ENHANCEMENT OF SURFACE QUALITY OF BRASS CASTINGS COST EFFECTIVELY USING NATURALLY AVAILABLE SAND AND CLAY **AVAILABLE IN SRI LANKA**

LB/ DUN' /

134

By

G.I.P. De Silva

Supervised By Dr. N. Munasinghe

A thesis submitted to the Department of Materials Engineering in the University of Moratuwa, Sri Lanka, in partial fulfilment of the requirements for the degree of Master of Philosophy

With Marine Strand

620 06 6: ~.1 (02: 3)

University of Moratuwa

July -2006

DECLARATION

I certify that the Thesis with the title "Enhancement of Surface Quality of Brass Castings Cost Effectively using Naturally available Sand and Clay available in Sri Lanka" is entirely my own work. It has not been accepted for any degree and it is not being submitted for any other degree.

Candidate	UOM Verified Sig	
G.I.P De Silva	Signature	0014 Verifica Signalare
	Date	19-07-2006
Supervisor		UOM Varified Signature
Dr. N. Munasinghe	Signature	00M verijieu Signulure
	Date	19. 07.2006
te Uni	versity of Moratuwa Sri Lanka	

I

2)

Electronic Theses & Dissertations www.lib.mrt.ac.lk

Declaration

ABSTRACT

Through a survey done for the Sri Lankan foundry industry using a structured questionnaire it was revealed that one of the most significant quality parameter of the brass casting is the high surface roughness. Properties of the sand clay- mixture, the gating system of the mould, composition of the material to be melted and pouring temperature are the factors, which affect the surface roughness. Out of these factors the attention was focused in this work to the properties of the sand–clay mixture like fineness no., clay content, moisture content and permeability etc. to reduce the surface roughness. A synthetically unmodified sand–clay mixtures consisting of natural sand and clay from different locations in Sri Lanka were analyzed with respect to the reference sand sample (naturally bonded sand-clay mixture) imported from Japan, which gives a considerably low surface roughness.

In this research work the attention was also directed to develop a non-contact method to measure the surface roughness of castings using ultrasonic echo amplitude technique. With this method it is possible to measure the surface roughness of castings with improved accuracy and minimized cost.

The results of the experimental work done in this work show that it is possible to produce several number of mixtures made by mixing different sand and clay available in Sri Lanka and those mixtures give a relatively good surface roughness for the brass castings with compared to the casting made with Japanese reference sample.

ACKNOWLEDGMENT

Initially, I would like to offer my deepest gratitude to my Supervisor Dr. Nanda Munasinghe for his guidance, support and encouragement. Then, to Mr.Y.C.P Costha, Foundry Manager, Ceylon Heavy Industries and Company Ltd. (CHICO) for his kind and supportive advices.

In addition to that, I like to express my thanks to Dr. S. U. Adikary, the Head of the Department of Materials Engineering and all the academic and non-academic staff members of the Department of Materials Engineering, University of Moratuwa for their assistance and contribution to my research work.

Also I like to place on record my appreciation to Mr. Melvin Samarasinghe, Managing Director, Agrotechnica Pvt.Ltd. who always encouraged me by providing his fullest corporation. Again it is pleasure to thank Industrial Development Board (IDB) Katubedda, Paliyagoda, and Pilimathalawa and Foundry Development & Services Institute (FDSI) for their support and guidance during every phase of my research.

Electronic Theses & Dissertati www.lib.mrt.ac.lk

I must be indebted to National Science Foundation (NSF) for the awarding of a research grant to carry out my research successfully. Thanks are extended to Ceylon Glass Company Limited (CGC), Naththandiya for supplying silica sand free of charge.

At the same time I appreciate and thank to the staff of the Department of Mechanical Engineering and Department of Earth Resources Engineering at University of Moratuwa for their support and assistance.

At last but not least, it is indeed to thank my mother and father for their encouragement, support and sacrifice.

G.I.P De Silva Department of Materials Engineering, University of Moratuawa.

Acknowledgment

CONTENT

Declaration		I	
Abs	stract		II
Ack	knowledgemer	nt	III
Cor	ntent		IV
List	t of Figures ar	nd Tables	IX
List	t of Terms, At	obreviations and Symbols	XIV
1 Introduction			1
2	Literature	Review	3
	2.1 Introductio	n to Foundry Technology	3
	2.2 Classificati	on of Casting Processes	6
	2.2.1	Sand Casting Processes	6
	2.2.2	Die Casting Process	10
	2.2.3	Graphite Mold Casting Process	11
	2.2.4	Centrifugal Casting Process	12
	2.2.5	Investment Casting Process	12
	2.2.6	Continues Casting Process	13
	2.3 Factors Inf	luencing the Choice of Casting Process	14
	2.4 Sand-Clay	Mixtures use for Sand Casting Process	15
	2.5 Sand Types	s use for Sand-Clay Mixtures	17
	2.5.1	Availability of Silica Sand in Sri Lanka	19
	2.5.2	Properties of Sand use for Sand-Clay Mixtures	19
	2.6 Clay Miner	ralogy	22
	2.6.1	Kaolinite	24

- **A**L

.)

4

*

ł

2.6.2	Montmorillonite	25
2.6.3	Illite	26
2.6.4	Identification of Clay Minerals	27
	2.6.4.1 Full Chemical Analysis	27
	2.6.4.2 Differential Thermal Analysis	28
	2.6.4.3 X-ray Diffraction Analysis (XRD)	31
2.7 Properties	and Characteristics of Sand-Clay Mixture	31
2.7.1	Clay Content	31
2.7.2	Moisture Content	31
2.7.3	Permeability	32
2.7.4	Compression Strength	32
2.7.5	Shatter Index	30
2.7.6	Fineness Number	33
2.7.7	Refractoriness	33
2.7.8	Mould Hardness	34
2.8 Defects in	Sand Casting	34
2.9 Surface Ro	oughness Measurement in Engineering	36
2.9.1	Types of Surfaces and a like	36
2.9.2	Surface Finish Imperfections	37
2.9.3	Modern Techniques of Measuring the Surface Roughness	38
	2.9.3.1 Stylus Profilometry (Contact Method)	38
	2.9.3.2 Atomic Force Microscope Method (AFM)	39
	 Contact Method 	
	2.9.3.3 Optical Methods (Non Contact Methods)	40
	2.9.3.4 Electron/iron Beam Method (Non Contact Method)	42
2.10 Identifica	tion of the Problem and Project Plan	43

3 Surface Roughness Measurement of Castings using Ultrasonic 47 Echo Amplitude Technique 3.1 Characteristics of Ultrasonic Beam 47

-

3.2	Basic The	ories in Ultrasonic Echo Amplitude Technique	48
	3.2.1	The Attenuation due to the Transmission Medium	48
	3.2.2	The Attenuation due to the Beam Spread	50
	3.2.3	The Attenuation due to the Surface Roughness	52
3.3	Procedure		53
	3.3.1	Detecting the Energy loss Made by the Attenuation of the	53
		Medium (Styling gel)	
	3.3.2	Detecting the Energy loss made by the Surface of the Casting	55
3.4	Detecting	the Relationship between Ultrasonic Measurement and Stylus	56
	Measurem	nent	
	3.4.1	Detecting the Attenuation corresponding to Emery papers with	55
		Different Grit Numbers	
	3.4.2	Measuring the Surface Roughness of Emery papers by using	56
		Stylus Equipment	
3.5	Discussio	n	59
3.5	Conclusio	ons	62
		University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk	
Aı	nalysis th	e Properties of Natural Sand and Clay samples	63
4.1	Material Te	esting Equipments and Test Procedures	63
4.2	Analysing	the Shape and Particle Size Distribution of various Sand	75
	Samples		
	4.2.1	Analysing the Particle Size Distribution of various Sand	74
		samples	
	4.2.2	Analysing the Shape of the Particles of various Sand	78
		Samples	
4.3	Assuring th	ne Clay type of Various Clay Samples	78
	4.3.1	Full chemical Analysis of various Clay Samples	79
	4.3.2	Differential Thermal Analysis of various Clay Samples	79
	4.3.3	X-ray Diffraction Analysis of Allaipathuwa and Bangadeniya	79
		Clay	

4

-

7

4

VI

5	The Surface Roughness and Reusability of Sand- Clay Mixtures	82
	5.1 Analysis the Properties of Mixtures of Natural Sand and Clay	83
	5.2 Assuring The Surface finish of Castings produced using Different	87
	Sand- Clay Mixtures	
	5.3 Assuring the Reusability of Different types of Sand-Clay Mixtures	92

6	Computer 2	Program for select a Suitable Sand- Clay Mixture	95
	6.1 Computer I	Program (Cast-X)	95
	6.1.1	Flow Chart of the Computer Program	97
	6.1.2	Input and Output Data of Computer Program	98

7	Discussion	100
	7.1 Quality of the Castings Produced in Local Foundries	101
	7.2 Surface Roughness and Reusability of Developed Sand-Clay Mixtures	103
	7.3 Importance of the Computer Program for Foundry Industry	105
	7.4 Utility of Results taken from Experiments and Tests	105
8	Conclusions	107
9	Further Work	109
10	References	110
11	Annexes	113
	Annex -A: Computer Programe for Detect the Surface Roughness	
	Annex -B: Locations of Natural Sand and Clay Sources	

-

4

.,

11 Annexes

- Annex -A: Computer Programe for Detect the Surface Roughness
- Annex -B: Locations of Natural Sand and Clay Sources
- Annex -C: DTA Curve of Kiribathgoda Clay
- Annex -D: DTA Curve of Aruwakkalu Clay
- Annex -E: DTA Curve of Allaipaththuwa Clay
- Annex -F: DTA Curve of Bangadeniya Clay
- Annex -G: XRD Curve of Bangadeniya Clay
- Annex -H: XRD Curve of Allaipaththuwa Clay
- Annex –I : X-ray Diffraction Curves of Montmorillonite Type Clays
- Annex –J : Computer Program for Select the Most Suitable Sand-Clay Mixture.
- Annex –K: The Relationship Between the Surface Roughness and Reusability of Different Sand-Clay Mixtures

LIST OF FIGURES AND TABLES

List of Figures

.

\$

Figure 1:	Main features of a Green Sand Mould	7
Figure 2:	Die Casting Process	11
Figure 3:	Investment Casting Process	13
Figure 4:	Schematic representation of the Continuous Casting Process	14
Figure 5:	Expansion Characteristics of Silica Sand	20
Figure 6:	SEM photographs of the Round Grain Silica Sand Particles	21
Figure 7:	Structure of Silica Tegrahedra showing (a) a Single Tetrahedron,	23
	and (b) a sheet of Tetrahedra	
Figure 8:	Structure of Alumina or Magnesia Octahedra showing (a) a Single	23
	Octahedron, and (b) a sheet of Octahedrons	
Figure 9:	Schematic representation of Sheets	23
Figure 10:	Schematic representation of Kaolin Structure	24
Figure 11:	Schematic representation of Montmorillonite Structure	26
Figure 12:	Schematic representation of Illite Structure	26
Figure 13:	D.T.A. Curves for Group 1(I) and Group 1(II) Clays	29
Figure 14:	D.T.A. Curves for Group 1(III) Clays	29
Figure 15:	D.T.A. Curves for Group II Clays	30
Figure 16:	D.T.A. Curves for Group III Clays	30
Figure 17:	Surface Characteristics	37
Figure 18:	Schematic Diagram of Surtronic 2	38
Figure 19:	A Hypothetical Profile of a Surface	38
Figure 20:	Various Roughness Parameters	39
Figure 21:	The Mechanism of the AFM Method	40
Figure 22:	Amplitude and Width of the Surface Features	41
Figure 23:	Analysis of Casting Defects	43
Figure 24:	Factors affect to the Surface Roughness of the Sand Castings	44
Figure 25:	Attenuation Losses during Transmission	49
Figure 26:	Shape of a Typical Sound Beam from a Circular Transducer	50

Figure 27:	Distribution of Intensity along the Axial Distance	51
Figure 28:	CRT Screen Appearance Corresponding to Point, P	51
Figure 29:	The Effect of Scattering for the Attenuation made by the	53
	Rough and Wavy Surfaces	
Figure 30:	Detecting the Energy loss due to the Attenuation of the Couplant Medium	54
Figure 31:	Detecting the Energy loss due to the Attenuation of the	55
	Surface of the Casting.	
Figure 32:	Schematic diagram of Surtronic 2	57
Figure 33:	The Relationship between the Ultrasonic Measurement and the	58
	Stylus Measurement	
Figure 34:	The Linear Relationship between the Ultrasonic Measurement and	59
	the Logarithmic value of Stylus Measurement	
Figure 35:	Analyzing the Surface Roughness of Castings with various Sizes	61
Figure 36:	CRT Screen appearance corresponding to the Large No.	62
	of 1 st Back Wall Echoes	
Figure 37:	Clay content Testing Machine	63
Figure 38:	Methylene blue Clay Tester in of Mortuwa Sri Lanka	64
Figure 39:	Ultrasonic clay Tester Accessory	65
Figure 40:	Sieve Shaker	66
Figure 41:	Moisture Teller	67
Figure 42:	AFS Standard Rammer	68
Figure 43:	AFS Standard Sample	68
Figure 44:	Electric Permmeter	69
Figure 45:	Universal Sand Strength Machine	69
Figure 46:	Shatter Index Tester	71
Figure 47:	Atomic Absorption Spectrometer	71
Figure 48:	Thermal Analyzer	72
Figure 49:	X-Ray Diffractometer	72
Figure 50:	Oil fired Brass melting Furnace	73
Figure 51:	Sieving Machine	74
Figure 52:	Particle size distribution of various sand and soil	76

.)

Х

Samples (Sieved by 355µm mesh)

Figure 53: Shape of the particles of Eththale Sand	78
Figure 54: Shape of the particles of Japanese Sand	78
Figure 55: Shape of the particles of Naththandiya Sand	78
Figure 56 : Steps of Sand Casting Process	88
Figure 57: Flow chart of the mathematical model	97
Figure 58: Analysis of Responses of the Districts	98
Figure 59: Analysis of types of Foundries	99
Figure 60: Analysis of Foundry Items	101

List of Tables

Table 1:	Properties of Foundry Sand	17
Table 2:	Chemical Composition of Foundry Sand	18
Table 3:	Chemical Analysis of Selected Samples of Clay from the Various Groups	27
Table 4:	Casting Defects and Remedies for Defects	34
Table 5:	Readings for detect the Attenuation due to The Couplant	54
	medium (Styling Gel)	
Table 6:	Readings for detect the Attenuation due to the Surface of the Casting	55
Table 7:	Readings for detect the Attenuation due to the Roughness of the Sand	57
	Papers	
Table 8:	Stylus Measurement and Ultrasonic Measurement for Sand Papers	58
Table 9:	Modern Techniques of measuring the Surface Roughness	60
Table 10:	Sieve Analysis of Japanese Soil	75
Table 11:	Sieve Analysis of Naththandiya Sand	76
Table 12:	Sieve Analysis of Eththale Sand	76
Table 13:	Sieve Analysis of Nawakkadu Sand	76
Table 14:	Full Chemical Analysis of various Clay Samples	78
Table 15:	Details taken from the XRD Curve of Allaipaththuwa Clay	79
Table 16:	Details taken from the XRD Curve of Bangadeniya Clay	80

Table 17:	Selected Details from the XRD Curve of Nontronite (Annex-I)	80
Table 18:	Gel Indexes of Allaipathuwa and Bangadeniya Clays	81
Table 19:	Active Clay Content of Different Clays	82
Table 20:	Suitable Percentages of Different Clays to prepare	83
	Sand - Clay Mixtures	
Table 21:	Properties of Mixtures of Eththale sand (E) and Bangadeniya	84
	Clay (B) under Various Proportions	
Table 22:	Properties of Mixtures of Eththale sand (E) and Allaipaththuwa clay (AL)	84
	under Various Proportions	
Table 23:	Properties of Mixtures of Naththandiya sand (N) and Bangadeniya	84
	clay (B) under Various Proportions	
Table 24:	Properties of Mixtures of Naththandiya sand (N) and Allaipaththuwa	84
	clay (AL) under Various Proportions	
Table 25:	Properties of Mixtures of Ettale sand (E) and Kiribathgoda clay (K)	85
	under Various Proportions	
Table 26:	Properties of Mixtures of Nattandiya sand (N) and Kiribathgoda	85
	clay (K) under Various Proportions returns. Sri Lanka.	
Table 27:	Properties of Mixtures of Ettale sand (E) and Aruwakkalu	86
	clay (AR) under Various Proportions	
Table 28 :	Properties of Mixtures of Nattandiya sand (N) and Aruwakkalu	87
	clay (AR) under various Proportions	
Table 29:	Properties of Japanese Soil	87
Table 30:	Surface Roughness of Castings produced using Eththale sand (E)	89
	and Bangadeniya Clay (B)	
Table 31:	Surface Roughness of Castings produced using Eththale sand (E)	89
	and Allaipaththuwa clay (AL)	
Table 32:	Surface Roughness of Castings produced using Naththandiya sand (N)	89
	and Bangadeniya clay (B)	
Table 33:	Surface Roughness of Castings produced using Naththandiya	89
	sand (N) and Allaipaththuwa clay (AL)	
Table 34:	Surface Roughness of Castings produced using Ettale sand (E)	90

~

-#

and Kiribathgoda clay (K)

-

+

Table 35:	Surface Roughness of Castings produced using Nattandiya sand (N)	90
	and Kiribathgoda clay (K)	
Table 36:	Surface Roughness of Castings produced using Ettale sand (E)	90
	and Aruwakkalu clay (AR)	
Table 37:	Surface Roughness of Castings produced using Nattandiya sand (N)	90
	and Aruwakkalu clay (AR)	
Table 38:	Surface Roughness of Casting which was produced using Japanese Sand	91
Table 39:	Reusability of different Sand-Clay Mixtures	93
Table 40:	Details of the Sand and Clay Sources	99
Table 41:	Comparison of Properties of "NK" Mixtures with Japanese Sand	102
Table 42:	Comparison of Active clay (%) and Reusability of "NK" Mixtures	102
	with Japanese Sand	
Table 43:	Comparison of Active clay (%) and Reusability of "NAL" and	104
	"EAL" Mixtures with Japanese Sand	
Table 44:	Comparison of Properties of "NAL" Mixtures with Japanese Sand	104
	University of Moratuwa, Sri Lanka.	

LIST OF TERMS, ABBREVIATIONS AND SYMBOLS

AA	Arithmetical Average
RMS	Root mean square
CLA	Center Line Averages
h	Ordinates
Ra	Arithmetical Average Roughness
n	Number of ordinates
Rq	RMS Roughness
Rv	Valley Roughness
Rp	Peak Roughness
Rt	Total Roughness
L	Assessment length
1	Sampling length
Rz	Maximum peak to valley height of the profile in the assessment length
AFM	Atomic Force Microscope
TIS	Total Integrated Scatter inversity of Moraluwa, Sri Lanka.
BRDF	Bi-directional Reflectance Distribution Function
α_{m}	Attenuation due to the transmission medium
α_b	Attenuation due to the beam spread
α_c	Attenuation due to the surface roughness
α	Total attenuation
α _e	Attenuation due to the emery paper
α_t	Attenuation due to the medium ,beam spread and glass sheet
α_t^1	Attenuation due to the medium ,beam spread, glass sheet and surface
AFS	American foundrymen's society
GCS	Green Compression Srength
DTA	Differential Thermal Analysis
XRD	X-Ray Diffraction
λ	Wavelength
θ	Angle of incidence