LBIDON 1109 /2017

COMPARISION OF BIOMASS COOKSTOVES IN SRI LANKA

R. I. K. Chandrasena

(128355A)

LIBRARY UNIVERSITY OF MORATUWA, SRI LANKA MORATUWA

Dissertation submitted in partial fulfillment of the requirements for the Degree Master of Engineering in Energy Technology

> TH 8454 + CD ROM

Department of Mechanical Engineering

University of Moratuwa Sri Lanka

February 2017

621"17" 620.9 (043)

TH3454

ABSTRACT

Biomass plays an important role in Sri Lanka Energy Sector. The consumption of biomass in the commercial and household sector is declining due the popularity of fossil fuels. Consumption of biomass is getting less popular due to various reasons. Handling difficulties due to various sizes, combustion difficulties due to various calorific values, low combustion efficiency due to high moisture content and high storage and transportation cost due to bulk size and moisture.

To evaluate the performance of selected biomass cookstoves thermal efficiency together with other performance parameters were tested by Shell Foundation Version 4.3.2 Water Boiling Test. The tested stoves are Semi-enclosed firewood cookstove, popular Anagi-2 firewood stove, Turbo charcoal stove, Desha Shakthi saw dust pellet stove and Spectra saw dust pellet stove. Desha Shakthi stove shows the highest efficiency of 0.59 at high power operation while Spectra shows 0.43 and fallen in to the tier 4 of IWA matrix. Turbo charcoal stove categorized in to tire 2 as it is having thermal efficiency of 0.26. Anagi-2 and semi-enclosed stoves can be categorized in to tire 1 since they are having efficiencies of 0.17 and 0.15 respectively.

Anagi-2 stove shows the lowest time to boil while DeshShakthi stove takes highest time to boil water. Desha Shakthi stove shows lowest burning rate which is 5 g/min while Anagi -2 shows the highest burning rate of 28.65g/min. Specific fuel consumption of Desha Shakthi is the lowest as 0.05 kg of fuel per kg of water while semi-enclosed stoves shows the highest as 0.16.

Overall average specific energy consumption of Desha Shakthi stove is the lowest as 1.10 kJ/kg of water and highest of Anagi-2 as it is 5.27 kJ/kg of water. The highest fire power of 8712.71 W is shown by Anagi-2 while Desha Shakthi has the lowest fire power as 1279.58 W.

To categories stove emissions and safety under IWA performance matrix, the emission tests also should be done during the WBT. When comparing the designs of stoves there is a possibility of improving the performance of Spectra stove by introducing design modifications.

ACKNOWLEDGEMENT

I take this opportunity to acknowledge all individuals and organizations that supported me in carrying out this research and writing the thesis from the beginning to the end.

First of all should thank Dr. Chathura Ranasinghe, Senior Lecturer, Department of Mechanical Engineering, University of Moratuwa for his guidance and comments given as the supervisor of this research.

My heartiest gratitude is delivered to Dr. Himan Punchihewa, Senior Lecturer, Department of Mechanical Engineering, University of Moratuwa for his incomparable contribution and encouragement given me and for his hard work as the Course Coordinator.

I would like to thank Mr. Sandanayake for his support and encouragement given to me from the start to the end of the course.

A special thank goes to Mr. H M Ranasiri, Head of the Department, Mechanical Engineering Technology and Maritime Studies, Institute of Technology for giving me support and encouragement to make this study a success.

At this moment, I highly appreciate the invaluable support given to me during the testing the staff of Thermodynamic Laboratory of University of Moratuwa by providing information and lab equipment. Special thanks goes to the staff of the Work Shop of University of Moratuwa for giving me their support to make the hood for the test.

Finally I herewith acknowledge all staff members of University of Moratuwa and outside personnel for the miscellaneous support given to me in completion of this research.

iii

TABLE OF CONTENTS

De	claratio	n	ī
Ab	stract		ïi
Ac	knowle	dgedment	iii
Tal	ole of C	ontents	iv
Lis	t of Fig	ures	vī
Lis	t of Tab	bles	vii
Lis	t of Ab	breviations	viii
Lis	t of Ap	pendices	іx
1	Introdu	uction	1
	1.1 Co	ontribution of biomass on National Energy Ecomomy of Sri Lanka	1
	1.2 U	se of biomass in Household sector in Sri Lanka	3
	1.3 Ba	ackground of the Problem	4
	1.4 Pr	oblem Statement	5
	1.5 A	im	5
	1.6 O	bjectives	6
	1.7 M	ethodology	6
2	Literat	ure Review	8
	2.1 Ba	arriers of Utilization of Biomass	8
	2.2 Be	enefits of Biomass Utilization	8
	2.3 M	ethods of Utilization of Biomass	10
	2.4 A	vailability of Biomass in Sri Lanka	12
	2.5 Hi	istory of ICS in Sri Lanka and Present Situation	13
	2.6 M	ethods of Performance Testing of ICS	16
	2.7 Sł	nell Foundation and WBT	21
	2.8 IS	O International Workshop Agreement (IWA)	21
3	Metho	d	23
	3.1 Se	election of Stoves to be Tested	23
	3.2 Se	election of Performance Testing Methods and Parametres for the Study	26
	3.3 Pr	reperation for the Test	28
4	Data C	Collection and Analysis	30
	4.1 A	bbriviations Used in Calculations	31
	4.2 Ca	alculations of LHVs	32

	4.3 Speciman Calculations for Desha Shakthi Trial 1 - Cold Start	. 34
	4.4 Calculations for Desha Shakthi Trial 1 – Hot Start	36
	4.5 Calculations for Desha Shakthi Trial 1 – Simmering	36
	4.6 Calculations for Spectra Pellet stove	38
	4.7 Calculations for Turbo charcoal stove	39
	4.8 Calculations for Semi-enclosed stove	39
	4.9 Calculations for Anagi 2 srove	39
5	Results and Discussion	. 40
	5.1 Temperature Corrected Time to Boil	40
	5.2 Thermal Efficiencies of Stoves	41
	5.3 Burning Rate	42
	5.4 Temperature Corrected Specific Fuel Consumption	43
	5.5 Temperature Corrected Specific Energy Consumption	44
	5.6 Fire Power	45
6	Conclution and Future Work	46
	6.1 Major Conclutions	48
	6.2 Future Works	48
Ref	ferences	. 50
Ap	pendix A – Data Collection Spread Sheets and Other Data	51
Ap	pendix B – Calculation Results	68
Ap	pendix C – Fuel Test Results	84

LIST OF FIGURES

Figure 1.1	Percentage Share of Primary Energy Consumption in Sri Lanka	1
Figure 1.2	Percentage Energy Consumption in Industrial Sector in 2014	2
Figure 1.3	Percentage Energy Consumption in Commercial and Household Sector	2
Figure 1.4	Consumption of biomass in Commercial and Household Sector 2014	4
Figure 2.1	World Liquid Fuels Production and Consumption	8
Figure 2.2	Biomass Bails, briquettes and pellets	11
Figure 2.3	Popular Anagi 2 cookstove	14
Figure 2.4	Various types of cookstoves available in the market	14
Figure 2.5	New ICS found in the market	15
Figure 2.6	Desha Shakthi cookstove and pellets	16
Figure 2.7	Spectra pellet cookstove	16
Figure 3.1	Selected firewood cookstoves	23
Figure 3.2	Selected turbo cookstove	24
Figure 3.3	Desha Shakthi pellet cookstove	25
Figure 3.4	Spectra pellet cookstove	26
Figure 4.1	While conducting WBT in the thermodynamic laboratory	30
Figure 4.2	After boiling process the separated un-burned pellet and char	30
Figure 5.1	Temperature corrected time to boil	40
Figure 5.2	Thermal efficiency of tested stoves	41
Figure 5.3	Burning rate	42
Figure 5.4	Temperature corrected specific fuel consumption	43
Figure 5.5	Temperature corrected specific energy consumption	44
Figure 5.6	Fire power of the stoves in Watts	45

LIST OF TABLES

Table 1.1	Annual Primary energy consumption in Sri Lanka 2014	1	
Table 1.2	The Industries Use Biomass as Their Main Energy Source		
Table 2.1	Estimated supply of biomass by source	12	
Table 2.2	Annual availability of non-conventional biomass sources	13	
Table 2.3	Simple comparison between cookstove performance testing methods	20	
Table 2.4	IWA Performance Matrix	22	
Table 5.1	Temperature corrected time to boil	40	
Table 5.2	Thermal energy consumption of tested stoves	41	
Table 5.3	High power thermal efficiency values	42	
Table 5.4	Burning rates	42	
Table 5.5	Temperature corrected specific fuel consumption	43	
Table 5.6	Temperature corrected specific energy consumption	44	
Table 5.7	Fire power of the stoves	45	
Table 6.1	IWA performance categorization on thermal efficiencies of stoves tested	47	

LIST OF ABBREVIATIONS

PJ	-	Pica Joules
CEB	-	Ceylon Electricity Board
ICS	-	Improved Cook Stoves
NGO	-	Nongovernmental Organization
toe	-	tons of oil equivalent
SLSEA	-	Sri Lanka Sustainable Energy Authority
CO2	-	Carbon dioxide
CO	-	Carbon monoxide
DC	-	Direct current
WBT	-	Water boiling test
IDEA	-	Integrated Development Association
IDB	-	Industrial Development Board
NERD		National Engineering Research and Development
ССТ	-	Control Cooking Test
КРТ	-	Kitchen Performance Test
SUMs	-	Stove Use Monitors
ITI	-	Industrial Technology Institute
DC	-	Direct Current
IWA	-	International Workshop Agreement
ISO	-	International Organization for Standardization

LIST OF APPENDICES

Appendix A	-	Spread Sheets of Collected Data
Appendix B	-	Calculation Results
Appendix C	-	Fuel Test Results