

POST TECHNICAL AND ECONOMICAL ANALYSIS OF A 132 KV TRANSMISSION SUB NETWORK OF CEYLON ELECTRICITY BOARD

A dissertation submitted to the Department of Electrical Engineering, University of Moratuwa In partial fulfillment of the requirements for the Degree of Master of Engineering.

> By Jayasekera Mudalige Kanishka Jayasekera

Supervised by: Professor J.R. Lucas

Department of Electrical Engineering University of Moratuwa, Sri Lanka.

2006

86326

Abstract

Power transmission network components are planned and designed for 30 to 40 years operating period in the network after construction. From planning stage to construction stage it takes about four years. The horizon of the planning process of Ceylon Electricity Board is ten years and each year the planning process is reviewed. Therefore ideally once a transmission line is constructed and energized, it should serve the system requirements for 30 to 40 years.

In a transmission network, grid substations and power stations are connected to each other. More number of grid substations are appeared in areas where industrially and commercially populated. The generated bulk power from major power stations are transferred to the heavily populated areas through grid substations. As the number of grid substations are increased in an area, power stations may also be added to the system with in the same area, to cater the demanded load maintaining the quality of supply.

The cost of the transmission line construction is large and it varies according to the lengths of the line and the capacity. The optimal outcome of the combination of planning and designing of a transmission line is, at the energization, the line should be loaded minimum, the construction cost should be minimum and it should serve the system for full designed period maintaining the system security.

An evaluation was done for the 132 kV transmission network connecting Kolonnawa GS, Kelaniya GS, Kotugoda GS, Sapugaskanda GS, Biyagama GS and Asia Power PS which was reconstructed recently. The evaluation was based on load flow studies and the cost of construction. The load flow studies were done using the software of Power System Simulator for Engineering.

It is observed that mere reconstruction or upgrading the old system will not give the optimal solution in network expansion. With the addition of more and more grid substations to the system, re-arrangement of possible transmission network sections would result better and optimal network behaviour.

DECLARATION

The work submitted in this dissertation is the result of my own investigation, except where otherwise stated.

It has not already been accepted for any degree, and is also not being concurrently submitted for any other degree.

J.M.K. Jayasekera 12.01.2006

I endorse the declaration by the candidate.

UOM Verified Signature

Professor J.R. Lucas.

CONTENTS

DI	· Former	1	
Declara		i iv	
Abstract			
Acknowledgement List of Figures			
		VII	
	orincipal symbols	viii	
	duction	1	
	Background	1	
1.2	Motivation	2	
	Scope	2	
	ment of the problem	6	
	Preliminaries	6	
2.2	Problem identification	6	
	2.2.1 A load flow analysis	6	
	2.2.2 Present sub network operating system	7	
	2.2.3 Recorded recent loads of sub network	10	
2.3	Analysis for a optimal network arrangement	13	
3. Ana		14	
3.1	Possible network configurations	14	
	3.1.1 Alternative 01- Old sub network in the transmission system 2005	14	
	3.1.2 Alternative 02- Adding new line in between Sapugaskanda and Biyagama	14	
	3.1.3 Alternative 03- Old lines in between Kolonnawa and Kotugoda	14	
	3.1.4 Alternative 04- Old line in between Kolonnawa and Kelaniya	15	
	3.1.5 Alternative 05- Old line in between Kelaniya and Kotugoda	15	
	3.1.6 Alternative 06- No line in between Kolonnawa and Kelaniya	15	
	3.1.7 Alternative 07- No line in between Kelaniya and Kotugoda	16	
	3.1.8 Alternative 08- No lines in between Kolonriawa and Kotugoda	16	
	3.1.9 Alternative 09- Asia Power PS connecting to Sapugaskanda	16	
	3.1.10 Alternative 10- Combination of Alternative 08 and Alternative 09	16	
3.2	Transmission line data and capacities of grid substation	17	
3.3	Tools of analysis	18	
3.4	Day peak and night loads	18	
3.5	Peak load analysis	21	
	3.5.1 Alternative 01- Old sub network in the transmission system 2005	21	
	3.5.2 Alternative 02- Adding new line in between Sapugaskanda and Biyagama	24	
	3.5.3 Alternative 03- Old lines in between Kolonnawa and Kotugoda	27	
	3.5.4 Alternative 04- Old line in between Kolonnawa and Kelaniy	27	
	3.5.5 Alternative 05- Old line in between Kelaniya and Kotugoda	30	
	3.5.6 Alternative 06- No line in between Kolonnawa and Kelaniya 🦯	33	
	3.5.7 Alternative 07- No line in between Kelaniya and Kotugoda	37	
	3.5.8 Alternative 08- No lines in between Kolonnawa and Kotugoda	39	
	3.5.9 Alternative 09- Asia Power PS connecting to Sapugaskanda	43	

	3.5.10	Alterna	tive 10- Combination of Alter	native 08 and Alternative 09	46
3.6			analysis		49
	3.6.1		ative 11- No line in between S	apugaskanda and Biyagama	50
	3.6.2			mative 07 and Alternative 11	53
	3.6.3	Summa	ary of the outcome		56
3.7	Econo	mical as			57
			ction costs		57
		3.7.1.1	Construction cost of the imp	lemented system	58
		3.7.1.2	Construction cost of Alterna	tive 06	58
		3.7.1.3	Construction cost of Alterna	tive 08	58
		3.7.1.4	Construction cost of Alterna	tive 10	59
		3.7.1.5	Construction cost of Alterna	tive 11	59
		3.7.1.6	Construction cost of Alterna	tive 12	59
	3.7.2	Summa	ary of construction cost		59
	3.7.3	Cost of	f energy loss		59
4. Re	sults			-	61
5. Co	nclusio	n		di seconda	62
Refer	ences				64
Appen	ndix A	– Foreca	sted loads for year 2005.		65
			uction cost over loss of energy	ý	66

ACKNOWLEDGEMENT

I express my gratitude to Professor J.R. Lucas and Professor H.Y.R. Perera in the Department of Electrical Engineering, University of Moratuwa, Sri Lanka., for their guidance and encouragement. My thanks are due to the staff of Department of Electrical Engineering, University of Moratuwa, for their assistance to me during my post graduate studies in the University.

I am also grateful to the chief engineer and other engineers of the Transmission Planning office and system control centre of Ceylon Electricity Board for providing me the data, information and allowing me to use the computer facilities with relevant software.

Finally, I should thank my family for helping me in various ways in making my post graduate studies a success.

List of Figures

Figure 1.1.1	Location of the 132 kV transmission sub network in map of Sri Lanka	3
Figure 1.1.2	Configuration of sub network before construction	4
Figure 1.1.3	Configuration of sub network after construction	5
Figure 2.2.1.1	Load flow diagramme of the existing system in night peak.	8
Figure 2.2.1.2	Load flow diagramme of the existing system in day peak.	9
Figure 2.2.2.1	Load flow diagramme for the present operating pattern in night peak.	11
Figure 2.2.2.2	Load flow diagramme for the present operating pattern in day peak.	12
Figure 3.5.1.1	Load flow diagramme for Alternative 01in night peak.	22
Figure 3.5.1.2	Load flow diagramme for Alternative 01in night peak when "Asia Power" fails	23
Figure 3.5.1.3	Load flow diagramme for Alternative 01in night peak with Kelaniya GS	25
Figure 3.5.1.4	Load flow diagramme for Alternative 01in day peak with Kelaniya GS	26
Figure 3.5.2	Load flow diagramme for Alternative 02in nightepeak.	28
Figure 3.5.3	Load flow diagramme for Alternative 03in night peak.	29
Figure 3.5.4	Load flow diagramme for Alternative 04in night peak.	31
Figure 3.5.5.1	Load flow diagramme for Alternative 05in night peak.	32
Figure 3.5.5.2	Load flow diagramme for Alternative 05in day peak.	34
Figure 3.5.6.1	Load flow diagramme for Alternative 06in night peak.	35
Figure 3.5.6.2	Load flow diagramme for Alternative 06in day peak.	36
Figure 3.5.7.1	Load flow diagramme for Alternative 07in night peak.	38
Figure 3.5.7.2	Load flow diagramme for Alternative 07in day peak.	40
Figure 3.5.8.1	Load flow diagramme for Alternative 08in night peak.	41
Figure 3.5.8.2	Load flow diagramme for Alternative 08in day peak.	42
Figure 3.5.9.1	Load flow diagramme for Alternative 09in night peak.	44
Figure 3.5.9.2	Load flow diagramme for Alternative 09in day peak.	45
Figure 3.5.10.1	Load flow diagramme for Alternative 10 in night peak.	47
Figure 3.5.10.2	Load flow diagramme for Alternative 10 in day peak.	48
Figure 3.6.1.1	Load flow diagramme for Alternative 11 in night peak.	51
Figure 3.6.1.2	Load flow diagramme for Alternative 11-in day peak.	51
Figure 3.6.2.1	Load flow diagramme for Alternative 12 in night peak.	54
Figure 3.6.2.2	Load flow diagramme for Alternative 12 in day peak.	53
	N.Z.	

List of Tables

Table 2.2.1.1	Out come of the night peak load flow of the constructed transmission sub network.	7
Table 2.2.1.2	Out come of the day peak load flow of the transmission sub network.	7
Table 2,2.2.1	Out come of the night peak load flow of the sub network as it has been operated.	10
Table 2.2.2.2	Out come of the day peak load flow for the sub network as it is being operated.	10
Table 2.2.3	Recorded peak loads in the months of July and August 2005	13
Table 3.1.1	Network configuration of Alternative 01	14
Table 3.1.2	Network configuration of Alternative 02	14
Table 3.1.3	Network configuration of Alternative 03	15
Table 3.1.4	Network configuration of Alternative 04	15
Table 3.1.5	Network configuration of Alternative 05	15
Table 3.1.6	Network configuration of Alternative 06	15
Table 3.1.7	Network configuration of Alternative 07	16
Table 3.1.8	Network configuration of Alternative 08	16
Table 3.1.9	Network configuration of Alternative 09	16
Table 3.1.10	Network configuration of Alternative 10	17
Table 3.2	Rated loads of the conductors	17
Table 3.4.1	Demanded and delivered peak power in month of February 2005	19
Table 3.4.2	Demanded and delivered peak power in month of March 2005	19
Table 3.4.3	Demanded and delivered peak power in month of May 2005 €	19
Table 3.4.4	Demanded and delivered peak power in month of July 2005	20
Table 3.4.5	Demanded and delivered peak power in month of August 2005	20
Table 3.4.6	Day and night voltages at the peak in the months of July and August 2005 at the	20
1 2010 3.4.0		20
T-11-2-6-1-1	adjacent buses	21
Table 3.5.1.1	Outcome of the load flow for Alternative 01 in night peak	21
Table 3.5.1.2	Outcome of the load flow for Alternative 01 in night peak when the "Asia Power"	21
75 I I A C I A	PS is failed to deliver power.	24
Table 3.5.1.3	Outcome of the load flow for Alternative 01 in night peak with Kelaniya GS	24
Table 3.5.1.4	Outcome of the load flow for Alternative 01 in day peak with Kelaniya GS	24
Table 3.5.2	Outcome of the load flow for Alternative 02 in night peak	27
Table 3.5.3	Outcome of the load flow for Alternative 03 in night peak	27
Table 3.5.4	Outcome of the load flow for Alternative 04 in night peak	30
Table 3.5.5.1	Outcome of the load flow for Alternative 05 in night peak	30
Table 3.5.5.2	Outcome of the load flow for Alternative 05 in day peak	33
Table 3.5.6.1	Outcome of the load flow for Alternative 06 in night peak	33
Table 3.5.6.2	Outcome of the load flow for Alternative 06 in day peak	33
Table 3.5.6.3	Voltages of adjacent buses at day and night peaks for Alternative 06	37
Table 3.5.7.1	Outcome of the load flow for Alternative 07 in night peak	37
Table 3.5.7.2	Outcome of the load flow for Alternative 07 in day peak	39
Table 3.5.8.1	Outcome of the load flow for Alternative 08 in night peak	39
Table 3.5.8.2	Outcome of the load flow for Alternative 08 in day peak	39
Table 3.5.8.3	Voltages of adjacent buses at day and night peaks for Alternative 08	43
Table 3.5.9.1	Outcome of the load flow for Alternative 09 in night peak	43
Table 3.5.9.2	Outcome of the load flow for Alternative 09 in day peak	43
Table 3.5.10.1	Outcome of the load flow for Alternative 10 in night peak	46
Table 3.5.10.2	Outcome of the load flow for Alternative 10 in day peak	46
Table 3.5.10.3	Voltages of adjacent buses at day and night peaks for Alternative 10	49
Table 3.6.1	Summary of percentage of line loads	49
Table 3.6.1.1	Outcome of the load flow for Alternative 11 in night peak	50
Table 3.6.1.2	Outcome of the load flow for Alternative 11 in day peak	50
Table 3.6.1.3	Voltages of adjacent buses at day and night peaks for Alternative 11	53
Table 3.6.2.1	Outcome of the load flow for Alternative 12 in night peak	53
Table 3.6.2.2	Outcome of the load flow for Alternative 12 in day peak	53
Table 3.6.2.3	Voltages of adjacent buses at day and night peaks for Alternative 12	56
Table 3.6.3.1	Percentage of maximum line loads in each configuration	56
Table 3.6.3.2	Total system network loss with each sub network configuration	57
Table 3.7.2.1	Comparison of construction costs	59

List of Principal Symbols

ACSR	All Conductor Steel Reinforced
AP	Asia Power
Biya	Biyagama
Capa	Capacity
Cct	Circuit
CEB	Ceylon Electricity Board
Cond.	Conductor
Condi.	Condition
Con.	Constructed
°C	degree Centigrade
D/C	Double Circuit
GS	Grid Substation
Gen.	Generated
IPP	Independent Power Producer
Kela	Kelaniya
Kolo	Kolonnawa
Kotu	Kotugoda
N	Number of circuits
Ope.	Operating
PS	Power Station
PSS/E	Power System Simulator for Engineering
S/C	Single Circuit
Sapu	Sapugaskanda

and and

£

viii