LB 1 DON/ 73 / 2017

.....

LIBRARY UNIVERSITY OF MORATUWA, SRI LANKA MORATUWA

Decision Support Approach to Domestic Energy Monitoring System

G.A.G.K.Abeysinghe 149202F TH 33834 CD ROM

Dissertation submitted to the Faculty of Information Technology, University of Moratuwa, Sri Lanka for the partial fulfillment of the requirements of the Master Degree of Science in Information Technology.

May 2017

IH 3383

004 (013)

Declaration

I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.

G.A.G.K.Abeysinghe

Name of Student

Physighe

Signature of the Student

Date: 30/06/2017

Supervised by:

Mr. Saminda Premaratne Name of Supervisor **UOM Verified Signature**

Signature of Supervisor

Dedication

I dedicate this thesis to my beloved parents who have never failed to support me, throughout my life. They have thought me that any task can be accomplished by taking a step at a time.

Acknowledgement

I wish to express gratitude to my project supervisor Mr.Saminda Premaratne who untiringly shared his knowledge, provided precious guidance, encouragement, advices and assistance to complete the project successfully.

I am also thankful to Prof A.S Karunananda and my project coordinator Mr. B.H. Sudantha for providing guidance and advices in relation to project study.

It is with appreciation and gratitude I thank Dr. Narendra De Silva (Head of Engineering) and Mr. S.D.C. Gunawardhana (System Development Manager) both of Lanka Electricity Company (Pvt)Ltd, and their staff who spent valuable time with me in sharing their knowledge and experience about on "Electricity Distribution Process".

Importantly I would like to thank my parents for the encouragement and support throughout my project as well as throughout my life.

My colleagues at Faculty of Information Technology, University of Moratuwa have always been a source of motivation. The invaluable experience of learning with them has helped me to complete the thesis with greater efficiently.

I am extremely thankful to my husband Sanjeewa Abeysinghe. Without his sacrification and inspiration it would not have been possible to successfully complete this thesis.

Finally, I acknowledge the support of University of Moratuwa.

Abstract

This thesis presents a new decision support approach to energy control and monitoring system of domestic appliances. In the modern world, people are rapidly turning to technology as a fast and cost-effective way of improving quality of daily living. This primary goal is to address the needs of the end user by employing networked low-power sensors sensitive to the environment, so it can be altered to their liking.

The proposed system consists of following steps: energy control and monitor, data analysis and data predictions. This research will present the design and implementation of a practical and simple smart home system, which can be further extended. The system is based on: group of sensors, Arduino UNO with unit and WIFI as a communication protocol.

These devices can be easily controlled via user-friendly interfaces via web applications. The web applications are available for Consumers and Administrative Staff. Those web applications represent to the users are statistical data by using Google charts.

Data analysis part has done using Data Mining techniques such as clustering and regression analysis. Sample data has been generated by using Test Data Generation Tool is DTM tool. Clustering and Regression Analysis has been done by using Rapid Miner Tool. Data prediction was done by using Regression Analysis technique.

The main advantage of the proposed system is that it is a sensible, secure and easily configurable system that provides end users with a cost-effective energy consumption solution.

Table of Contents

Chapter	1	I
Introduc	ction	1
1.1	Prolegomena	1
1.2	Background and motivation	2
1.3	Problem statement	5
1.4	Hypothesis	6
1.5	Objectives	6
1.6	Energy control and monitoring approach	7
1.6.	1 Users	7
1.6.	2 Input	7
1.6.	3 Output	8
1.6.	4 Process	8
1.6.	5 Features	9
1.7	Summary	9
Chapter	2	. 10
Develop	ments in Smart Home Systems	. 10
2.1	Introduction	. 10
2.2	Related Work	. 10
2.3	Problem Definition	. 14
2.4	Summary	. 17
Chapter	3	. 18
Technolo	ogy Adopted - Smart Home Technology	. 18
3.1	Introduction	. 18
3.2	WIFI	. 18
3.2.1	1 ESP8266 WIFI Module	. 19

3.3	Relays (5V)	20
3.4	Arduino	20
3.4	.1 Arduino UNO	21
3.5	Arduino Ethernet Shield	22
3.6	Current Sensor (ACS712)	24
3.7	Oracle	25
3.8	РНР	25
3.9	Wamp Server	25
3.10	DTM Data Generation Tool	26
3.11	Rapid Miner Studio	26
3.12	Summary	26
Chapter	- 4	27
Smart F	Iome Approach to Domestic Electrical Appliances	27
4.1	Introduction	27
4.2	Hypothesis	27
4.3	Users	27
4.4	Input	27
4.5	Output	
4.6	Process	
4.7	Features	
4.8	Summary	30
Chapter	• 5	31
Design o	of DOMEMS	31
5.1	Introduction	31
5.2	Top level architecture of DOMEMS	31
5.3	Interface/ Client Module	
5.4	Server Module	

5.5	WIFI Router	
5.6	Data Analysis Module	32
5.7	Appliances Control Module	
5.8	Summary	
Chapte	r 6	
Implem	entation of DOMEMS	
6.1	Introduction	
6.2	Overall Solution	
6.3	Implementation of the Interface/Client Module	
6.4	Implementation of Server Module	35
6.5	Implementation of Data Analysis Module	
6.6	Implementation of Appliances Control Module	
6.7	Summary	
Chapte	r 7	
Evaluat	tion of DOMEMS	
7.1	Introduction	
7.2	Participants	
7.3	Test cases	
7.4	Data collection	
7.5	Data analysis	
7.6	Summary	40
Chapte	r 8	41
Conclus	sion and Future Work	41
8.1	Introduction	
8.2	Achievement	
8,3	Limitations and Further work	
8.4	Summary	

References	44
Appendix A- Images explaining the Graphical User Interface of DOMEMS	46
Appendix B – Sample source codes explaining the implementation	53
Appendix C – ER diagrams, DB Tables, Use case diagrams, Activity diagrams, etc	59
Appendix D – Test cases were used to test the system	65
Appendix E – Images explaining the tools were used	70
Appendix G – Data Analysis of DOMEMS	

Loss of Lables

List of Figures

Figure 1-1-Perspective of end users	3
Figure 1-2: LECO Branches	4
Figure 3-1:ESP8266 WiFi Module	
Figure 3-2:ESP8266 WiFi Module- Datasheet	
Figure 3-3: Arduino UNO Board	
Figure 3-4: Arduino UNO – Datasheet	
Figure 3-5 : Arduino Ethernet Shield	23
Figure 3-6 : Data Sheet of Arduino Ethernet Shield	
Figure 3-7: ACS712 current sensor	24
Figure 3-8: Data sheet of ACS712 current sensor	
Figure 5-1: high level architecture	
Figure 5-2: Appliances Control Module	
Figure 6-1: flow diagram of the process between server and web application	
Figure 7-1 - Data mining techniques	

List of Tables

Table 2-1: Summarizes the achievements and the limitations	16
Server configuration	35
Table 7-1-Comparison of Data Mining Techniques	39