REFERENCES

1. Balaam N.P., Poulos H.G. and Booker J.R. (1975) "Finite Element Analysis of the effect of Installation on Piles Load-Settlement Behaviour" Geotechnical Engineering. 6(1), 33-48.
2. Balakirshnan E.G., Balasubramaniam A.S. and Noppadol Phein-wej (1999) "Load Deformation of Analysis of Bored Piles in Residual Weathered Formation" J. Geotech. Engng. ASCE, 125(2), 121-131.
3. Banerjee P.K. (1978); "Analysis of Axially and Laterally Loaded Pile Groups" In Development in Soil Mechanics. Ed. C. Scott, Ch 9, London. Applied Science Publishers.
4. Banerjee P.K. and Davis T.G. (1977); "The Behaviour of Axially and Laterally Loaded Single Pile Embedded in Non-homogeneous Soils", Geotechnigue, 28, No.3, 309-326.
5. Bowles J.E. (1997); "Foundation Analysis and Design", Mc-Graw Hill publications, Fifth Edition, 313-316.
6. Butterfield R. and Banarjee P.K. (1971); "The Elastic Analysis of Compressible Piles and Pile Groups" Geotechnigue, 21, No.1, 43-60.
7. Coyle H.M. and Reese L.C. (1966) "Load Transfer for Axially Loaded Piles in Clays" J. Soil Mechs Fdn"Engng, ASCE, 92, No.SM2, 1-26.
8. Desai C.S. (1974) "Numerical Design-Analysis for Piles in Sands" J. Geotech. Engng. ASCE, 100(6), 613-635.
9. Desai C.S. and Chiristian J.T. (1977) "Numerical Methods in Geotechnical Engineering", Mc Grow-Hill.
10. Ellision R.D. et al. (1971) "Load-Deformation Mechanism of Bored Piles" J. Geotech. Engrg. ASCE, 97(4), 661-678.
11. Guo W.D. (2000) "Vertical Loaded Single Piles in Gibson Soil" J. Geotech. Engng. ASCE, 126(2), 189-193.
12. Guo W.D. and Randolph M.F. (1997) "Vertically Loaded Piles in homogeneous Media" J. Geotech. Engrg. ASCE, 21(8), 507-532.
13. Kodagoda S.S.I and Puswewala U.G.A.P (2001) "Numerical Modelling of PileRock Interface In Rock Socketed Piles", Proc $7^{\text {th }}$ Annual Symposium, ERU, University of Moratuwa.
14. Kraft L.M., Ray R.P. and Kagawa T. (1981) "Theoretical t-z Curves" J. Geotech. Engng. ASCE, 107(11), No. GT11, 1543-1561.
15. Lee C.Y. and Small J.C. (1991) "Finite Layer Analysis of Axially Loaded Piles" J. Geotech. Engng. ASCE, 117(11), 1706-1722.
16. Leland M. Kraft Jr. (1999) "Performance of Axially Loaded Piles in Sand" J. Geotech. Engng. ASCE, 117(2), 272-296.
17. Mabsout E.M., Reese L.C. and Tassoulas J.L. (1995) "Study of Pile Driving by Finite Element Method" J. Geotech. Engng. ASCE, 121(7), 535-543.
18. Ottaviani M. (1975) "Three-Dimensional Finite Element Analysis of Vertically Loaded Pile Groups" Geotechnigue, 25, No.2, 159-174.
19. Poulos H.G. (1989) "Pile Behaviour - Theory \& Application", Journal of Geotech. Engng. ASCE, 39(3), 365-415.
20. Poulos H.G. and Davis E.H. (1980) "Pile Foundation Analysis and Design" john Willy and Sons, New York. N.Y.
21. Puswewala U.G.A.P (2003) "Lecture Notes on Computer Application", P.G. Dip/M.Eng in Foundation Engineering, University of Moratuwa.
22. Rajashree S.S. and Sitharam T.G. (2001) 'Non-linear Finite Element Modeling of Batter Piles under Lateral Load" J. Geotech. Engng. ASCE, 127(7), 604-612.
23. Randolph M.F. and Wroth (1978) "Analysis Deformation of Vertically Loaded Piles" J. Geotech. Engng. ASCE, 104(12), 1465-1488.
24. Selvaduarai, A.P.S. (1979) "Elastic Analysis of Soil Foundation Interaction", Amsterdam: Geotechnical Engineering Vol 17.
25. Tomlinson, M.J. (1986) "Foundation Design and Construction" Fifth Ed., ELBS, Longman Group, UK.
26. Thilakasiri H.S. (2003) "Lecture Notes on Design and Construction of Deep Foundation", P.G. Dip/M.Eng in Foundation Engineering, University of Moratuwa.
27. Trochanis A.M., (1991) "Numerical Methods in Geotechnical Engineering", $3^{\text {rd }}$ Edition, ELBS London.
28. Trochanis A.M., Bielack J. and Christiano P. (1991a) "Three-Dimensional NonLinear Study of Piles" J. Geotech. Engng. ASCE, 117(3), 429-447.
29. Trochanis A.M., Bielack J. and Christiano P.' (1991b) "Simplified Model Analysis of for One or Two Piles" J. Geotech. Engrg. ASCE, 117(3), 448-466.
30. Wyllie D.C. (1992) "Foundation on Rock" First Edition E\& FN Spon London.
31. Zehong Yuan and Koon Meng Chua (1992) "Exact Formulation of Axisymmetric interface Element Stiffness Matrix", J. Geotech. Engng. ASCE, 118(8), 1264-1271.
32. Zienkiewicz O.C. (1977) "The Finite Element Method", $3^{\text {rd }}$ Edition Mc. GrawHill Co., London, U.K.

ABBREVIATIONS

A - Cross sectional area of the cylinder
a . - Half the length of a rectangular element
b - Half the width of a rectangular element
C . - Pile perimeter
$c_{a} \quad-\quad$ Adhesion
$\mathrm{Cs} \quad$ - A bond modulus for the adhesive strength
D, d - Diameter of pile
ds - Relative displacement parallel to the bond interface
E - Young's modulus
Es - Soil modulus
F - Total applied force
$\mathrm{F}_{\mathrm{w}} \quad$ - Correction factor for tapered pile
H - Thickness of the weak layer
$\mathrm{K}_{0} \quad$ - Lateral earth pressure coefficient
$\mathrm{K}_{\mathrm{n}}, \mathrm{K}_{\mathrm{s}}$ - Interface element stiffness ormess Discrubions
L - Length of pile shaft
N - Shape function
P - Vector of Transformed stresses
P1, P2 - Force acting on node number 1, 2
$P_{s u} \quad$ - Ultimate shaft resistance
$P_{b u} \quad$ - Ultimate base resistance
Q - Load on head of pile
q - Effective overburden pressure at depth z_{i}
$\mathrm{Q}_{\mathrm{s}} \quad$ - skin friction on pile
$\mathrm{Q}_{\mathrm{b}} \quad$ - Base resistant on pile
$Q_{p} \quad-\quad$ Failure load on pile
s - Surface of a finite element
$U_{s} \quad-\quad$ Strain energy of an elastic body
v - Volume of a finite element
$\mathrm{w}_{1}, \mathrm{w}_{2}$ - Weight factors
$W_{p} \quad-\quad$ Weight of the pile

W_{s}	Work done by surface tractions
W_{b}	Work done by body forces
X_{i}	- Ordinates in X-Axis ($\mathrm{i}=1,2,3$ etc)
y_{i}	- Ordinates in X-Axis ($\mathrm{i}=1,2,3 \mathrm{etc}$)
α	- A Coefficient
α_{i}	- Constants for shape function ($\mathrm{i}=1,2,3 \mathrm{etc}$)
β	A Coefficient
ϕ	Angle of friction of soil
δ, ϕ_{a}	Angle of friction between pile and soil
λ	A Coefficient
τ_{a}	Shear resistance at the pile soil interface
σ_{n}	- Normal stress between pile and soil
v	- Poisson's ratio
ξ	- Normalized co-ordinates along X-Axis
η	- Normalized co-ordinates along Y-Axis
ε	- Strain vector
π^{e}	- Potential energy www.libmrtac.lk
$[B]$	Shape function matrix
[D]	- Modulus vector
\{f\}	- Body forces vector
$[L]$	- Derivation vector
$\{u\}$	- Displacement matrix
$\{\sigma\}$	- Stress vector
$\{\tau\}$	- Applied traction vector
$\{\phi\}$	- Nodal Displacement vector

