MA 01/34 18/00N/141/2013

AN IMPROVED APPROACH TO LINE BALANCING FOR GARMENT MANUFACTURING

Amila Nuwan Wickramasekara

08 / 10313

LIBRARY UNIVERSITY OF MORATUWA, SRI LANKA MORATUWA

Dissertation submitted in partial fulfilment of the requirements for the degree Master of Science in Operational Research

Department of Mathematics

Univ	versity of Morat	uwa	51 113"
	Sri Lanka	UNIVERSITY OF MOR	519.8(043)
	RELIGRE	ACCENTION NO.	106/39
	June 2013	CLASS No.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Uni	versity of Moratuw 106139	a	
	106139		

DECLARATION OF THE CANDIDATE & SUPERVISOR

I declare that this is my own work and this thesis/dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any University or other institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date: 08.06.2013

The above candidate has carried out research for the Masters Dissertation under my supervision.

Signature of the supervisor: UOM Verified Signature Date: 08 - 06 - 2013

DEDICATION

This report is dedicated to the Factory Manager of Quantum Clothing Lanka (Pvt) Ltd, Sri Lanka, Mr. Lakshman Perera to let him know the performance of the studied production line for further improvements.

ACKNOWLEDGEMENT

In conducting this research, many individuals supported me in numerous ways. First of all, I thank Professor H.S.C. Perera, Department of Management of Technology, University of Moratuwa, Sri Lanka, Dr. T. S. G. Peiris, the Course Coordinator of M.S.c in Operational Research (2008 Batch) and Dr. S.T.W.S. Yapa, Department of Decision Sciences, University of Sri Jayewardenepura, Sri Lanka for the valuable guidelines provided me to select this area for the research.

I would like to express my gratitude to Dr. Ruwan Wickramarachchi and academic colleagues of the Department of Industrial Management, University of Kelaniya for providing me the opportunity to use the complete version of Arena (Simulation software) for the modelling the production line.

I must thank Mr. Lakshman Perera, the Factory Manager, of Quantum Clothing Lanka (Pvt) Ltd for the kind assistance of facilitating me to visit the factory nearly one month period for the data collection process.

Very special thanks go to Mr. Hasitha Jayathilaka, the Production Manager, Mr. R. A. Priyantha Pathmalal, the Production Supervisor, Mrs. Dinusha Lakmali, the Quality Supervisor, Mrs. Imashi Kaushalya and Ms. Chathurika Priyadarshani, Production Coordinators in Quantum Clothing Lanka (Pvt) Ltd who helped me in providing their working experience during the data collection period.

Last but certainly not least, I appreciate the support extended by Ms. Dinusha Sandamali, Mr. D. Nuwan Dilshan, Mrs. B. L. Indrani, Mrs. Udeshika Priyadarshani, Ms. D. P. Chathurangani, Ms. W. Chandima, Ms. R. J. W. Yamuna Kumari, Mrs. Nishanthi Dharshani and Mrs. Nayana Dilrukshi, Machine Operators in the selected production line in supporting me to collect data during their working time.

ABSTRACT

Most of the time, production managers in the garment industry are unable to complete the orders at the scheduled time. One of the reasons is the unavailability of a Line Balancing procedure that could encompass the stochastic nature of the garment manufacturing process, which is manifested through the likes of variability of operating times, machine breakdowns, reworking and breaks of operators The objective of this research is to introduce a new line balancing procedure through giving due consideration to the above mentioned stochastic nature of the process. Having selected a sewing line which consists of experience operators in a garment factory, the process times of operations, time spent for selected non value added activities were recorded. After that, probability distributions were fitted for each operation. In addition to processing times, hypothetical probability distributions were assumed with regard to breaks of operators. Next, an initial algorithm was developed. Afterwards, the work of each operator was modelled in Arena in order to test the algorithm. Then, the initial algorithm was developed by adding different activities in order to make all decisions with regard to work allocation so that the expected line target is achieved with minimum number of operators. The first step of the algorithm is collecting necessary information (order size, available time for the production, cycle times of operations, and types of failures of resources). Second step is estimating Standard Probability Distributions with regard to operations, failures of resources and determining the required production rate. Third step is developing the precedence diagram for the manufacturing process. Next step is simulating the work of workstations after assigning one operator and one feasible operation to them. Afterwards, the number of operators and number of operations required for workstation is finalized based on the analysis of simulated daily production quantity. In order to use this algorithm in the real world, a data base should be maintained to record cycle times, types of failures of resources, up times and down times with a view to estimate probability distributions. Moreover, this algorithm assumes every operator is multi skill and performs consistently.

TABLE OF CONTENTS

Declaration of the candidate & supervisor	iii
Dedication	iv
Acknowledgements	v
Abstract	vi
Table of content	vii
List of Figures	· xi
List of Tables	xiii
List of abbreviations	xv
List of Appendices	xvi
1 Introduciton	1
1.1 Background	1
1.1.1 Introduction to Garment Industry	1
1.2 Problem Statement	2
1.3 Objectives of the Research	3
1.4 Scope of the Research	4
1.5 Significance of the Research	4
1.6 Organization of the Report	4
2 LiteratureReview	6
2.1 Introduction	6
2.2 Introduction to Garment Manufacturing Process	6
2.2.1 Designing the Garment	6
2.2.2 Pattern Making	6
2.2.3 Sample Making	7
2.2.4 Grading	7
2.2.5 Marker Making	7
2.2.6 Spreading	7
2.2.7 Cutting	8
2.2.8 Sorting/Bundling	8
2.2.9 Sewing	8

	2.2	.10 Inspection	8
	2.2	.11 Packing	8
	2.3	Introducing the Selected Garment	9
	2.4	Key Concepts	11
	2.5	Classification of Assembly Line Balancing	11
	2.6	Time Measuring Methods used in the Clothing Industry	12
	2.7	Criteria for Measuring the Effectiveness of Line Balancing	13
	2.8	Assembly Line Balancing Problem	14
	2.9	Existing Line Balancing Procedures for Clothing Industry	16
	2.9.	.1 Widely Applied Balancing Procedure	16
	2.9	.2 Line Balancing using Simulation Techniques	17
	2.10	Conclusion	19
3	Me	thodology	20
	3.1	Introduction	20
	3.2	Data Collection Procedure	20
	3.2	.1 Sampling Procedure	21
	3.3	Problems Encountered During the Study	21
	3.3	.1 Inconsistencies in the Production Process	21
	3.3	.2 Nature of Observational Studies	22
	3.3	.3 Cleaning Process	22
	3.3	.4 Data Recording System in the Factory	23
	3.3	.5 Process Improvements	23
	3.3	.6 Less Number of Participants	23
	3.4	Data Analysis Procedure	23
	3.5	Introduction to Simulation	24
	3.6	Significance of use of Simulation in Modelling Production Lines	24
	3.7	Introduction to Simulation Software	25
	3.7	.1 Introduction to Arena	26
	3.7	.2 Arena Modules	26
4	Res	sults	27
	4.1	Introduction	27

	4.2	Composition of the Sample	27
	4.3	Data Analysis of Processing Times	29
	4.4	Data Analysis of Non-Value Added Activities	41
5	Tin	ne Study Approach	47
	5.1	Introduction	47
	5.2	Introduction to Time Study	47
	5.3	Collecting Related Information	48
	5.4	Breaking Down the Operations into Elements	49
	5.5	Determining the Sample Size	49
	5.6	Recording the Processing Times	50
	5.7	Assessing the Rate of the Working	51
	5.8	Computing the Basic Time	51
	5.9	Determining the Allowances	52
	5.10	Deciding he Standard Time	53
	5.11	The SPD Concept	53
6	Mo	deling the selected Production Line using Arena	54
	6.1	Introduction	54
	6.2	Determining the Processing Rate	55
	6.3	Modelling the Arrivals to the Production Line using Arena	56
	6.4	Modelling Productive Operations	57
	6.5	Modelling the Counting and Bundle Handling Operations	58
	6.6	Modelling Failures of Operations	62
	6.7	Recording Measures of Performances	63
	6.8	Application of Sub Modules in Arena	66
7	Bal	ancing the Production Line using Simulation	67
	7.1	Introduction	67
	7.2	Balancing Process	67
	7.3	Application of Resource Sets in Arena for Balancing the Production Line	e 67
	7.4	Development of the Algorithm for Line Balancing	68
	7.5	Case I - Balancing the Production Line for 2400 Garments per Day	70
	7.5	.1 Determination of the first Workstation	70

	7.5	2 Determination of the second Workstation	72
	7.6	Case II - Balancing The Production Line for 450 Garments per Day	73
	7.6	1 Determination of the first Workstation	73
	7.6	2 Determination of the second Workstation	74
8	Dis	cussion, Conclusions and Recomendations	76
	8.1	Introduction	76
	8.2	Application of the widely applied Line Balancing Procedure	76
	8.3	Failure of the existing Line Balancing Procedure	78
	8.4	Emphasizing the Advantages of the suggested Approach	79
	8.5	Limitations of the Research	80
	8.6	Recommendations and Future Research	80
R	eferend	ce List	

Appendix A: Data Collection Format – Cycle Times of value added operations

Appendix B: Data Collection Format - Non-value added activities

LIST OF FIGURES

	Page
Figure 2.2: Production Diagram of the Garment	10
Figure 4.1: Distribution of Cycle Times of PRE-FIX C/FRT OVER LAP	29
Figure 4.2: Distribution of Cycle Times of T/N JOIN S/SEAM	31
Figure 4.3: Distribution of Cycle Times of Z/Z BINDING UNDER ARM	32
Figure 4.4: Distribution of Cycle Times of 3N T/S ELS CUP NECK EDGE	33
Figure 4.5: Distribution of Cycle Times of 3N T/S ELS ATT U/BAND	35
Figure 4.6: Distribution of Cycle Times of 3 STEP Z/Z ELS ATT BACK APPE	X 36
Figure 4.7: Distribution of Cycle Times of B/T*2 @ FRT APEX EDGE	37
Figure 4.8: Distribution of Cycle Times of HOOK AND EYE + INT & C	CARE
LABEL	39
Figure 4.9: Distribution of Cycle Times of TRIMMING	40
Figure 4.10: Distribution of Separating 48 Garments	42
Figure 4.11: Distribution of Counting 48 Garments	43
Figure 4.12: Distribution of Bundle Handling Time	45
Figure 6.1: Generating Entities for the Production Line	56
Figure 6.2: Dialog Box of the Separate Module for Duplicating Entities	57
Figure 6.3: Dialog Box of the Process Module for Productive Operations	58
Figure 6.4: Dialog Box of the Batch Module for Creating a Batch	58
Figure 6.5: Dialog Box of the Seize Module	59
Figure 6.6: Dialog Box of the Process Module for Counting	60
Figure 6.7: Dialog Box of the Process Module for Bundle Handling	60
Figure 6.8: Dialog Box for Releasing the Operator	61
Figure 6.9: Dialog Box of Separate Module for Splitting the Batch	61
Figure 6.10: Dialog Box of the Failure Module	62
Figure 6.11: Failure Dialog Spread sheet	63
Figure 6.12: Dialog Box of the Assign Module for Recording the Arrival Time	64
Figure 6.13: Dialog Box of the Record Module for Computing the Throu	ighput
Time	65

Figure 6.14: Dialog Box of the Record Module for Computing the Cycle Time	65
Figure 6.15: Sub Model for One Operator's All Tasks	66
Figure 7.1: The Dialog Box for the Simulation Setup	68
Figure 7.2: Algorithm for Line Balancing	71

LIST OF TABLES

	Page
Table 4.1: Composition of Value-Added Operations by Operator	27
Table 4.2: The Composition of Non-value added activities by Operator and the	Туре
of Activity	28
Table 4.3: Summary Measures of Cycle Times of PRE-FIX C/FRT OVER LAP	30
Table 4.4: Fitted Probability Distribution for PRE-FIX C/FRT OVER LAP	30
Table 4.5: Summary Measures of Cycle Times of T/N JOIN S/SEAM	31
Table 4.6: Fitted Probability Distribution for T/N JOIN S/SEAM	31
Table 4.7: Summary Measures of Cycle Times of Z/Z BINDING UNDER ARM	32
Table 4.8: Fitted Probability Distribution for Z/Z BINDING UNDER ARM	33
Table 4.9: Summary Measures of Cycle Times of 3N T/S ELS CUP N	ECK
EDGE	34
Table 4.10: Fitted Probability Distribution for 3N T/S ELS CUP NECK EDGE	34
Table 4.11: Summary Measures of Cycle Times of 3N T/S ELS ATT U/BAND	35
Table 4.12: Fitted Probability Distribution for 3N T/S ELS ATT U/BAND	36
Table 4.13: Summary Measures of Cycle Times of 3 STEP Z/Z ELS ATT B.	ACK
APPEX	37
Table 4.14: Fitted Probability Distribution for 3 STEP Z/Z ELS ATT B.	ACK
APPEX	37
Table 4.15: Summary Measures of Cycle Times of B/T*2 @ FRT APEX EDGE	38
Table 4.16: Fitted Probability Distribution for B/T*2 @ FRT APEX EDGE	38
Table 4.17: Summary Measures of Cycle Times of HOOK AND EYE + IN	IT &
CARE LABEL	39
Table 4.18: Fitted Probability Distribution for HOOK AND EYE + INT & C	ARE
LABEL	40
Table 4.19: Summary Measures of Cycle Times of TRIMMING	41
Table 4.20: Fitted Probability Distribution for TRIMMING	41
Table 4.21: Summary Measures of Separating 48 Garments	42
Table 4.22: Fitted Probability Distribution for Separating 48 Garments	43

Table 4.23: Summary Measures of Counting 48 Garments	43
Table 4.24: Fitted Probability Distribution for Counting 48 Garments	44
Table 4.25: Summary Measures of Bundle Handling Time	45
Table 4.26: Probability Distribution for Bundle Handling Times	46
Table 4.27: Fitted Probability Distributions for Processing Times	46
Table 7.1: Work Allocation for 2400 Garments per Day	73
Table 7.2: Work Allocations for 450 Garments per Day	75
Table 8.1: Widely Applied Line Balancing Procedure	77
Table 8.2: SMV for Processing a Bundle	78

LIST OF ABBREVIATIONS

Abbreviation	Description
SMV	Standard Minute Value
SPD	Standard Probability Distribution

LIST OF APPENDICES

Appendix	Description	Page
Appendix - A	Data Collection Format – Cycle Times of value added operations	74
Appendix – B	Data Collection Format – Non-value added activities	75