Enumerated (EnumType. STRING)
@Column(name = "overall_density") 
private CrowdDensity overallDensity;

@ManyToOne(fetch=FetchType.E/iG£/?,optional=false) 
@loinColumn(name=Htrain_schedule_turn_id,,,nullable=false) 
private TrainScheduleTurn trainScheduleTurn;

@ManyToOne(fetch=FetchType.E/iG£/?,optional=false) 
(a)DoinColumn(name="user_id",nullable=false) 
private SystemUser updatedUser;

@Column(name="updated_time")
@T emporal (T emporalType. TIMESTAMP) 
private Date updatedTime;

(aversion
@Column(name = "version_id") 
private int versionldj

Figure 6.18-The domain class to represent Compartment Update

86



(©Entity (name = "trainSch
@Table(name = "train scheduieTturn°ri!nPaSSiVeypdate'')
@UniqueConstraint(columnNames~- t ^°”^°"-Passive_update", uniqueConstraints = { 
pubi“ciass

private static final
(Sid
(^Generated Value (strategy - 
@Column(name = 
private long id;

£ninrn?ne^etCh=FetchType-MG£fi'°Ptional=false)
(SDoinColumn(name="train_schedule
private TrainScheduleTur

@ManyToOne(fetch=FetchType. EAGER, optional=false) 
@JoinColumn(name="last_station_
private TrainStation lastStation;

@ManyToOne(fetch=FetchType. EAGER, optional=false)
(SDoinColumn(name="user_id" ,nullable=false)
private SystemUser updatedUser;

@Column(name="located_time")
@Tempo r a 1 (Tempo ra lTy pe. TIMESTAMP) 
private Date locatedTime;

@Enumerated(EnumType.S77?I/VG)
@Column(name = "located_type") 
private LocatedType locatedType;

^Version
(SColumn(name = "version_id") 
private int versionld;

Serializable{
long seriaLVersionUID = 1L;

GenerationType .A UTO) 
= false)"id", nullable

_turn_id",nullable=false) 
urn trainScheduleTurn;

id",nullable=false)

Figure 6.19-The domain class to represent Train Location Passive Update

f 7A
| UBfc. |87

* j



(6)Entity(name = "trainSrh a
l®Table(name = "train scheSul!TrnL°Cati°nUpdate'') 
§UniqueConstrai^IH„ Na^uJn-Joeatl°n update",

Comparable<TrainScheduleTurnLocationUpdate>e{irl'PlernentS

uniqueConstraints = {

Serializable,

private static final

(S>GeneratedValue( strategy =
@Column(name = "id", 
private long id;

@Column(name = "latitude" 
private float latitude;

@Column(name = "longitude", nullable 
private float longitude;

@ManyToOne(fetch=FetchType. EAGER, optional=false) 
@DoinColumn(name="train_schedule_turn_id",nullable=false)
private TrainScheduleTurn trainScheduleTurn;

@ManyToOne(fetch=FetchType.EflG£7?,optional=false) 
@DoinColumn(name="last_station_id",nullable=false) 
private TrainStation lastStation;

^Enumerated(EnumType.STRING)
@Column(name = "located_type") 
private LocatedType locatedType;

@ManyToOne(fetch=FetchType. EAGER, optional=false) 
@loinColumn(name="user_id",nullable=false) 
private SystemUser updatedUser;

@Column(name="updated_time")
^Temporal (TemporalType. TIMES TAMP) 
private Date updatedTime;

^Transient
private DecimalFormat format;

@Version
@Column(name = "version_id") 
private int versionld;

long seriaLVersionUID = 1L;

GenerationType.AUTO) 
nullable = false)

@Id

nullable = false)

= false)

domain class to represent Train Location active Update
Figure 6.20-The

88



©Entity(name="trainStation"l
©Table(name = "train station"
{ train_station id","train station^rf0"!^3*^5 =@UniclueC°nstraint(columnNames = 

putl“ eta” tafeHSS {
private static final

long seriaiVersionUID = ii_;

@Id
@GeneratedValue(strategy =
@Column(name = . GenerationType.AUTO)

Private long "Ullable = false>

mmmpss^
@Column(name = "train_station_code”, nullable = false, length=25) 
private String trainStationCode;

(©Column (name = "train_station_name"J length=255) 
private String trainStationName;

@Column(name = ,,train_station_contact_number,,J length=l0) 
private String trainStationContactNumber;

@Enumerated(EnumType.577?IWG)
@Column(name="active_status")

private YesNoStatus activeStatus;

@OneToMany(mappedBy = "trainStation")
(©Cascade (org. hibernate. annotations. CascadeType. SAVE_UPDATE) 

private List<TrainLineStation> trainLineStations;

@OneToMany(mappedBy = "fromTrainStation")
(©Cascade (org. hibernate, annotations. CascadeType. SAVE_UPDATE)

private List<TrainStationSchedule> fromTrainStationSchedules;

(S)OneToMany(mappedBy = "toTrainStation") ,
©Cascade (org. hibernate, annotations. CascadeType. SAVE_OPDA )

private List<TrainStationSchedule> toTrainStationSchedules,

(©Version 
@Column(name =

private int versionld,
"version_id")

Figure 6.21-The domain class to represent Train Station

89



.SU„i,ueConstrai„t(Mu,nB”;;";«;:;':. uniqueconstralnts
public class TrainStationSchedule^impiements'senializable-^"^)^ 

private static final
long serialVersionUID = xL;

(©Id
Column (name ^"fra'inltatiorscheduJl^d''^™5

private long trainStationScheduleldf ’

prtS.s”LSE,sssaf“,a,’,i"-“e>
@ManyToOne (f etch=FetchType. EAGER, optional=f alse) 
@DoinColumn(name="from_train_station_id",nullable=false)
private TrainStation fromTrainStationj

@ManyToOne(fetch=FetchType. EAGER, optional=false)
(©DoinColumn (name="to_train_station_id", nullable=false) 
private TrainStation toTrainStation;

@Enumerated(EnumType.STRING)
(©Column (name="active_status")

private YesNoStatus activeStatus;

@Column(name="arrival_time")
(©Temporal (TemporalType. TIMES TAMP) 
private Date arrivalTime;

(©Column (name="departure_time")
(©Temporal (TemporalType. TIMESTAMP) 
private Date departureTime;

nullable = false)

(©Column(name="arrival_at_destination_time )
(©Temporal (TemporalType. TIMESTAMP) 
private Date arrivalAtDestinationTime,

/ jn«. "trainStationSchedule", fetch = FetchType.LAZY)@OneToMany(mappedBy = trainStationicneuu upDATE)
<3Cascade(org.hibernate.annotations.CascadeTyP e.SAVE_UPDATE)

private List<TicketPrice> ticketPrice,

(©OneToMany (mappedBy
(©Cascade (org.hibernate.annotations

private List<TrainStationScheduleTurn>
trainStationScheduleTurns;

(©Version . .
(©Column (name = "version 1 )

private int versionld;

t Train Station ScheduleThe domain class to represen
Figure 6.22-

90



@Table(name = "translation schedT""5
=@UniqueConstraint(columnNames = rn"' ^^Constraints
public class TrainStationScheduleTijrna-n"'itatlon-schedljle-turn id"}))

-----cn“auleTurn implements Serializable {

private static final

Per station

long serial.VersionUID = iL;

@Id
@GeneratedValue(strategy =
@Column(name = b

private

. GenerationType. AUTO)
long trai^S^a ^’ nUllable = false>

@ManyToOne(fetch=FetchType.£/iefR
@3oinColumn(name="train_schedule’
private TrainScheduleTur

optional=false)
_turn_id",nullable=false) 

n trainScheduleTurn;
@ManyToOne(fetch=FetchType. EAGER, optional=false) 
@DoinColumn(name="train_station_schedule_id"Jnullable=false)
private TrainStationSchedule trainStationSchedule;

@Enumerated(EnumType.S77?I/VG)
@Column(name="active_status")

private YesNoStatus activeStatus;

^olumnCname^'arrivalJrime") 
@Temporal(TemporalType. TIMESTAMP) 
private Date amivalTimej

@Column(name="departure_time") 
(©Temporal (TemporalType. TIMESTAMP) 
private Date departureTime;

^Version
(a)Column(name = "version_id") 

private int versionld;

Figure 6.23-The domain class to represent Train Station Schedule Turn

91



(SEntity (name="tnainType")
@Table(name = "train type" 
"train_type_id")) ~ '
public class TrainType implements

private static final

uniqueConstraints =i
@UniqueConstraint(columnNames =

Serializable { 

lQng seriaLVersionUID = iL;

(S)Id
@GeneratedValue (strategy = 
@Column(name =

@Colunin(name =. . _ . ,,'train_type_name") 
private String trainTypeName;

@Enumerated(EnumType.STRING) 
@Column(name="active_status")

private YesNoStatus activeStatus;

^Version
@Column(name = "version_id") 

private int versionldj

Figure 6.24—The domain class to represent Train Type

@Entity(name = "userRole")
@Table(name = "user_role", uniqueConstraints = (@UniqueConstraint(columnNames = 
{"user_role_id^})})
public class UserRole implements GrantedAuthority, Serializable {

private static final long seriaLVersionUID = llj
(Slid

@GeneratedValue(strategy = GenerationType.Al/rO)
@Column(name = "user_role_id", nullable - false) 

private long userRoleldj

@Enumerated(EnumType.S77?IA/G)
(8)Column(name = "user_role_type ) 
private UserRoleType userRoleTypej

^Version 
@Column(name = 
private int versionldj

"version_icT)

ent User Roleg 25-The domain class to represFigure

92



Appendix F 

web application
- user interfaces of Web applicationUser interfaces of CBTLS

* ^__ EH;/£J
<- t*t ICClfrM

45 Diitv c y,...
* C. O 4MWvt- S Un* ji V*. St-:i.CBTLS

Search Train

Tram un. Coorcv,. P-.n.'afr

Start Station: Cctr;jo Tod

End Station: Jam

Copyright e cans wsc-rr - com rote

Figure 6.31 - Web application - Search Train basic UI

/a - ?

C Q. Vff-A
|p A y In-tyt. Q tfww«v £ Cvl^ / Te^h- ■ Vo-famr Cy yti-

<? a © * a e y - ^ =
v O ^

CBTLS

Search Train

tram Une tamM • Putnam

Cotonho FoilStart station:

43 tilEnd Station:

2 0Cam2a01'201bPick a Oat. and tim.

Copvnaht 4 CBTLS MW JT - UOM 2016

Figure 6.32 - Web application - Search Train advanced UI

---------: =
<• •% teciircs:•. -tr-cf-I 'jr,-.s

g> O'Sab’f X Czck v / CSS- Li ’*"*• W

/ta
«:LS£S-- --

CBTLS Engtsa
Jrf(

f,®3c3 <?e»caarfs)

SelectTTain Un.

a-satvJtre. (iJa do.»j:

liti'dla UO.S'--:
.fVo’l*’

4s«6»V

*•*» © COTES USt IT W« »,f'

Localization support
Web appHcationFigure 6.33 -

93



*»
Oi 0*.bf X CestiK- /

Tim Sm.'ji Lot

C8TLS

Train Schedule

Colombo Fort - Ja-Ela

Next Train

Oaparture
Arrival Dur«on(it)

View
10 Warn

ivao am OV)

rnmrnm
CopyrigM O CBUS MSt-IT - UoM 201(5

I

Figure 6.34 - Web application - Train schedule list UI

x X+y i-.. .i V«« R»<crvr«-w«1rani 
4- *■? leesiRet!-"- .c . ;

■: ■

___ C j 5. Sr.-O

Q KtiKtf.iwj- / Oerter ^ tej,. ^ Tssiw M v^lwt. A q^,,.

=
V'Oe'S

C8TLS

View Recommendations

Colombo Fort - Ja-Ela

Next Train

trains are luted based on ranking from best to worst 
me ranking based on analysis or mstcncai data

Average Reported Delay Average Crowd DensityRank Eapected Arrival at CesOnation

WSdwn5ntn11 SO am1

lejn10ITX11230 am2

;mmm
CopyrqW C'CBTLS - L'.iM 2016

View recommendations UIFigure 6.35 - Web application -

94



J & v , -J.

♦,<4 Hiller .' i I-

^ X »*• / CIV L» femtu ' - ___J
U- Q

* Cl O t j* © w -S X 1WB — * sCBTLS ^ V** 1
«F *> Wi

Train Schedule Details
C*p«cwo llm. of Arrrval(Ett)« Juncn ,.. 
Capect.s Urn. of •rrtvj|(ET») at lti(lon , .. 
Total Durance ot Journey 
Total Duration of Journey >
TTam Type

Train Frequency

to jo a.m 
II 00 am 
11 »m 
-0 Umt 
tong Oittjrce 
Daoy

i

x

J
Copyright « CBTLS MSo-IT - l.’oM JOtfi !

Figure 6.36 - Web application - Train schedule details UI

! >5 ietr.« /Uo4»:tLsciticn >. \ +
' 4 .'i leciB'eaW.!. Uplsrl one ► >

- «
c Q. Z'.-a

|<& JL^wlev/jnjjJwrnt^gj^jn. Q Mneme jj tlnwianwa,. / QuUw tew- X Tedi- « ttmfcun.- J. Qytem-

6 C C 4 A O - » - =
/Cl<

CBTLS

Update Train Location - (I am in the train)

Previous Station

On n»> MoveCurrent Statu* of tram

BBS

Ccpyirjtrf CCBTUS WScJT -UCU2016

Figure 6.37 - Web application - Active location update UI

- *WZ\
j 3 Update Cempaitmp'lO^- X \*4* ;

' <• r' t«.r«n •—•';‘n

0 Oi»b’«- x Csofcu- / CSS- □ r*mr H 0 Wcnrnon- Q Mngiwg

A - ={i q o * « e *’H Jrf.v*..... ........J?J
/{MW- /•»««- XTeaU-M^Snece gL0g^r

✓ Qe*

CBTLS

Update Compartment Details
0§1Compartment Humber Bo□Total Compartment*

liraCrowd Oomity ot Compartment

to*Overan Crowd Oentity

ESS ooeort

. uom ;-ot«Ccp>f*MOCOTlSM3Mr

t details UIW.bappllc«ll»->Jl’d*“,C0”!,’r,m'"
Figure 6.38 -

95



illi

0 04>b:«* X Csitw S C5*" Li u:
'•

e c ..<* n i^Krt..

"• s"j
»'QO

* n o * * 6» «TCBTLS ■ii 0>y>

Sel Notification Alarm

Select Damnation 
Station

Select An Option O St 1 OntlllK.. ;o JUnj

° Rl'JAl.TlK.^ 1 StBoi 
Rmj Alin «* a* suij.y;,

distance to lul Aiirmfin Km) 0

Elllilgll

CCTVryM C COILS WS«4T - l»M 2016

Figure 6.39 - Web application - Set alarm clock UI

Y 3 WAAitfWot*" x v+ ‘ •

. *% . ic^t^ou'' •- •. - •. i 1'. U.’- .'. -r..« .*•'*

X Coci «• / Li lew Hi f-n«f O Tlcramv £ WKrtifttvT y* Cid-ir- S »«.«. ^ Tccu. m
».1.

_c. .$?—• O C © » A s -f *• - =
/ o /

CSTLS

Update Train Location - (I am outside the train)

Last Station Patted

]Solcct Located time

trt tfic StationCun ant Statu* ot Tfam

iir.T-.-yj

Copy fight St CBTLS WSc-fT - UoM J0I6

Figure 6.40 - Web application - Passive train location update UI

—
' £>J V«» Twin lecK-st 

. 4* • *% tecPxatt . of lu • ■•■>■

0 ttufn X CwHw- / CSV H tami- U O

-J-vlL-ii-Ua-L.'-. =11 c 3 * « P «* '
_......................... L£J ------

Q tW.nte.u- /• ^ W X Hir!cTnrt<y*«

CBTLS

View Train Location (current/last known)

;
tu §

%
IWST1 5

ilsv ii •,tni,.,t'

if l.w(*l

Qabiv.-v.aa
Ili'ri'WiB

View Train Location UIFigure 6.41-Web application

96



j 23 »vVix ci 1m* >. y •»-.

<- «? ' . .X-..-ir J. . •
•iSKTfl •;:- • ■■'.'ii.-i-k-r

C3TLC

View Analysis of Train
E (peered Time of Arrtjil(ETA) „ itnm ,.. 
Erpested Tune of Amval(ETA) at station j 
Total Distance of Journey >
Total Duration of Journey
Train Type
Tram Frequency
Average Delay Past Ten Days
Average Crowd Density Past Ten Or/s ■-

13 30 am 
1100 am 
11km 
30 Mins 
Long Distance 
Daily 
10 mm

;
::

■

Ticket Prices
tsi Class© 2MPW0 | jnjCtBs©

m
CupyvjrtfCCBIlS MSt-n - UoW2016

Figure 6.42 - Web application - View analysis of Train UI

>. W : :•J S3 Heme

(- locat'd: 7^1-es-iVujot. at.-.-- *nm

0 0»aOV Jt Cocl-n* / CSS• few ^ Irr.jei- |) Weimlw E / Ctfhr / hue X Tech* ■ VeoSaacr J. Oyl-anf

-
=* o o r» e * -C C, ifj--.

Please Skjo In
iktnui

PS® Siil ■,
■

Figure 6.43 - Web application - Login UI

E5• ....... .......-
* o c * * © " '

••
X _------

. <■ . tS looO-on • '• i »'^.n-vi

Q Dn.b’c x Cent*.- / CSS- Li O O Wc-mPfl.

j 2S Aegdt.rVsar =.v •
c A r
(VcaSMCT * O^eee

|,Q|>
Q MuctCanMur- / <*«"«• / lnJr

CBTiS

User Registration
Oiler Fid fowFull name:

flitfi .>-11Email:

jitTvnUser Name:

Password.

OK>wn c jvivr'JConfirm passwora:

SUjniJ

copyright V COTLS WScJI • UH1 i0t«

Web application-Sign up UI
Figure 6.44 -

97 0



:: ' , + .
f • 4 A toufeca -i . ..

0 O wn- X Cm‘«* / -s> U **>"«• U "-•jts- o a

CBTLS Aflmln

■■•■■-■ .

- 5 j

U cnv.tw.vfl

DashboardI* WaMtr Pals

yj Cnwt*

'•■•anJK- '•Vu'.e- O-iii

I

Figure 6.45 - Web application - Administrator Dashboard

J cS w»'*9* '■’•nt' Dr.»

4* (ctltbofi j.ir- -
© 0«b«- X Csehex- / CSS- [J fomu- u I’ltgtr o Wewile- £j / OiAnr / ta-r- X Tesh-

CBTLS Admin

6 ooa*rte^'^- =
✓ o V■ f» Saxo- ^ S«b.

*- 5 - A- i-

a Djvmmm

Manage Master Data3f C.ua

ijo c-.ani

vana je Tia •> Types

■ Van*}': 7ih .1 SrloJwe Tut'.s O

Figure 6.46 - Web application - Administrator manage master data

98



. f 22 u»-»s« *'» •> i"«

Q) Chutv A c«k«* / <»■ U *«"*»• M wjt*. (, q Miuiir_ ^
CBTt-3 Admin

. > V+

- * «...
• *0. «M» 0^;.

5

S»5P
«• / O.ii

^ *®» X TWi. a e ^ . ~ ' s!
s O.vwiic '3*- e . * - t

Manage Train Lines(/ Wvi?' Pat*

Ul cwl »

GsS
TUin Lino Id Wain Lino »um«

SUrt JULon Ena iution Ec.1 Color*C.Monfn . BWu g
CftonSa fc-1 m wa? Crtrarta - n-c**
Cc*y*» ra- W.3« ggg

3 Co*3irt>; - fK\Um Cdvatn Fon ^-toaT. es Ba4 C«wr03 - Than3*aan
Cctvmn fo- 'inMijin 133S CiA'trbo - IjJsnjrjvjf
ectateo Fir. UjrtTJJ

6 Cawit>3 - Barxa.ai Cctnroc Fir •lrca>n

7 CoiarJrt - InaroruX^ CuysoFor; T-re or.**

a Covartt; ■ LUUia U£Mana i!BlVcvj

Figure 6.47 - Web application - Administrator master data details

* v+■T £jj Tu nlorn

<£- ' •% lowfcc.2 v. cfct'.t a'.’'.v.riij'Tij v. r..iv."j

0 0‘MtV JL Cc«»»«- X C5S- fcrrn- U 'irugM* tJf Wciriitcv Q K^u'i'HCjs- >*# f Peer X Tc*» M WwSsww £,

~ - ... • V :. -. - . - 5«
2 3. .e.-v ir Q O *' t © «* =

A - * -'.'w58 B- S-CBTLS Admin

«i D^v.soaio

Manage Train LinesO' t-Cttk-i Doto

lit Cr «ls

L no. MineUna Ninn

sun Sution

cAlianpcLiEna Sunon

Coro:*EdSEnd Sutionsun SUDonTrim Lin* Nam*Train Lme Id
Q3Si.*.aOxrta ForCcijm&o ■ Bacu a
021war.<eCiUiVlW Fv*l

O.'L'I'.tK. - Uibc2

E23FuwaCOiMUtuTCt
CcW’N - Piinsn3

liurcta'^nCotsrftriFy:
rai:*rt»o • incnc iuVtn4

Administrator master data modification
Figure 6.48 - Web application -

99



ApPendix G - Evaluation Forms
System Evaluation Forms 

CBTLS Evaluation in terms of Usability 

Predefined options- 1 - Very poor, 2 - Poor, 3
-Average,4-Good, 5-Excellent

Evaluation criteria
Selectable
options

How would you categorize the navigation through the 

system in terms of entering, proceeding and finally 

leaving the system?

1

1/2/3/4/5

Could you get familiar with system functionality by 

yourself at the very first time

2 1/2/3/4/5

Based on the time it took for you to get execute a 

function available in system and get a successful result, 

how would you categorize the system?

3 1/2/3/4/5

1/2/3/4/5Does the system provide confirmation messages, 

notification messages, and alert messages in required 

places?

4

1/2/3/4/5Are the labels and instructions available throughout
derstood and clear for

5
application could be easily 

you?

un

Evaluation forms to validate UsabilityTable 7.1 -

100



CBTLS Evaluation in terms of system functionality

Predefined options- 1 - Very poor, 2 - Poor, 3 - Average, 4 - Good, 5 - Excellent

Evaluation criteria Selectable
options

1 Does the system provide adequate functionalities 

train schedule viewing system based on your experience?
as a

172/3/4/5

2 Rate the system in terms of giving clear expected output 
for your actions

172/3/4/5

3 How would you rate the system for its actual behavior 

versus your expectation

172/3/4/5

172/3/4/5When comparing with existing systems for the same 

purpose, how would you categorize this system
4

Are you satisfied with the functionality offered by this 1/2/3/4/5 

system?
5

Table 7.2 - Evaluation forms to validate System functionality

101



CBTLS Evaluation in terms of Overall Impression.

Predefined options-1 - Very poor, 2 - Poor, 3 - Average, 4 - Good, 5 - Excellent

Evaluation criteria Selectable

options

Does system provide the final result within your expected 

time scope with expected quality? Please categorize the 

system based on this

1 1/2/3/4/5

Did you encounter any inconvenience while accessing the 

system functionalities, how would you categorize system 

based on this feature

1/2/3/4/5
2

How would you categorize the system in terms of 

familiarity (the effort required to proceed through system 

as a returning user)?

1/2/3/4/5

3

1/2/3/4/5How would you categorize the system based on its look 

and feel for a regular usage?
4

172/3/4/5Please rate the system based on your overall satisfaction 

with this system
5

Table 7.3 - Evaluation forms to validate Overall Impression

102


