TIME SERIES FORECASTING OF POST-WAR TOURISM PROSPECTS FOR SRI LANKA

Sebastian Reyalt Gnanapragasam

(148377 K)

LIBRARY UNIVERSITY OF MORATUWA, SRI LANKA MORATUWA

Dissertation submitted in partial fulfillment of the requirements for the degree Master of Science in Operational Research

Department of Mathematics

University of Moratuwa

Sri Lanka

51"16"

15 Don 1143 0016 MA 01/41

June 2016

7 3217 1 CD -ROM

T-H 3217

DECLARATION

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Pyatt :-

Date: 22-06-2016

The above candidate has carried out research for the Masters Dissertation under my supervision.

ì

Name of the supervisor: Mr. T. M. J. A. Cooray

UOM Verified Signature

Signature of the supervisor:

Date: 23/06/2046

ABSTRACT

Tourism plays a big role in the development of a country in terms of economics as it is one of the biggest and fastest-growing economic sectors in the world. It accounts for a large part of Gross Domestic Product of any country through Foreign Exchange. This study focused on international tourist arrivals to Sri Lanka. In the past, nearly three decades, Sri Lanka had to face conflict within the country. Tourists had less interest of visiting Sri Lanka, mainly due to the uncertainty of security. Nevertheless, the internal conflict is over and tourist arrivals have dramatically increased over last six years.

The aim of this study is to investigate the impact of internal conflict in Sri Lanka for tourist arrivals by splitting the entire time frame by *before* and *after* the conflict as two windows. Further this study discusses the factors which are influenced by tourism in Sri Lanka. The data for the study is extracted from the annual reports of the Sri Lanka Tourism Development Authority.

Time series models are developed in two separate time windows by using the methods: Holt-Winters' Exponential Smoothing, Seasonal Autoregressive Integrated Moving Average (ARIMA) modeling, State Space modeling and Dynamic Transfer Function modeling. All necessary tests are carried out for model development, diagnostic checking and forecast.

In the empirical study, behavior of arrivals with its trend and seasonal patterns are analyzed, best models are developed based on the accuracy of fitted models in terms of Mean Absolute Percentage Error (MAPE) values and the impact of the factors influenced by tourism are deeply discussed. MAPE values for the recommended models for *after* the conflict are less than 7%. In both windows, Seasonal ARIMA method performs the best. Moreover it is estimated by ex-post forecast that, 2.085 million international tourist arrivals can be expected in the year 2016.

Key words: ARIMA, Dynamic Transfer Function, State Space, Tourist Arrivals

Dedicated to my Father

ACKNOWLEDGEMENT

Behind the success of my research work, there are many people who deserve my wholehearted gratitude.

To begin with I extend my sincere thanks to my advisor Mr. T. M. J. A. Cooray, Senior Lecturer in the Department of Mathematics, University of Moratuwa, who stood like a shadow, for his scholarly guidance and encouragement. His advice and narration provided an excellent environment for me to conduct my research successfully.

I would like to be grateful to the Head of the Department of Mathematics, Programme Coordinator and the Teaching Panel of the M. Sc in Operational Research degree programme at the University of Moratuwa.

My sincere thanks also goes to the Vice Chancellor of the Open University of Sri Lanka, Dean of the Faculty of Natural Sciences, Head of the Department of Mathematics and Computer Science for granting permission to follow this Master degree programme. Furthermore, I must thank all the staff members in the Department of Mathematics and Computer Science for their support in numerous ways to complete this post graduate. study on time.

It would not be possible for me to do this research work without the support of my family. Therefore, I take this opportunity to thank my dearest wife S. Parimala Devi, who was there to render help whenever I felt so downhearted and always being there for me.

Finally, I offer my sincere gratitude for everyone else of whose name I might have forgotten to mention.

TABLE OF CONTENTS

	Page
DECLARATION	i
ABSTRACT	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	v
LIST OF FIGURES	xiv
LIST OF TABLES	xvi
LIST OF ABBREVIATIONS	xix
LIST OF APPENDICES	xxi
1. INTRODUCTION	01
1.1 International Tourism	01
1.2 Tourism and Economics	01
1.3 Importance of Forecast in Tourism	02
1.4 Tourism in Sri Lanka	03
1.5 Sri Lankan Tourism and its Development	03
1.6 Development Planning in Sri Lanka	04
1.7 Economic Impact on Tourism in Sri Lanka	05
1.8 Social and Cultural aspects of Tourism in Sri Lanka	05
1.9 Aim of the study	05
1.9.1 Objectives	06
1.10 Source of data	06
1.11 Outline of the Dissertation	06

2.	LITERA	TURE REVIEW	08
	2.1 Previo	ous studies using Exponential Smoothing modeling method	08
	2.2 Previo	ous studies using ARIMA modeling method	09
	2.3 Previo	ous studies using State Space modeling method	10
	2.4 Previo	ous studies using Dynamic Transfer Function modeling method	10
	2.5 Previo	ous studies using Neural Network method	11
	2.6 Previo	ous studies on forecasting tourists in Sri Lanka	11
	2.7 Comp	rehensive Reviews	12
	2.8 Synop	osis	12
3.	METHOI	DOLOGY	13
	3.1 Prelin	ninary Analysis	13
	3.1.1	Time Series Plot	13
	3.1.2	Augmented Dickey- Fuller test	13
	3.1.3	Kruskal- Wallis Test	13
	3.1.4	Transformation to Stationary Series	14
		3.1.4.1 Regular Differencing method	14
		3.1.4.2 Seasonal Differencing method	14
		3.1.4.3 Variance Stabilizing method	14
	3.1.5	Autoregressive process	14
	3.1.6	Moving Averages process	15
	3.1.7	Autocorrelation function and partial auto correlation function	15
		3.1.7.1 Autocorrelation function	15
		3.1.7.2 Partial autocorrelation function	16

3.2	Model	Development and Forecasting using exponential smoothing method	d16
	3.2.1	Single Exponential Smoothing	17
	3.2.2	Double Exponential Smoothing	17
	3.2.3	Holt-Winter's Seasonal Exponential Smoothing	17
		3.2.3.1 Multiplicative Holt-Winter's seasonal model	17
		3.2.3.2 Estimates of model parameters of multiplicative	
		Holt-Winter's model	18
		3.2.3.3 Updating level parameter of multiplicative	
		Holt-Winter's model	18
		3.2.3.4 Updating trend parameter of multiplicative	
		Holt-Winter's model	18
		3.2.3.5 Updating seasonal parameter of multiplicative	
		Holt-Winter's model	18
		3.2.3.6 Forecast for the next period of multiplicative	
		Holt-Winter's model	18
		3.2.3.7 Additive Holt-Winter's seasonal model	18
		3.2.3.8 Estimates of model parameters of additive	
		Holt-Winter's model	19
		3.2.3.9 Updating level parameter of additive	
		Holt-Winter's model	19
		3.2.3.10 Updating trend parameter of additive	
		Holt-Winter's model	19
		3.2.3.11 Updating seasonal parameter of additive	
		Holt-Winter's model	19
		3.2.3.12 Forecast for the next period of additive	
		Holt-Winter's model	19

	3.2.4	Obtaining the optimal values for smoothing constants	19
		3.2.4.1 Parameter Grid Search algorithm	20
		3.2.4.2 Parameter Auto Search algorithm	20
	3.2.5	Advantages of Exponential Smoothing method	20
	3.2.6	Disadvantages of Exponential Smoothing method	21
3.3	Model	development and forecasting using ARIMA modeling method	21
	3.3.1	Model Identification	21
		3.3.1.1 Autoregressive Moving Averages models	21
		3.3.1.2 Autoregressive Integrated Moving Averages models	22
		3.3.1.3 Seasonal ARIMA models	23
	3.3.2	Parameter Estimation	23
	3.3.3	Limitation of ARIMA models	23
	3.3.4	Residual Analysis	24
		3.3.4.1 Normality of Residuals	24
		3.3.4.2 Anderson- Darling Test	24
		3.3.4.3 Durbin-Watson statistic	25
		3.3.4.4 Lagrange's Multiplier test	25
		3.3.4.5 White's General test	25
	3.3.5	Model Selection	26
		3.3.5.1 Akaike Information Criterion	26
		3.3.5.2 Schwartz's Bayesian Criterion	27
		3.3.5.3 Coefficient of determination	27
	3.3.6	Accuracy of the Model	27
		3.3.6.1 Mean Absolute Percentage Error	28
	3.3.7	Flow chart of ARIMA modelling Approach	28

3.4 Model development and forecasting using		
Dynamic Transfer Function method		
3.4.1	Dynamic Transfer Function – Noise Model	29
3.4.2	Dynamic Transfer Function model for Univariate	
	Time Series Process	30
3.4.3	Flow chart of computing Transfer function parameters	31
3.4.4	Estimating Parameters of DTF model	31
3.5 Model development and forecasting using State Space modeling		
method		32
3.5.1	Estimation of State Space model	34
3.5.2	Kalman Filtering	34
3.5.3	Prediction and updating steps in Kalman filter method	34
3.5.4	Forecasting with State Space models	35
3.5.5	Advantages of a State-Space model	36
3.6 Syno	psis	36

4.	PRELIMINARY ANALYSIS	31
	4.1 Preliminary Analysis of Tourist Arrivals in Overall Frame	37
	4.2 Preliminary Analysis of Tourist Arrivals in Window I	41
	4.3 Preliminary Analysis of Tourist Arrivals in Phase I	45
	4.4 Preliminary Analysis of Tourist Arrivals in Phase II	48
	4.5 Preliminary Analysis of Tourist Arrivals in Window II	51
	4.6 Synopsis	53

ATAT SZCIC

5.	MODEL	DEVELOPMENT IN WINDOW I	54
	5.1 Mode	l Development using Exponential Smoothing method in window I	54
	5.1.1	Grid Search Algorithm in window I	54
	5.1.2	Auto Search Algorithm in window I	55
	5.1.3	Diagnostic testing for selected multiplicative model by	
		grid search algorithm	57
	5.2 Devel	opment of ARIMA model in window I	58
	5.2.1	Transformation of series in window I	59
	5.2.2	Selection of ARIMA model with D12D1[SQRT(Y)] series	
		in window I	63
	5.2.3	Selection of ARIMA model with D12D1Y series in window I	65
	5.2.4	Selection of ARIMA model with D12D1[LOG(Y)] series	
		for phase I	66
	5.2.5	Selection of ARIMA model with D12D1[SQRT(Y)] series	
		for phase II	66
5.3 Model development using Dynamic Transfer Function metho		l development using Dynamic Transfer Function method	
	in win	dow I	67
	5.3.1	Parameter Estimation of DTF model in window I	67
	5.3.2	Diagnostic checking for the residuals of fitted DTF model	
		in window I	68
	5.4 Mode	development using State Space method in window I	69
	5.4.1	Parameter Estimation of SS model by Kalman filter in window I	69
	5.4.2	Diagnostic checking for the residuals of fitted SS model	
		in window I	70
	5.5 Synop	sis	71

6.	MODEL I	DEVELOPMENT IN WINDOW II	72
	6.1 Model	Development using Exponential Smoothing method in window II	72
	6.1.1	Grid Search Algorithm in window II	72
	6.1.2	Auto Search Algorithm in window II	73
	6.1.3	Diagnostic testing for the selected additive model by	
		grid search algorithm	75
	6.1.4	Diagnostic testing for the selected additive model by	
		auto search algorithm	76
	6.1.5	Diagnostic checking for the selected multiplicative model by	
		grid search algorithm	77
	6.2 Develo	opment of ARIMA model in window II	78
	6.2.1	Transformation of series in window II	78
	6.3 Model	development using Dynamic Transfer Function method	
	in win	dow II	82
	6.3.1	Parameter Estimation of DTF model in window II	82
	6.3.2	Diagnostic checking for the residuals of fitted DTF model	
		in window II	83
	6.4 Model	development using State Space method in window II	84
	6.4.1	Parameter Estimation of SS model by Kalman filter in window II	84
	6.4.2	Diagnostic checking for the residuals of fitted SS model	
		in window II	85
	6.5 Ex- ar	nte forecast of selected models in window II	87
	6.6 Ex-po	est forecast for the year 2016	87
	6.7 Synop	osis	89

7.	FACTORS INFLUENCED BY TOURISM IN SRI LANKA	91
	7.1 Accommodation facilities for tourists	91
	7.2 Direct Employment by tourism	92
	7.3 Foreign Exchange (FE) Earning through tourism	93
	7.4 Some highlights relevant to Sri Lankan tourism	95
	7.5 Synopsis	96
8.	CONCLUSIONS	97
	8.1 Proportion of arrivals in separate time frames	97
	8.2 The trend of monthly arrivals	97
	8.3 Model for the period of before the conflict	97
	8.4 Model for the period of after the conflict	98
	8.5 Conclusions on influenced factors by tourism	98
	8.6 Prediction for the year 2016	99
	8.7 Synopsis	100
9.	RECOMMENDATIONS	101
	9.1 Suggestions to improve the tourism industry	101
	9.2 Recommendations by the study	101
	9.3 Recommendations for further studies	102
	9.4 Synopsis	102

LIST OF REFERENCES

103

APPENDIX A:	Selected Seasonal ARIMA models in window I	108
APPENDIX B:	Relevant Figures for Seasonal ARIMA model	
	development in Phase I	109
APPENDIX C:	Relevant Figures for Seasonal ARIMA model	
	development in Phase II	111
APPENDIX D:	Ex-ante forecast by the fitted models in window I	113
APPENDIX E:	Ex-ante forecast by the fitted models in window II	114

LIST OF FIGURES

		Page
Figure 4.1:	Plot of yearly tourist arrivals in overall frame	38
Figure 4.2:	Plot of monthly average tourist arrivals in overall frame	39
Figure 4.3:	Time series plot of tourist arrivals in overall frame	40
Figure 4.4:	ACF graph of the series of tourist arrivals in overall frame	41
Figure 4.5:	Plot of monthly average tourist arrivals in window I	43
Figure 4.6:	Time series plot of tourist arrivals in window I	43
Figure 4.7:	ACF graph of the series of tourist arrivals in window I	44
Figure 4.8:	Plot of monthly average tourist arrivals in phase I	45
Figure 4.9:	Time series plot of tourist arrivals in phase I	46
Figure 4.10:	ACF graph of the series of tourist arrivals in phase I	47
Figure 4.11:	Plot of monthly average tourist arrivals in phase II	49
Figure 4.12:	Time series plot of tourist arrivals in phase II	49
Figure 4.13:	ACF graph of the series of tourist arrivals in phase II	50
Figure 4.14:	Plot of monthly average tourist arrivals in window II	52
Figure 4.15:	Time series plot of tourist arrivals in window II	52
Figure 4.16:	ACF graph of the series of tourist arrivals in window II	53
Figure 5.1:	Plot of HW Additive method in window I by grid search	
	algorithm	54
Figure 5.2:	Plot of HW Multiplicative method in window I by grid search	
	algorithm	55
Figure 5.3:	Plot of HW Additive method in window I by auto search	
	algorithm	56
Figure 5.4:	Plot of HW Multiplicative method in window I by auto search	
	algorithm	56
Figure 5.5:	Residual plots of the grid searched multiplicative model	
	in window I	57

Figure 5.6:	Time series plot of D1Y series in window I	59
Figure 5.7:	Plot of Box- Cox transformation of series in window I	60
Figure 5.8:	Time series plot of SQRT(Y) series in window I	60
Figure 5.9:	ACF graph of the series SQRT(Y) in window I	61
Figure 5.10:	Time series plot of the series D1[SQRT(Y)] in window I	61
Figure 5.11:	ACF graph of the series D1[SQRT(Y)] in window I	62
Figure 5.12:	ACF graph of the series D12D1[SQRT(Y)] in window I	62
Figure 5.13:	PACF graph of the series D12D1[SQRT(Y)] in window I	63
Figure 5.14:	ACF graph of the series D1Y in window I	64
Figure 5.15:	ACF graph of the series D12D1Y in window I	64
Figure 5.16:	PACF graph of the series D12D1Y in window I	65
Figure 5.17:	Normal probability plot of residuals of DTF model in window I	68
Figure 5.18:	Plot of Residuals versus Predicted values of DTF model	
	in window I	69
Figure 5.19:	Normal probability plot of residuals of SS model in window I	70
Figure 5.20:	Plot of Residuals versus Predicted values of SS model	
	in window I	70
Figure 6.1:	Plot of HW Additive method in window II by grid search	
	algorithm	72
Figure 6.2:	Plot of HW Multiplicative method in window II by grid search	
	algorithm	73
Figure 6.3:	Plot of HW Additive method in window II by auto search	
	algorithm	74
Figure 6.4:	Plot of HW Multiplicative method in window II by auto search	
	algorithm	74
Figure 6.5:	Residual plots of the grid searched additive model in window II	75
Figure 6.6:	Residual plots of the auto searched additive model in window II	76

Figure 6.7:	Residual plots of the grid searched multiplicative model	
	in window II	77
Figure 6.8:	Time series plot of D1Y series in window II	78
Figure 6.9:	ACF graph of the series D1Y in window II	79
Figure 6.10:	ACF graph of D12D1Y series in window II	80
Figure 6.11:	PACF graph of D12D1Y series in window II	80
Figure 6.12:	Normal probability plot of residuals of DTF model in window II	83
Figure 6.13:	Plot of Residuals versus Predicted values of DTF model	
	in window II	83
Figure 6.14:	Plot of Residuals versus Order of DTF model in window II	84
Figure 6.15:	Normal probability plot of residuals of SS model in window II	85
Figure 6.16:	Plot of Residuals versus Predicted values of SS model	
	in window II	86
Figure 6.17:	Plot of Residuals versus Order of SS model in window II	86
Figure 7.1:	Growth Rate of Direct Employment in Sri Lanka	93
Figure 7.2:	Plot of FE earnings per tourist per day in Sri Lanka	94
Figure B1:	Time Series plots of series Y and D1Y in phase I	109
Figure B2:	Box- Cox Transformation plot of Y in phase I	109
Figure B3:	Time Series plots of series LOG(Y) and D1[LOG(Y)] in phase I	110
Figure B4:	ACF plot of series D1[LOG(Y)] and D12D1[LOG(Y)] in phase I	110
Figure C1:	Time Series plots of series Y and D1Y in phase II	111
Figure C2:	Box- Cox Transformation plot of Y in phase II	111
Figure C3:	Time Series plots of series LOG(Y) and D1[LOG(Y)] in phase 11	112
Figure C4:	ACF plot of series D1[LOG(Y)] and D12D1[LOG(Y)] in phase II	112

LIST OF TABLES

		rage
Table 3.1:	Behavior of theoretical ACF and PACF for stationary series	22
Table 4.1:	Descriptive statistics of yearly tourist arrivals in overall frame	37
Table 4.2:	Test results of trend and seasonality of monthly tourist arrivals	40
Table 4.3:	Average tourist arrivals in window I	42
Table 4.4:	Test results of trend and seasonality of monthly tourist arrivals	
	in window I	44
Table 4.5:	Average and total tourist arrivals in phase I	45
Table 4.6:	Test results of trend and seasonality of monthly tourist arrivals	
	in phase I	46
Table 4.7:	Average and total tourist arrivals in phase II	48
Table 4.8:	Test results of trend and seasonality of monthly tourist arrivals	
	in phase II	50
Table 4.9:	Descriptive statistics of tourist arrivals in window II	51
Table 4.10:	Test results of trend and seasonality of monthly tourist arrivals	
	In window II	52
Table 5.1:	Summary of models by Exponential Smoothing method in	
	window I	57
Table 5.2:	Test results of best model of series D12D1[SQRT(Y)] in	
	window I	63
Table 5.3:	Test results of best model of the series D12D1Y in window I	65
Table 5.4:	Test results of best model of the series D12D1[LOG(Y)] in	
	phase I	66

Table 5.5:	Test results of best model of the series D12D1[SQRT(Y)]	
	in phase II	67
Table 5.6:	Estimates of parameters of SS model in window I	69
Table 6.1:	Summary of models by Exponential Smoothing method	
	in window II	75
Table 6.2:	Diagnostic test results of ARIMA models in window II	81
Table 6.3:	Information criterions of ARIMA models in window II	81
Table 6.4:	Estimates of parameters of SS model in window II	84
Table 6.5	Ex-post monthly forecast for the year 2016 by Seasonal	
	ARIMA model	87
Table 6.6	Ex-post monthly forecast for the year 2016 by DTF model	88
Table 6.7	Ex-post monthly forecast for the year 2016 by SS model	89
Table 7.1:	Accommodation capacity in Sri Lanka from 2009 to 2014	91
Table 7.2:	Direct Employment by Sri Lankan tourism	92
Table 7.3:	Foreign exchange earnings by tourism in Sri Lanka	94
Table 8.1:	Estimates and actual arrivals till May 2016	99
Table A1:	Test results of selected models of series D12D1[SQRT(Y)]	
	in window I	108
Table A2:	Test results of selected models of series D12D1Y in window I	108
Table D1:	Ex-ante forecasted values of fitted significant models in	
	window l	113
Table E1:	Ex-ante forecasted values of fitted significant models in	
	window II	114

LIST OF ABBREVIATIONS

Abbreviation	Description
ACF	Auto Correlation Function
AD	Anderson Darling
ADF	Augmented Dickey Fuller
AIC	Akaike information criterion
AR	Autoregressive
ARMA	Autoregressive and Moving Average
ARIMA	Autoregressive Integrated Moving Average
DIY	1 st difference of Y
D12D1Y	12 th differences of D1Y
DES	Double Exponential Smoothing
DTF	Dynamic Transfer Function
DW	Durbin Watson
FE	Foreign Exchange
GDP	Gross Domestic Product
HW	Holt Winters
KS	Kolmogorov Smirnov

LM	Lagrange's Multiplier
LOG	Logarithm
МА	Moving Averages
MAPE	Mean Absolute Percentage Error
PACF	Partial Auto Correlation Function
SAS	Statistical Analysis Software
SBC	Schwartz's Bayesian Criterion
SES	Single Exponential Smoothing
SLTDA	Sri Lanka Tourism Development Authority
SQRT	Square root
SS	State Space
SSE	Sums of Squares of Residuals
VAR	Vector Autoregressive

LIST OF APPENDICES

Appendix	Description	Page
APPENDIX - A	Selected Seasonal ARIMA models in window I	108
APPENDIX- B	Relevant Figures for Seasonal ARIMA model	
	development in Phase I	109
APPENDIX - C	Relevant Figures for Seasonal ARIMA model	
	development in Phase II	111
APPENDIX - D	Ex-ante forecast by the fitted models in window I	113
APPENDIX - E	Ex-ante forecast by the fitted models in window II	114