LB / DON /18 /07

DEE 04 144

DESIGN ASPECTS OF SUBURBAN RAILWAY ELECTRIFICATION

A dissertation submitted to the Department of Electrical Engineering, University of Moratuwa In partial fulfilment of the requirements for the Degree of Master of Engineering

> LIBRARY UNIVERSITY OF MORATUWA, SRI LANKA MORATUWA

> > By

D. M. C. M. K. DASSANAYAKE

Supervised by: Dr. Lanka Udawatta

621.3 06 621.3 (0+3)

Department of Electrical Engineering University of Moratuwa

December 2006

87264

DECLARATION

The work submitted in this dissertation is the result of my own investigation, except where otherwise stated.

It has not already been accepted for any degree, and is also not being concurrently submitted for any other degree.

UOM Verified Signature

D.M.C.M.K. Dassanayake

December 2006

I endorse the declaration by the candidate

Dr. Lanka Udawatta

Abstract

The highway transportation of Sri Lanka is becoming more and more time consuming due to road traffic congestion and becoming more expensive due petroleum fuel prices. Travelling by highway is a more stress full thing and it creates lots of fatigue on passengers. Use full time has to be wasted on the road without any productivity.

As a remedy for this burning issue, railway transportation is to be improved using modern technology and techniques. By improving railway transportation lot of direct and indirect benefits can be received.

Commuter will receive a comfortable travelling with minimized fatigue hence better productivity is the result in return. Reducing wasted man hours on travelling also will result to improve the productivity of the country. Properly scheduled train service will attract passengers using other modes of transportation. So it will automatically reduce the road traffic congestion and considerable amount of fuel can save by minimizing vehicles idling. Also it will reduce the road traffic accidents.

By using electrified railway system with regenerating facility big amount of energy can be saved without wasting. Alternative fuel such as heavy oil, coal or some times nuclear power in the future can be used to generate electricity and hence reduced the dependency of petroleum fuel. So long term train fare consistency can be expected.

In the view of environmental protection, electrified railways are the best environmental friendly transport mode compared to other modes of transport.

For this study only a part of the main railway line, Colombo – Polgahawela section is considered. From all relevant data extracted from railway department statistics, required numbers of Electro Motive Units (EMU) are decided and the study lead to financial considerations which emphasis the feasibility of the project.

CONTENTS

Declaration	i
Abstract	ii
Contents	iii
List of Figures	vi
List of Tables	vii

Chapter 1

	1.0	Introduction	8	1
	1.1	Sri Lanka Railway		1
		1.1.1 Railway Expansion Projects		2
	1.2	Organization		5
	1.3	Rolling Stock		5
	1.4	Previous Studies on Railway Electrific	ation	7
	1.5	Scope of the Railway Electrification		2 5 7 7 7 7
		1.5.1 The necessity of the Project		7
	1.6	Electric Trains and Electrical Power Su	upply	
1		Developmentsy of Moratuwa, Sri	Lanka	10
Chap	ter 2	Electronic Theses & Disserta		α.
1		www.lib.mrt.ac.lk		
	2.0	Basic Developments of electrified loco	motion	12
	2.1	Basics - Volts and Amps		12
	2.2	DC Motors		13
	2.3	Resistance Control and Camshafts		15
	2.4	Transformers		15
	2.5	Rectifiers		16
	2.6	Thyristors		16
	2.7	Gate Turn Off (GTO) Thyristor		17
	2.8	Choppers		18
	2.9	AC Motors		19
	2.10	GTO Inverters		20
	2.11	Insulated Gate Bipolar Transistor		21
	2.12	Force Commuted Bridges	24	21
	2.13	Braking Electrified Locomotives	1	22,-
			1	

Chapter 3

3.0 Electrification Area, Operation and Equipment 23

3.1	Existing Passenger Flow	24
3.2	Procedure	25
3.3	Operating system requirements	25
3.4	Equipment Costs	25
3.5	Operating Expenses	26
	3.5.1 Electrical Energy	26
	3.5.2 Maintenance Expenses	27

Chapter 4

4.0	Present Railway Operation	28
4.1	Train Speeds and Speed Restrictions	29
4.2	Financial Considerations for Past years	29
4.3	Expected daily one directional passenger flow	30

Chapter 5

5.0	Proposed Operating System	31
5.1	Outline	31
5.2	Expected passenger volume after Electrification	31
5.3	Electrical Multiple Units	32
5.4	Calculation of the Requirement of EMUs	34
5.5	Railway Track, Signaling and Communication	36
	5.5.1 Railway Track Toratuwa, Sri Lalika.	36
	5.5.2 leSignaling systems & Dissertations	36
	5.5.3 Catenary (Power Transfer) System	37

Chapter 6

6.0	Projec	t Analysis	40
6.1		ion of Rolling Stock	40
6.2		eering Calculations	42
	6.3.1	Specific Train Resistance	42
	6.3.2		44
	6.3.3	Calculation of Tractive Effort	45
	6.3.4	Torque developed by a traction motor	46
	6.3.5		47
	6.3.6	Energy returned to the line	47
6.4	Power	Requirement	49
	6.4.1	Energy requirement per kilometer	49
6.5	The T	raction power supply system	49
	6.5.1	Required Power generation Capacity	, 51
6.6	The or	verhead Contact System	52
	6.6.1	Required modifications to accommodate	
		the catenary system	53

	gap Clearance	53
6.6.3 Ren	note control and Dispatching system	54
	ADA and it' functions	54

6.7 Results of Technical Calculation and Capacities 56

Chapter 7

7.0	Financ	cial and Economical Appraisal	57
7.1	Capita	al cost	57
	7.1.1	Cost of Electrical Engineering work	57
	7.1.2	Cost of plant & Machinery for the	
		Maintenance department	58
	7.1.3	Procurement of rolling stock	58
	7.1.4	Cost of Railway track Rehabilitation	58
		Maintenance cost	59
	7.1.6	Operating cost	59
7.2		nue from Operation	61
	7.2.1	Tariffs	61

Chapter 8

University of Moratuwa Sri Lanka	
8.0 Conclusion Theses & Discontations	65
8.1 Advantages of Electrical Engines	65
8.2 Disadvantages of Electrical Engines	65

Chapter 9

9.0	References	14	

APPENDIX

Annex	1
Annex	2
Annex	3

67 70 72

66

List of Figures

Figure		Page
1.1	Sri Lanka Railway Net work	04
2.1	A basic electric circuit	12
2.2	DC and AC wave form patterns	13
2.3	Schematic Diagram of series connected and separately	
	Excited motor	14
2.4	AC Voltage input with Equivalent DC Level	16
2.5	Equivalent DC Levels	17
2.6	Equivalent DC Voltages of Chopper circuits	18
2.7	AC Three Phase Waveform	19
2.8	Output Waveform of a GTO Inverter	20
5.1	Motor Car	33
5.2	Trailer Car	33
5.3	Formation of an electro motive unit	33
5.4	Modes of Catenary Systems	37
5.5	3D View of a catenary system and a Wire Cross section	38
5.6	Pantograph of a Catenary in Operation	38
5.7	Inside view of a Crew Cabin Inside view of a Trailer Car Moratuwa, Sri Lanka.	39
5.8	Incide view of a Trailer Car	21
6.1	A modern passenger EMU in service Dissertations	40
6.2	Front side view of an EMU ac.1k	41
6.3	Variation Specific Train Resistance with Velocity	44
6.4	Overhead Contact System	52
6.5	Required Modifications	53
6.6	Parts of an AC Traction Motor	55
6.7	Monometer Bogie	55
	Monometer Bogie	

List of Tables

Table		Page
1.1	Railway Network and Distances	1
1.2	Total No. of Stations of each line	2
1.3	Locomotive Categories and Purchased years	6
3.1	Detailed One directional peak hours passenger flow	23
3.2	Present One directional peak hour passenger flow	24
3.3	Expected One directional peak hour passenger flow	24
4.1	Average number of trains and train kilometers	29
4.2	Summary of loss of Recurrent Expenditure	29
4.3	Expected one directional passenger flow after	
	Electrification	30
5.1	Expected peak hour one directional passenger flow	32
5.2	Technical Specifications	32
6.1	Specific train Resistance	43
6.2	No. of EMU's and Sub station Capacities	56
7.1	Daily Sectional Average Passenger kilometers	62
7.2	Cash flow analysis	63

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

