

AN ENHANCED BLUE-GREEN DEPLOYMENT FOR

REDUCING COST AND APPLICATION DOWNTIME

H.M.D. THILINA JAYAWARDANA

168227V

MSc in Computer Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

May 2018

i

DECLARATION

I declare that this is my own work and this MSc Research Report does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any other

University or institute of higher learning and to the best of my knowledge and belief it does not

contain any material previously published or written by another person except where the

acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and

distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right

to use this content in whole or part in future works.

…………………………… ……………………………

H.M.D.T. Jayawardana Date

I certify that the declaration above by the candidate is true to the best of my knowledge and

that this project report is acceptable for evaluation for the MSc Research.

…………………………… ……………………………

Dr. Indika Perera Date

ii

ACKNOWLEDGEMENT

I would like to sincerely convey my gratitude to my supervisor Dr. Indika Perera for the

guidance and motivation throughout the research. Also my appreciation goes to University

LIbrary for providing research materials. I am also thankful for my colleagues and the staff of

Pearson Lanka Pvt LTD for their valuable help and support.

iii

ABSTRACT

Application deployment is one of the critical milestones in the software development lifecycle.

There are always risks of downtime and failing the new application version. Blue-Green

deployment aka A/B deployment is one of the popular web application deployment techniques

to mitigate those deployment risks. With the Blue-Green approach, it provides a quick backout

plan with an existing set of servers with the previous application version up and running. Even

though this has become more popular with the development of cloud infrastructure services,

there are some scenarios still this approach brings disadvantages.

In this research, we discuss alternative development approaches in order to address above

mentioned concerns while preserving the favorable features which are available in the Blue-

Green deployment methodology. It has been considered two alternative approaches for the

Blue-Green process without impacting the applications. It has been thoroughly analyzed each

alternative approach that we suggest with in order to determine an alternative deployment

process for the suitable situation.

Throughout this research, it has been considered Java web application deployment processes

as the concerned scenario. As an alternative deployment processes, it has been discussed some

of the already existing methodologies and trending novel techniques as well.

It has been proposed two alternative deployment mechanisms comparative to the Blue-Green

deployment methodology. The first approach is proposed using the Parallel deployment

capability of Apache Tomcat and the second approach is Deployment using Linux containers.

Both of these approaches have been tested along with the conventional Blue-Green deployment

methodology. The efficiency of each alternative approach has been assessed in a popular cloud

environment Amazon Web Service (AWS) considering the practical usage of the solutions.

With this research it has been considered enhancing the existing Blue-Green deployment

methodology with the proposed alternative approaches.

iv

By analyzing the results it has been concluded that proposed alternative approaches can be used

to enhance the Blue-Green deployment with some pros and cons.

Keywords: Cloud, High-availability, Deployment, Downtime, Release, Web application

v

TABLE OF CONTENTS

ACKNOWLEDGEMENT ii

LIST OF ABBREVIATIONS x

1. INTRODUCTION 1

1.3. Deployment downtime 4

1.4. The problem and motivation 5

1.5. Outline 7

1.6. Virtualization 7

1.7. High availability architecture 8

1.6. Objectives 8

Reduce deployment downtime 8

Quick rollback and versioning 9

CI/CD support 9

2. LITERATURE REVIEW 10

2.1. Prior work 11

2.1.1. SLA-Aware application deployment 11

2.1.2. A/B Deployment process 12

2.1.3. Canary deployment process 14

2.1.4. Continuous delivery 15

2.1.5. High-available cloud infrastructure 16

2.1.6. Multi-cloud scenarios 16

2.1.7. Database downtime 17

2.2. Literature review summary 18

3. METHODOLOGY 19

3.1. Architecture and scope 20

3.1.1. Versioning 20

3.1.2. CI/CD Integration 22

3.1.3. Deployment process 22

3.1.4. System under test 23

3.2. Evaluation 24

vi

4. SOLUTION ARCHITECTURE AND IMPLEMENTATION 26

4.1. Architecture Introduction 27

4.2. Language and platform 27

4.3. Deployment method 28

4.4. Approach 1 - Parallel deployment with Tomcat server 30

4.4.1. Parallel deployment 30

4.4.2. Proxy interface 30

4.4.3. Clustering 32

4.4.4. Drawbacks 32

4.5. Approach 2 - Using Linux containers 34

4.5.1. Proxy Interface 35

4.5.2. Deployment mechanism 37

4.5.3. NginX 38

5. SYSTEM EVALUATION 39

5.1. Introduction 40

5.2. Load generation 41

5.3. A/B deployment evaluation 41

5.4. Evaluation alternative approaches 42

5.5. Results and discussion 43

5.5.1. A/B deployment deployment with 20 concurrent users 44

5.5.2. A/B deployment deployment with 100 concurrent users 45

5.5.1. Approach 1: using parallel deployment with 20 concurrent users 45

5.5.2. Approach 1: using parallel deployment with 100 concurrent users 47

5.5.2. Approach 2: using Linux containers with 20 concurrent users 49

5.5.2. Approach 2: using Linux containers with 100 concurrent users 51

6. CONCLUSION 54

6.1. Conclusion 55

6.1.1. Alternative approach 1: Parallel deployment using Tomcat 55

6.1.2. Alternative approach 2: Using Linux containers 55

6.1.3. Cumulative conclusions of both alternative approaches 56

6.2. Study limitations 57

6.3. Future works 57

vii

REFERENCES 58

Appendix I - NginX configurations 61

Appendix II - Python helper app source code 63

viii

LIST OF FIGURES

Figure 1.1 Cost of unplanned outage in data centers 3

Figure 1.2 Cost vs duration of unplanned downtime 4

Figure 2.1 A/B deployment 13

Figure 2.2 Canary deployment 14

Figure 2.3 Continuous Delivery Process 15

Figure 3.1 Multiple application versions running in Tomcat 21

Figure 4.1 Approach 1 - Single Tomcat server 31

Figure 4.2 Approach 1 - Tomcat as a cluster 32

Figure 4.3 Approach 2 - Tomcat using Linux containers 34

Figure 4.4 Approach 2 - Proxy interface 36

Figure 4.5 Proxy interface GUI 36

Figure 5.1 A/B deployment Jenkins jobs 42

Figure 5.2 A/B deployment duration 43

Figure 5.3 A/B deployment - Response time for 20 concurrent users 44

Figure 5.4 A/B deployment - Response time for 100 concurrent users 45

Figure 5.5 Approach 1 using parallel deployment - memory usage with 20 users 46

Figure 5.6 Parallel deployment - CPU usage with 20 concurrent users 46

Figure 5.7 Approach 1 using parallel deployment - Response time for 20 users 47

Figure 5.8 Approach 1 using parallel deployment - memory usage with 100 users 48

Figure 5.9 Parallel deployment - CPU usage with 100 concurrent users 48

Figure 5.10 Parallel deployment - Response time for 100 concurrent users 49

Figure 5.11 Parallel deployment duration 49

Figure 5.12 Linux containers - Memory usage with 20 concurrent users 50

Figure 5.13 Approach 2 using Linux containers CPU usage with 20 users 50

Figure 5.14 Linux containers - Response time for 20 concurrent users 51

Figure 5.15 Linux containers Memory usage with 100 concurrent users 52

Figure 5.16 Linux containers CPU usage with 100 concurrent users 52

Figure 5.17 Linux containers - Response time for 100 concurrent users 52

Figure 5.18 Linux containers deployment duration 53

ix

LIST OF TABLES

Table 5.1 A/B deployment - Load summary table for 20 concurrent users 44

Table 5.2 A/B deployment - Load summary table for 100 concurrent users 45

Table 5.3 Parallel deployment - Load summary table for 20 concurrent users 46

Table 5.4 Parallel deployment Load summary with 100 concurrent users 48

Table 5.5 Linux containers - Load summary table for 20 concurrent users 51

Table 5.6 Linux containers - Load summary table for 100 concurrent users 53

x

LIST OF ABBREVIATIONS

Abbreviation Description

API Application Programming Interface

AWS Amazon Web Services

CD Continuous Delivery

CI Continuous Integration

DNS Domain Name System

DR Disaster Recovery

HTTP Hypertext Transfer Protocol

QOS Quality of Service

SLA Service Level Agreement

TPS Transactions Per Second

