- [1]. AASHTO Designation: T 193-99 (2003). *California Bearing Ratio*, American Association of State Highway and Transportation Officials, USA.
- [2]. AASHTO Designation: T 180-01 (2010). Moisture Density Relations of Soils Using a 4.54 kg Rammer and a 457 mm Drop, American Association of State Highway and Transportation Officials, USA.
- [3]. AASHTO Designation: T 88-00 (2010). *Particle Size Analysis of Soils*, American Association of State Highway and Transportation Officials, USA.
- [4]. Babu, S. K. Raja, J. (2013). Bamboo as Subgrade Reinforcement for Low Volume Roads on Soft Soils, A Review of Road and Road Transport Development, Volume 41, Indian Highways.
- [5]. BS 1377-2 (1990). Determination of Liquid limit, Plastic limit and Plasticity Index, Part 2, British Standards, UK.
- [6]. Giroud, J. P. Han, J. (2004). Design method for geogrid-reinforced unpaved roads. *Journal of Geotechnical and Geoenvironmental Engineering*, 130 (8), 775–797.
- [7]. Lim, S. M. Wijeyesekera, D. C. Lim, A. J. M. S Bakar, I. B, H. (2014). Critical review of Innovative Soil Road Stabilization Techniques, *International Journal of Engineering and Advanced Technology (IJEAT)*, Volume 3, Issue 5, June.
- [8]. Mampearachchi, W. K. (2012). Towards a Proper Road Classification System for Economic Development of Sri Lanka, *Journal of Economic Review*, People's Bank, April/May, Sri Lanka.
- [9]. Ministry of Construction and Engineering Services (2002). *ICTAD Standard Specification for Highway Construction and Maintenance of Roads and Bridges*, Second Edition, Ministry of Construction and Engineering Services, Sri Lanka.

- [10]. Ministry of Construction and Engineering Services (2009). *ICTAD Standard Specification for Highway Construction and Maintenance of Roads and Bridges*, Second Edition, Ministry of Construction and Engineering Services, Sri Lanka.
- [11]. Reddy, K. V. (2013). Correlation between California bearing ratio and shear strength on artificially prepared soils with varying plasticity index. *International journal of civil engineering and technology (IJCIET)*, Volume 4, Issue 6, November- December, pp. 61-66.
- [12]. Sharma, R. K. Bandhu, D. Maheshwari, R. Kumar, S. (2013). Compaction and Subgrade characteristics of Clayey Soil blended with Beas sand, Fly ash and Waste plastic strips, A Review of Road and Road Transport Development, Volume 41, Indian Highways.
- [13]. Sharma, R. K. Prasad, C.R.V. (2014). Influence of sand and fly ash on clayey soil stabilization, *IOSR Journal of Mechanical and Civil Engineering*, e-ISSN: 2278-1684, p-ISSN: 2320-334X, PP 36-40.
- [14]. Sivakumar, G. L. (2006). An introduction to soil reinforcement and geosynthetics. First edition, University Press.

APPENDIX A:

Dry Sieve and Wet Sieve Tests Readings and the Calculation of Soil Passing Percentage through the Sieves for Composite Materials

APPENDIX B:

Test Readings and Calculation of "LL" and "PI" Values for Sample, Selected "Prior to the Proctor Compaction" and "After Conducting the Proctor Compaction at Optimum Moisture Level" of composite materials

APPENDIX C:

Test Readings and Calculations of Dry Density with Respective Moisture Content and Graphs for Composite Materials

APPENDIX D:

Test Readings and Calculation of Four Day Soaked "CBR" Values with Respective Densities (95%, 98% & 100% of "MDD") and Relevant Graphs for Composite Materials

APPENDIX E:

Test Readings and Calculations of Dry Density with Respective Moisture Content and Graph for Composite Material 60:40 in Different Compaction Efforts

APPENDIX F:

Dry Sieve Test Readings and Calculations of Soil Passing Percentages for Composite Material 60:40, Selected "After Conducting the Proctor Compaction at OMC" in Different Compaction Efforts