DESIGNING OF RAILWAY ELECTRIFICATION NETWORK CONFIGURATION TO MINIMIZE POWER QUALITY ISSUES:

A CASE STUDY FOR PROPOSED SRI LANKAN RAILWAY ELECTRIFICATION

Walimuni Udara Kithsanka Mendis

149292D

Thesis submitted in partial fulfillment of the requirements for the degree Master of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

December 2018

DECLARATION OF THE CANDIDATE AND SUPERVISORS

I declare that this is my own work and this thesis does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce

and distribute my thesis, in whole or in part in print, electronic or other medium. I

retain the right to use this content in whole or part in future works (such as articles or

books).

Signature:

Date: 05th December, 2018

The above candidate has carried out research for the Masters thesis under my

supervision.

Signature of the supervisor:

Date: 05th December, 2018

(Dr. Asanka Rodrigo)

i

ABSTRACT

Electrified railway system is a better solution for the rapidly increasing congestion of traffic in urban areas and railway transportation has many advantages compared with other modes of land/air transportation. In Electrified railway system ,energy delivered to the train when needed(running), unlike the other modes of transportation (land, air, sea). According to the present railway passenger flow, suburban railway stations Panadura – Veyangoda sector was selected as high passenger density area which served 44% of all railway passengers and government has decided to electrified that sector first. The total track length between Panadura and Veyangoda is 156km.

Due to the rapid acceleration and frequent starts of electric trains, there may large magnetic induction current in the power circuits and it may contribute to the grid voltage drop near urban areas. The energy flow back to the grid with regenerative braking and harmonics will added to the system. So, there are lot of power quality issues with electrified railway system and it is time to accept the challenge as Electrical Engineers.

This research titled as "DESIGNING OF RAILWAY ELECTRIFICATION NETWORK CONFIGURATION TO MINIMIZE POWER QUALITY ISSUES: A CASE STUDY FOR PROPOSED SRI LANKAN RAILWAY ELECTRIFICATION" was carried out to find out an optimum voltage configuration to feed the railway system with minimum disturbing to the available power system.

Electric train model was developed using Matlab Simulink to study the behavior of power distribution system while operating of the electric trains with current time schedule of the Sri Lankan Railways.

The results were obtained and analyzed under the critical times at proposed railway substations. According to the results, optimum voltage configuration was selected in order to minimize the power quality issues to the utility grid.

ACKNOWLEDGEMENTS

Gratitude is due with much respect towards the supervisor, Dr. Asanka Rodrigo, who guided the candidate throughout his thesis work, in spite of his busy schedules.

Candidate would like to extend his gratitude to all the lecturers of Electrical Engineering Department, University of Moratuwa for the guidance provided by them to improve the thesis, with their valuable comments.

Appreciation is also expressed to the department of Sri Lankan Railways, especially Eng. Asela Pathirathna for the information and guidance provided to improve the thesis.

It is a great pleasure to remember the kind cooperation of all my colleagues and my friends, especially Eng.Gayashan Porawagamage who have helped me throughout this Post Graduate programme.

Finally, the candidate owe his gratitude to his parents, wife and brother for their endless support and encouragement and without whom the candidate would not have come this far.

CONTENTS

DECL	ARATION OF THE CANDIDATE AND SUPERVISORS	i
ABST	RACT	ii
ACK	NOWLEDGEMENTSi	ii
TABI	LE OF FIGURESvi	ii
LIST	OF TABLES	X
ABBF	REVIATIONSxi	ii
INTR	ODUCTION	1
1.1	Background	1
1.1.1	Sri Lankan context	1
1.2	Problem statement	3
1.3	Motivation	4
1.4	Objective	5
1.5	Scope of Work	5
1.6	Structure of the dissertation	6
RAIL	WAY ELECTRIFICATION SYSTEMS	8
2.1	Overview	8
2.2	Different voltage configurations	8
2.2.1	DC system	8
2.2.2	AC system	8
2.2.3	Source of primary power	0
2.2.4	Substation1	0
2.2.5	Power distribution system1	0
2.2.5.	l Feeder cables1	1
2.2.5.2	2 Negative return cables1	1
2.2.5.3	3 Contact system 1	1
2.2.5.4	4 Third rail system 1	2
2.2.5.5	5 Overhead contact system1	2
2.2.5.6	6 Current collectors 1	2
2.3	Railway Electrification of Sri Lanka 1	3
2.3.1	The proposed electrification project	4

DAT	A COLLECTION AND ANALYSIS	16
3.1	Data of Transmission network parameters	16
3.2	Proposed railway substation	17
3.3	Data of electric locomotive	19
3.4	Analysis of railway time table	20
3.4.1	Critical situation in Panadura to Maradana section	20
3.4.2	Critical situation in Veyangoda to Colombo Fort section	21
MOD	ELING OF RAILWAY NETWORK	23
4.1	Utility Grid	24
4.2	132kV transmission line model	25
4.3	Railway substation model	26
4.4	Model of overhead catenary contact wire system	26
4.5	Electric locomotive model	27
4.5.1	Selecting Torque reference (Tm) and Speed reference (Sp)	28
4.5.2	Field Orient Controller (FOC)	30
4.6	Harmonic filter	33
RESU	JLTS AND MODEL VALIDATION	35
5.1	Model validation	35
5.1.1	Using characteristic curve of electric locomotives	35
5.1.2	Result verification for a single train	38
5.1.2.	1 Motor parameter variation for one bogie of the train	38
5.1.2.	2 Active and reactive power variation	39
5.1.2.	3 132kV voltage variation	41
5.1.2.	4 132kV line current variation	42
5.1.2.	5 Total harmonic distortion of current in transmission side	43
5.1.2.	6 Total harmonic distortion of voltage in transmission side	45
5.2	Results	48
5.2.1	Case 01:Dehiwala railway substation	48
5.2.1.	1 Active and reactive power variation	49
5.2.1.	2 132kV voltage variation	52
5.2.1.	3 132kV line current variation	53

5.2.1.4 Total harmonic distortion of current in transmission side	. 54
5.2.1.5 Total harmonic distortion of voltage in transmission side	. 55
5.2.2 Case 02:Ragama railway substation	. 57
5.2.2.1 Active and reactive power variation	. 58
5.2.2.2 132kV voltage variation	. 60
5.2.2.3 132kV line current variation	. 61
5.2.2.4 Total harmonic distortion of current in transmission side	. 62
5.2.2.5 Total harmonic distortion of voltage in transmission side	. 63
5.3 Results analysis	. 65
5.3.1 Results analysis of dehiwala substation	. 65
5.3.2 Results analysis of Ragama substation	. 66
DISCUSSION AND CONCLUSION	. 68
6.1 Discussion	. 68
6.2 Conclusion	. 70
REFERENCES	. 71
APENDIX	. 73
8.1 Annex 1	. 73
8.2 Annex 2	. 77

TABLE OF FIGURES

Figure 1: Methodology for optimum railway configuration	6
Figure 2 : Railway Substation	10
Figure 3 : Feeder Cables	11
Figure 4: Negative Return via the Running Rail	11
Figure 5: Third Rail Contact System	12
Figure 6: Third Rail Contact Shoe	12
Figure 7: Pantograph System	13
Figure 8 : Existing Sri Lankan railway network	14
Figure 9: Sector to be electrified and technical proposal for Power Supply	15
Figure 10: The map of Grid substations along the proposed railway section	16
Figure 11: Utility Grid Model	24
Figure 12: 132kV Transmission Line model	25
Figure 13: 132kV Transmission Line model	25
Figure 14: Distribution transformer model	26
Figure 15: Model of overhead contact wire	27
Figure 16: General AC Electric Locomotive model	27
Figure 17 : Model of Electric Locomotive	28
Figure 18: Power demand variation with the rpm in starting of a M9 train	29
Figure 19 : Speed Reference	29
Figure 20 : Torque Reference	30
Figure 21: Schematic diagram of Field-Oriented Control Induction Motor Drive	30
Figure 22: Field-Oriented Controller in Electric Locomotive	31
Figure 23: Set parameters of Field-Oriented Controller	31
Figure 24: Set parameters of Field-Oriented Controller	32
Figure 25: Set parameters of Field-Oriented Controller	32
Figure 26: Total Electrified Railway System	33
Figure 27: Mat Lab model of total Electrified Railway System	33
Figure 28: Harmonic Filter	34
Figure 29: Ideal traction curve	35

Figure 30: Traction curve of WAG7 and WAG 9	36
Figure 31: Torque characteristics of the train Model	37
Figure 32: 25kV/50Hz system	38
Figure 33: 15kV/16.7Hz system	39
Figure 34: 15kV/50Hz system	39
Figure 35: 25kV/50Hz system	40
Figure 36: 15kV/16.7Hz system	40
Figure 37: 15kV/50Hz system	40
Figure 38: 25kV/50Hz system	41
Figure 39: 15kV/16.7Hz system	41
Figure 40: 15kV/50Hz system	41
Figure 41: 25kV/50Hz system	42
Figure 42: 15kV/16.7Hz system	42
Figure 43: 15kV/50Hz system	42
Figure 44: 25kV/50Hz system	43
Figure 45: 15kV/16.7Hz system	44
Figure 46: 15kV/50Hz system	44
Figure 47: 25kV/50Hz system	45
Figure 48: 15kV/16.7Hz system	46
Figure 49: 15kV/50Hz system	47
Figure 50: Simulate Mat Lab model with different configurations	48
Figure 51: Active power variation25kV/50Hz system	49
Figure 52: Reactive power variation25kV/50Hz system	50
Figure 53: Active power variation15kV/16.7Hz system	50
Figure 54: Reactive power variation15kV/16.7Hz system	50
Figure 55: Active power variation15kV/50Hz system	51
Figure 56: Reactive power variation15kV/50Hz system	51
Figure 57: 25kV/50Hz system	52
Figure 58: 15kV/16.7Hz system	52
Figure 59: 15kV/50Hz system	52
Figure 60: 25kV/50Hz system	53
Figure 61: 15kV/16 7Hz system	53

Figure 62: 15kV/50Hz system	53
Figure 63: 25kV/50Hz system	54
Figure 64: 15kV/16.7Hz system	54
Figure 65: 15kV/50Hz system	55
Figure 66: 25kV/50Hz system	55
Figure 67: 15kV/16.7Hz system	56
Figure 68: 15kV/50Hz system	56
Figure 69: Active power variation25kV/50Hz system	58
Figure 70: Reactive power variation25kV/50Hz system	58
Figure 71: Active power variation15kV/16.7Hz system	58
Figure 72: Reactive power variation15kV/16.7Hz system	59
Figure 73: Active power variation15kV/50Hz system	59
Figure 74: Reactive power variation15kV/50Hz system	59
Figure 75: 25kV/50Hz system	60
Figure 76: 15kV/16.7Hz system	60
Figure 77: 15kV/50Hz system	60
Figure 78: 25kV/50Hz system	61
Figure 79: 15kV/16.7Hz system	61
Figure 80: 15kV/50Hz system	61
Figure 81: 25kV/50Hz system	62
Figure 82: 15kV/16.7Hz system	62
Figure 83: 15kV/50Hz system	63
Figure 84: 25kV/50Hz system	63
Figure 85: 15kV/16.7Hz system	64
Figure 86: 15kV/50Hz system	64

LIST OF TABLES

Table 1: Origin and destination analysis of SLR passengers
Table 2 : Data of transmission network paramaetrs
Table 3: Locations of railway stations along track from Panadurata-Veyangoda 18
Table 4: Distance to grid from proposed railway substations
Table 5 : Data of electric locomotive paramaetrs
Table 6: Critical situation in Panadura- Maradana section
Table 7: Critical situation in Veyangoda- Colombo Fort section
Table 8: Utility grid modelling details of Dehiwala Grid at 50 Hz24
Table 9: The recorded data at the starting of the train No:867
Table 10: The obtain rpm for selected torque values
Table 11: Data of train model verification
Table 12: THD in current at 132kV transmission line for 25kV/50Hz system 43
Table 13: THD in current at 132kV transmission line for 15kV/16.7Hz system 44
Table 14: THD in current at 132kV transmission line for 15kV/50Hz system 45
Table 15: THD in voltage at 132kV transmission line for 25kV/50Hz system 46
Table 16: THD in voltage at 132kV transmission line for 15kV/16.7Hz system 46
Table 17: THD in voltage at 132kV transmission line for 15kV/50Hz system 47
Table 18: Train status in critical time in dehiwala substation
Table 19: THD in current at 132kV transmission line for 25kV/50Hz system 54
Table 20: THD in current at 132kV transmission line for 15kV/16.7Hz system 54
Table 21: THD in current at 132kV transmission line for 15kV/50Hz system 55
Table 22: THD in voltage at 132kV transmission line for 25kV/50Hz system 55
Table 23: THD in voltage at 132kV transmission line for 15kV/16.7Hz system 56
Table 24: THD in voltage at 132kV transmission line for 15kV/50Hz system 56
Table 25: Train status in critical time in Ragama substation
Table 26: THD in current at 132kV transmission line for 25kV/50Hz system 62
Table 27: THD in current at 132kV transmission line for 15kV/16.7Hz system 62
Table 28: THD in current at 132kV transmission line for 15kV/50Hz system 63
Table 29: THD in voltage at 132kV transmission line for 25kV/50Hz system 63

Table 30: THD in voltage at 132kV transmission line for 15kV/16.7Hz system	n 64
Table 31: THD in voltage at 132kV transmission line for 15kV/50Hz system	64
Table 32: Result analysis of Dehiwala substation	65
Table 33: Result analysis of Ragama substation	66
Table 34: Result analysis for optimum voltage configuration	69

ABBREVIATIONS

SLR : Sri Lanka Railways

DC : Direct Current

AC : Alternating Current

CEB : Ceylon Electricity Board

THD : Total Harmonic Distortion

OCS : Overhead Contact Systems

FOC: Field Oriented Control

GS : Grid Substation

FL : Fault Level

MW : Mega Watt

Mvar : Mega vars