MECHZQ

18/00N/38/2015

EFFECT OF ROOFING ON THE THERMAL COMFORT IN DOMESTIC BUILDINGS IN SRI LANKA

A.M.J.Abeysinghe

(08/8601)

LIBRARY UNIVERSITY OF MORATUWA, SRI LANKA MORATUWA

Thesis/Dissertation submitted in partial fulfillment of the requirements for the degree Master-of-Science---

Hileg in Energy Technology

Department of Mechanical Engineering

University of Moratuwa Sri Lanka

May 2013

621 "13" 620.9(043)

108934 CD- RONO

108934

DECLARATION OF THE CANDIDATE AND SUPERVISOR

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

UOM Verified Signature

Angnature:

17. 11. 2014 Date:

The above candidate has carried out research for the Masters under my supervision.

i

UOM Verified Signature

Signature of the supervisor:

Date 17-11-2014

ABSTRACT

This study aimed to investigate the indoor thermal performance of different roofing and ceiling alternatives and their configurations used for residential buildings in Sri Lanka. In this regard, a basic residential building was selected as the reference case.

Five roofing and two ceiling materials were used and combinations of roofing/ceiling types were obtained to investigate the relative effect on the indoor temperature fluctuations and energy use. Both 2-pitched and 4-pitched roof designs were selected and the buildings were aligned for two orientations; east-west and north-south. The two-pitched bare roof (no-ceiling) constructed with a commonly used old cement fiber sheet (asbestos) material was selected as the reference case. The computer software tool, DEROB-LTH (version 99.02) was used to model the building and evaluate the cooling energy use and the indoor air temperatures. These parameters were evaluated hourly, daily and monthly basis for three different months of the year 2011.

The simulation results have shown that there is a noticeable difference in cooling energy use and indoor air temperature with the changes in roofing and ceiling materials as well as with different roof configurations. The results suggest a positive conclusion towards the feasibility of using burnt clay calicut tiles with wooden plank flat suspended ceiling, it was further shown that the common roofing material used in the Sri Lankan residential building industry. Asbestos sheet is not feasible in terms of energy cost and indoor thermal performance.

Finally, an economic analysis / cost-benefit analysis was performed in order to investigate the economic viability of applying different roofing/ceiling combinations and the results indicate that most of the designs are feasible in terms of the cooling energy use and additional expenditure incurred. Simple pay back periods were less than 4 years in most cases. The results also elaborated that even though new calicut tile roof design is expensive, it is worth paying for considering the climate of Sri Lanka. It is suggested that through experimental validation and modeling, these results could be further validated to enhance the accuracy of the output obtained from DROB-LTH.

ACKNOWLEDGEMENT

I would like to express my deep gratitude to Professor. Rahula Anura Attalage, the Deputy Vice Chancellor of the University who is also my research supervisor, for his patient guidance, enthusiastic encouragement and valuable and constructive suggestions during the planning and development of this research work, without whom this thesis wouldn't be never successful. His willingness to give his most valuable time so generously is very much appreciated. The dissertation can only be completed smoothly with their constructive advice and valuable assistance.

My grateful appreciation goes to Dr. Thusitha Sugathapala, the then course coordinator of the M.Eng degree program in energy technology, for selecting me to follow this program and his constructive suggestions during the entire period of the degree program.

I would also like to thank Dr. Himan Punchihewa, Senior Lecturer, for his insightful comments, guidance and advice in keeping my progress on schedule. Without his kind assistance, the progress of this dissertation could not be smooth and effective.

My grateful thanks are also extended to my colleague Mr. H.M Senevirathna, and Mr.S.D.L Sendanayake, Department of the mechanical engineering for their kind support during my research work.

In addition, acknowledgement is given to all my colleagues of this degree program for various supports during the entire degree program.

Last but not least, I extend my thanks to my family and friends who provided endless support and encouragement to me all the time.

TABLE OF CONTENT

DECLARATION OF THE CANDIDATE AND SUPERVISOR	I
ABSTRACT	II
ACKNOWLEDGEMENT	III
TABLE OF CONTENT	IV
LIST OF FIGURES	VIII
LIST OF TABLES	XI
LIST OF APPENDICES	XII
LIST OF ABBREVIATIONS	XIII
CHAPTER 1: INTRODUCTION	I
1.1 Background	1
1.2 Problem statement	2
1.3 Aim and objectives	3
1.3.2 Objectives	3
1.4 Outline of the Thesis	3
CHAPTER 2: LITERATURE SURVEY	4
2.1 Introduction	4
2.2 Development of residential roofing materials2.2.1 Clay tile roofing	4 5

2.2.2 Cement Tiles	10
2.2.3 Asbestos roofing sheets	10
2.2.4 Metal roofing sheets	13
2.2.5 Other roofing materials	13
	14
2.3 Developments of roofing configurations of the domestic buildings in Sri Lanka	14
2.3.1 Types of building roofs	14
2.3.2 Types of roofing configurations	14
CHAPTER 3: ROOFING HEAT TRANSFER THEORY	16
3.1 Introduction	16
3.2 Effect of solar optical parameters on roof heat transfer	16
3.3 Effect of exterior surface colour on roofing heat transfer	18
3.3.1 Effect of weathering/aging of roofing material on downward heat transfer	19
3.4 Temperature profile in roof space for downward heat flow	19
CHAPTER 4: METHODOLOGY	22
4.1 Introduction	22
4.2 The simulation software	22
4.3 The simulated residential building	23
4.3.1 Geometry of the simulated building	23
4.3.2 Description of building elements	24
4.3.3 Surface properties	26
4.4 Internal loads	27
4.5 Thermal comfort range for Sri Lankan residential buildings	28

CHAPTER 5: RESULTS & DISCUSSION	30
5.1 Introduction	30
5.2 Two-pitched roof building	30
5.2.1 Roof exterior surface temperature	31
5.2.2 Effect of roofing material on indoor temperature	33
5.2.3 Effect of ceiling material on indoor temperature	38
5.2.4 Effect of roofing material on cooling energy use	48
5.2.5 Effect of orientation on indoor thermal climate	57
5.3 Four pitched roof building	60
5.3.1 Indoor temperature	60
5.3.2 Cooling energy use	62
5.4 Comparison of 2-pitched & 4-pitched roof buildings	63
5.4.1 Indoor temperature	64
5.4.2 Cooling energy use	67
5.5 Economic analysis of roof/ceiling products	70
CHAPTER: 6: CONCLUSIONS	74
61 Introduction	74
	/4
6.2 Conclusion from the hourly fluctuations analysis of roof exterior surface	
temperature	74
6.3 Conclusion from the hourly temperature fluctuations analysis-no ceiling	75
6.4 Conclusion from the hourly temperature fluctuations analysis-with ceiling	76
6.5 Conclusion from the hourly cooling energy fluctuations analysis	76
6.6 Conclusion from the daily cooling energy use analysis	78

vi

6.7 Conclusion from the economic analysis of roofing products	79
CHAPTER 7: FUTURE WORK	80
REFERENCES	81
APPENDIX	83

LIST OF FIGURES

Figure 2.1:	House with cadjan roof (Source: wikipedia.org/wiki/Cadjan)			
Figure 2.2:	Conventional clay tile roof (Sinhala Tile)			
Figure 2.3:	Pitch Calicut tile roof			
Figure 2.4:	Developed calicut tile	8		
Figure 2.5:	DSI Normal curved calicut tile and data sheet	9		
Figure 2.6:	Concrete roof tile	10		
Figure 2.7:	New asbestos sheet roof	10		
Figure 2.8:	Painted asbestos sheet roof	10		
Figure 2.9:	Old fungi developed asbestos sheet roof	11		
Figure 2.10:	Four Pitch painted asbestos roof	15		
Figure 2.11:	Four Pitch calicut tile roof	15		
Figure 3.1:	Downward and upward heat transfer through a roof space: (a) upward heat transfer; (b) downward heat transfer	17		
Figure 3.2:	Daytime roof temperature profile: (a) without solar radiation; (b) with solar radiation	20		
	a la seconda de la compañía de la co			
Figure 4.1:	Simulated 2-pitched residential building as drawn by DEROB- LTH software	24		
Figure 4.2:	Simulated 4-pitched residential building as drawn by DEROB- LTH software	25		
Figure 4.3:	Psychrometric chart giving modified comfort zones Source: (Jayasinghe & Attalage, 1999)	29		
Figure 5.1:	Hourly outer surface temperatures of roofing materials at east- west orientation on 06 th March, 2011	32		

Figure 5.2:	Hourly indoor temperatures at east-west orientation on day of 06 th March, 2011	34
Figure 5.3:	Hourly indoor temperatures with sloping cement fiber sheet ceiling at East-West orientation on 06 th March, 2011	39
Figure 5.4:	Hourly indoor temperatures with flat cement fibre sheet ceiling at South-East on 06 th March, 2011	41
Figure 5.5:	Hourly indoor temperature with slope wood ceiling at South-East on 06 th March, 2011	43
Figure 5.6:	Hourly indoor temperatures with suspended wood ceiling at South-East on 06 th March, 2011	45
Figure 5.7:	Comparison of roofing, ceiling materials/configurations at E-W orientation on 6 th March 2011	46
Figure 5.8:	Hourly cooling energy demand at E-W orientation on 6 th March 2011	49
Figure 5.9:	Comparison cooling energy use at south-east orientation on 6 th March 2011	51
Figure 5.10:	Comparison of maximum roof exterior surface temperature (⁰ C) for E-W and N-S orientations on 6 th March 2011	58
Figure 5.11:	Comparison of maximum indoor temperature (⁰ C) of a 4-pitched roof building for the east-west orientation on 6 th March 2011	61
Figure 5.12:	Comparison of daily cooling energy use (kWh/day) of 2 & 4- pitched roof building for the east-west orientation on 6 th March 2011	63
Figure 5.13:	Comparison of maximum indoor temperature (^{0}C) for 2-pitched & 4-pitched roof building with new asbestos roof material	64
Figure 5.14:	Comparison of maximum indoor temperature (⁰ C) for 2-pitched & 4-pitched roof building with painted asbestos roof material	65
Figure 5.15:	Comparison of maximum indoor temperature (⁰ C) for 2-pitched & 4-pitched roof building with old asbestos roof material	65
Figure 5.16:	Comparison of maximum indoor temperature (⁰ C) for 2-pitched & 4-pitched roof building with conventional calicut tile roof	
	material	66

Figure 5.17:	Comparison of maximum indoor temperature (⁰ C) for 2-pitched & 4-pitched roof building with new calicut tile roof material	66
Figure 5.18:	Comparison of daily cooling energy demand (kWh) for 2-pitched & 4-pitched roof building with new asbestos roof material	68
Figure 5.19:	Comparison of daily cooling energy demand (kWh) for 2-pitched & 4-pitched roof building with painted asbestos roof material	68
Figure 5.20:	Comparison of daily cooling energy demand (kWh) for 2-pitched & 4-pitched roof building with old asbestos roof material	69
Figure 5.21:	Comparison of daily cooling energy demand (kWh) for 2-pitched & 4-pitched roof building with conventional calicut tile roof material	69
Figure 5.22:	Comparison of daily cooling energy demand (kWh) for 2-pitched & 4-pitched roof building with new calicut tile roof material	70

LIST OF TABLES

Table 2.1:	Table of roof angle data	12
Table 4.1:	Description of the building elements used in DEROB-LTH program	26
Table 4.2:	Surface properties of building elements of the modeled domestic building	27
Table 4.3:	Total internal heat gain (W)	28
Table 5.1:	Comparison of maximum indoor temperature at east-west orientation on 6 th March 2011	47
Table 5.2:	Comparison of daily cooling energy use at E-W orientation on 6 th March 2011	52
Table 5.3:	Comparison of specific cooling energy use at S-E orientation on 6 th March 2011	54
Table 5.4:	Sensitivity analysis of cooling energy use with different roofing/ceiling configurations at south-east orientation on 6 th March 2011	55
Table 5.5:	Comparison of daily cooling load for east-west & north-south orientations on 6 th March 2011	59
Table 5.6:	The economic analysis of different roof/ceiling configurations versus reference roof design	72

LIST OF APPENDICES

Appendix A1:	Indoor temperature (°C) for different roofing materials for east- west & north-south orientations on 6^{th} March 2011.	83
Appendix A2:	Indoor temperature (°C) for different roofing materials with sloping cement fibre ceiling configuration for east-west & north-south orientations on 6^{th} March 2011.	84
Appendix A3:	Cooling energy demand for different roofing materials (with no ceiling) on 6 th March 2011 at south-east orientation	85
Appendix A4:	Exterior roof surface temperature (°C) for different roofing materials at east-west & north-south orientations on 6 th March 2011	86
Appendix B1:	Comparison of maximum indoor temperature (°C) of a 4- pitched roof building for east-west & north-south orientations on 6 th March 2011	87
Appendix B2:	Comparison of maximum indoor temperature (°C) of a 2- pitched & a 4-pitched roof building for east-west orientation on 6 th March 2011	88
Appendix B3:	Comparison of maximum indoor temperature (°C) of a 2- pitched & a 4-pitched roof building for north-south orientation on 6 th March 2011	89
Appendix B4:	Comparison of cooling energy use (kWh/day) of a 2-pitched & a 4-pitched roof building for east-west orientation on 6 th March 2011	90
Appendix B5:	Comparison of cooling energy use (kWh/day) of a 2-pitched & a 4-pitched roof building for north-south orientation on 6 th March 2011	91

LIST OF ABBREVIATIONS

CC	-	Conventional Calicut
E-S	-	East-South
NA	-	New Asbestos
NC	-	New Calicut
N-S	-	North-South
OA	-	Old Asbestos
PA	-	Painted asbestos
S-E	-	South-East