

AN AC DRIVE SYSTEM TO REPLACE AN EXISTING DC DRIVE SYSTEM

A dissertation submitted to the Department of Electrical Engineering, University of Moratuwa in partial fulfillment of the requirements for the degree of Master of Science

by MUHANDIRAM RALLAGE RUWN THYAGA NIROSHANA

Supervised by: Dr. J. P. Karunadasa

Department of Electrical Engineering University of Moratuwa, Sri Lanka

2010

94845

Abstract

DC commutator motor is the oldest motor but still the best performance motor. It has control simplicity and control accuracy although commutator motor has some inherent drawbacks due to its mechanical commutator. Normally, the older the motor, the higher the effects of some drawbacks.

This dissertation is based on "Replacing an old DC drive system with a new AC drive system" in order to eliminate prevailing practical problems arisen due to aging of the drive system. The DC drive system being less reliable, that results high down time of the relevant machine effecting loss in production.

Briefing on new AC drive system, other than the existing control functions, some functional improvements are also adopted assuring far better running performance of the machine than present. Minimum maintenance, quick failure restore, minimizing down time and hence improved reliability are the key motivations of the project.

It is considered the maximum running speed of the machine for capacity selection of the motor and the AC drive. The required modifications in power and control wiring are introduced keeping operational part of the machine in such a way that, machine operator does not feel any difference while in operation. Same switches, selectors, pushbuttons are utilized as in the existing system.

Economic consideration of the proposed system against the existing system is discussed followed by the design. Improved power factor, reduced total harmonic distortion, improved efficiency and enhanced reliability of the machine contributes positive impact on the proposed system.

It is important to say that, this is much oriented at reliability improvement of the particular machine than the other sayings.

DECLARATION

The work submitted in this dissertation is the result of my own investigation, except where otherwise stated.

It has not already been accepted for any degree, and is also not being concurrently submitted for any other degree.

i

UOM Verified Signature

M.R.R.T.Niroshana 25th January. 2010

I/We endorse the declaration by the candidate.

UOM Verified Signature

Dr.J.P.Karunadasa

CONTENTS

-

Ab Ac Lis	st of l	t vledgement Figures	i vii viii ix
Lis	st of '	Γables	xi
1.	Intr	Introduction	
	1.1	Overview of the dissertation	1
	1.2	Objective of the project	3
	1.3	Existing system	3
		1.3.1 Specification	4
		1.3.2 Speed Controlling	4
		1.3.3 Connection diagram of the DC Converter	5
		1.3.4 Speed Indicator	6
2.	Sele	ection of an AC Motor	7
	2.1	Methodology of Selecting an AC motor	7
	2.2	Three Phase AC Induction Motors	7
	2.3	Cage Motors Electronic Theses & Dissertations	7
	2.4	Voltage www.lib.mrt.ac.lk	8
	2.5	Frequency	9
	2.6	Voltage and Frequency variation	9
	2.7	Motor output rating	10
		2.7.1 Speed	10
		2.7.2 Torque and Power	11
		2.7.3 Locked Rotor torque	11
		2.7.4 Pull-up torque	11
		2.7.5 Breakdown torque	12
		2.7.6 Full-Load Torque	12
		2.7.7 Motor Current	12
		2.7.8 Full-Load current	13
		2.7.9 Locked-Rotor current	13
	2.8	Motor Standards	13
		2.8.1 NEMA	13

		2.8.2 IEC	16
	2.9	Duty Cycle	16
	2.10	Starting load inertia	19
	2.11	Service Factor	19
	2.12	Temperature and Altitude	20
	2.13	Motor Cooling	21
	2.14	Insulation Class vs. Temperature	22
	2.15	Efficiency	23
	2.16	Motor losses	24
	2.17	Power Factor	25
	2.18	Load Connections	25
	2.19	Starting Methods	26
		2.19.1 DOL starters	26
		2.19.2 Star-Delta starting	26
		2.19.3 Electronic soft starters	26
		2.19.4 Variable Speed Drives	27
	2.20) Motor enclosures	27
		Enclosure material ersity of Moratuwa, Sri Lanka.	28
		2 Terminal boxElectronic Theses & Dissertations	28
	2.23	Mounting Configurations MILAC.Ik	28
	2.24	Dynamic Balance/Vibration	29
	2.25	Bearing/Lubrication	29
	2.26	Noise Limits	29
	2.27	7 Shaft and key	29
	2.28	B Degree of protection	29
,	2.29	Motor Name plate	30
3.	Mot	tor selection for the application	31
	3.1	Measurements	31
		3.1.1 Load profile	31
		3.1.2 Measurement of Torque	32
	3.2	Motor Standard	33
	3.3	Motor type	33
	3.4	Voltage and Frequency	33
	3.5	Speed	34

	3.6 Number of poles	34
	3.7 Motor power	34
	3.8 Friction Torque of the machine	35
	3.9 Motor Torque	35
	3.10 Motor inertia	36
	3.11 Temperature and Altitude	36
	3.12 Duty cycle	37
	3.13 Motor cooling	37
	3.14 Insulation temperature	37
	3.15 Efficiency	37
	3.16 Power Factor	38
	3.17 Motor enclosure	38
	3.18 Enclosure material	38
	3.19 Terminal box	38
	3.20 Mounting configuration	38
	3.21 Bearings/lubrication/vibration/balancing/noise limits	39
	3.22 Shaft and key	39
	3.23 Degree of protectionersity of Moratuwa, Sri Lanka.	39
	3.24 Load connection ectronic Theses & Dissertations	39
	3.25 Performance data of the selected motor	40
4.	Selection of a Motor Drive	41
	4.1 Need for the electrical drive for an induction motor	41
	4.2 Variable Frequency Drive	43
	4.3 Selecting a Drive	47
	4.3.1 Supply side requirements	47
	4.3.1.1 Supply Tolerance	48
	4.3.1.2 Supply Disturbance	48
	4.3.1.3 Ungrounded supplies	48
	4.3.1.4 Low frequency Harmonics	49
	4.3.2 Motor limitations	49
	4.3.3 Load considerations	49
	4.3.4 Acceleration and breaking requirements	50
	4.3.5 Environmental Considerations	50
5.	Selected Motor Drive	51

	5.1	SIEMENS MICROMASTER 440	51
		5.1.1 Block diagram	52
		5.1.2 Performance rating	53
	5.2	Why this drive is preferred?	54
		5.2.1 V/f Control	54
		5.2.2 JOG function	55
		5.2.3 Analog Inputs (ADC)	57
		5.2.4 Digital inputs (DIN)	58
		5.2.5 Digital outputs (DOUT)	59
		5.2.6 Thermal motor protection and overload response	60
		5.2.7 Power module protection	60
		5.2.7.1 General overload monitoring	60
		5.2.7.2 Thermal Monitoring functions and overload responses	61
	5.3	A typical Installation	62
		5.3.1 Supply	62
		5.3.2 Isolator	62
		5.3.3 Circuit breaker or Fuses	62
		5.3.4 Contactor University of Moratuwa, Sri Lanka.	63
		5.3.5 Motor Electronic Theses & Dissertations	63
6.	Pow	er and Control wiring lib.mrt.ac.lk	64
	6.1	Potentiometer	65
	6.2	DC Tacho Generator	66
	6.3	START/STOP (ON/OFF) function	68
		6.3.1 START(RUN) Function	69
		6.3.2 STOP Function	69
		6.3.3 RUN SPEED function	70
		6.3.4 JOG Function	72
		6.3.4.1 JOG SPEED function	72
		6.3.5 FEEDBACK Operation	73
		6.3.6 SPEED Display	73
	6.4	POWER ON Function	74
7.	Eco	nomic Consideration	75
	7.1	Measurements	75
		7.1.1 Data	76

8.	Con	iclusion	88
	7.5	Pay back calculation	87
		7.4.1 Reduction in current by reducing THD	85
	7.4	Loss incurred due to harmonics	85
		7.3.2 Reduction in current by improving PF	84
		7.3.1 Reduction in KVA due to improving PF	83
	7.3	Loss incurred due to poor Power factor (PF)	83
		7.2.2 Calculation of labor loss	79
		7.2.1 Calculation of Sales loss	78
	7.2	Loss incurred due to Down Time	78

References		89
Appendix A	Separately excited DC motor	90
Appendix B	CMG Motors, Performance data	92
Appendix C	DC Hollow shaft Tacho-generator	93

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

vi

Acknowledgement

My first sincere gratitude goes to my supervisor, Dr. J. P. Karunadasa, head, Department of Electrical Engineering, University of Moratuwa, for his great and kind guidance, insights, attention extended towards me for successful flow of the dissertation.

Next thanking is due to, course coordinator, all senior lectures, lectures, visiting lectures in the postgraduate programme, for their valuable teaching, guidance, assistance and cooperation delivered throughout the course.

I also should thanks for all office staff of the postgraduate section and specially remind staff in the Electrical Engineering office, Faculty of Engineering, University of Moratuwa, for helping in various ways for academic works.

Next, I remind and thank all my colleagues who worked together, and managers, friends in my working place who indirectly helped me for following the course throughout this two yeas period.

Lastly, I extend my sincere graduate for my family members who continuously assist me for my academic work and successful completion of postgraduate course.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of Figures

Figure		Page	
1.1	Proposed system	2	
1.2	Existing system	3	
1.3	Connections in DC Converter	5	
1.4	Converter Inputs	5	
1.5	Speed Indicator	6	
2.1	Torque-Speed characteristic of an Induction motor	11	
2.2	Speed-Torque, Current curve	12	
2.3	Torque-Speed curves, NEMA design A, B, C, D	14	
2.4	Dripproof or TEFC enclosure, SF 1.0	22	
2.5	TENV enclosure, SF 1.0	23	
2.6	Dripproof or TEFC enclosure, SF 1.15	23	
2.7	Typical name plate of an Induction motor	30	
3.1	Connection of data logger	32	
3.2	Load profile at maximum speed	32	
3.3	Enlarge view of one machine cycle.	32	
3.4	Torque measurement	33	
3.5	Existing system	39	
3.6	Proposed system	39	
4.1	An Inverter block diagramity of Moratuwa, Sri Lanka.	43	
4.2	A typical modern-age intelligent VFD V/f curve	44	
4.3	V/f curve www.lib.mrt.ac.lk	45	
5.1	SIEMENS MICRMASTER 440	51	
5.2	Block diagram of the drive	52	
5.3	Characteristics of an induction motor when fed from a drive inverter	55	
5.4	JOG counter-clock wise and JOG clockwise	56	
5.5	JOG ramp up and ramp down	56	
5.6	two ADC channels, connection example for ADC	57	
5.7	Relay outputs	59	
5.8	A typical installation of an inverter	62	
6.1 [.]	Inputs/Outputs of the existing DC converter	64	
6.2	Inputs/Outputs of the proposed AC inverter	65	
6.3	Potentiometer	65	
6.4	Drawing of the existing converter	66	
6.5	Modified drawing	67	
6.6	Existing Control diagram	67	
6.7	Modified part of the above diagram	68	
6.8	RUN and JOG start	68	
6.9 a	DC converter ON	69	
6.9 b	AC inverter ON	69	
6.10	START/STOP control diagram	70	
6.11	START/STOP modified control diagram	70	

6.12	RUN/JOG Speed control	71
	RUN Speed control	71
6.14 a	RUN/JOG Speed control	72
6.14 b	JOG Speed	72
6.15 a	TACHO connection DC converter	73
6.15 b	TACHO connection AC inverter	73
6.16	Speed display in existing and proposed systems	73
6.17 a	Relay contact DC converter	74
6.17 b	Relay contact AC inverter	74
6.18 a	Power ON, DC Converter	74
6.18 b	Power ON, AC Inverter	74

7.1	Connection of data logger	76
7.2	Phase current in rms	80
7.3	Line voltage in rms	80
7.4	Active Power in rms	81
7.5	Apparent Power in rms	81
7.6	Reactive Power in rms	81
7.7	Power Factor	81
7.8	THD in Phase L1	82
7.9	Power Triangle	83
7.10	a load with Harmonics	85

List of Tables

	Page
Motor voltages and Power	8
Comparison in NEMA Design	16
Motor duty cycle types as per IEC standards	19
Service Factors	20
Temperature factor	21
Altitude factor	21
Performance data	40
Performance rating of the drive	53
Possible settings of the individual inputs	59
	Motor voltages and Power Comparison in NEMA Design Motor duty cycle types as per IEC standards Service Factors Temperature factor Altitude factor Performance data Performance rating of the drive

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk