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ABSTRACT 

 

 

Application deployment is one of the critical milestones in the software development lifecycle. 

There are always risks of downtime and failing the new application version. Blue-Green 

deployment aka A/B deployment is one of the popular web application deployment techniques 

to mitigate those deployment risks. With the Blue-Green approach, it provides a quick backout 

plan with an existing set of servers with the previous application version up and running. Even 

though this has become more popular with the development of cloud infrastructure services, 

there are some scenarios still this approach brings disadvantages.  

 

In this research, we discuss alternative development approaches in order to address above 

mentioned concerns while preserving the favorable features which are available in the Blue-

Green deployment methodology. It has been considered two alternative approaches for the 

Blue-Green process without impacting the applications. It has been thoroughly analyzed each 

alternative approach that we suggest with in order to determine an alternative deployment 

process for the suitable situation.   

 

Throughout this research, it has been considered Java web application deployment processes 

as the concerned scenario. As an alternative deployment processes, it has been discussed some 

of the already existing methodologies and trending novel techniques as well.  

 

It has been proposed two alternative deployment mechanisms comparative to the Blue-Green 

deployment methodology. The first approach is proposed using the Parallel deployment 

capability of Apache Tomcat and the second approach is Deployment using Linux containers. 

Both of these approaches have been tested along with the conventional Blue-Green deployment 

methodology. The efficiency of each alternative approach has been assessed in a popular cloud 

environment Amazon Web Service (AWS) considering the practical usage of the solutions. 

 

With this research it has been considered enhancing the existing Blue-Green deployment 

methodology with the proposed alternative approaches.  
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By analyzing the results it has been concluded that proposed alternative approaches can be used 

to enhance the Blue-Green deployment with some pros and cons.  
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