LB/DON / 38 /01

SERVICEABILITY ANALYSIS OF CONTINUOUS BOX-GIRDER BRIDGES CONSTRUCTED USING DIFFERENT TECHNIQUES

USTUENSITY UT MORATUWA, SRI LANKA

This thesis is submitted to the Department of Civil Engineering of University of Moratuwa in partial fulfilment of the requirements for the degree of Master of Science in Engineering.

Supervised By

Dr. I.R.A. Weerasekera.

624 06 624.01 (043)

DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA

SRI LANKA

September 2006

87309

47

47

Declaration

The work included in this thesis in part or whole has not been submitted for any other academic qualification of any institution.

.

H. M. I. Thilakarathna.

Certified by

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

UOM Verified Signature -

Dr. I. R. A. Weerasekera. (Supervisor) Date: 01 September 2006.

Abstract

There are different construction methods practiced in the bridge industry to erect bridge super structures. Among these, segmental Box-girder is the latest trend in the industry, which facilitates fast, versatile construction. In contrast to monolithic construction, these bridges consist of pre-cast pretensioned elements joined together by post-tensioning to form continuous bridge structures. Composite bridge cross-sections adopted in segmental construction use dissimilar materials such as precast concrete, prestressing and nonprestressing steel components. Behaviour of these continuous bridges, are often influenced by time-dependant nature of the materials used.

This study focuses on the analysis of time-dependent properties associated with the bridges constructed using different techniques. To analyse the short, medium and long term behaviour of the bridges, a rational analytical approach is chosen so that it can assess the time-dependant effects such as creep and shrinkage of concrete and relaxation of prestressing steel. So the structural analyses can model mathematically all associated changes in geometrical forms, statical conditions and material properties which are important with segmental construction.

A computer program available, and which follows the above procedure has been enhanced by introducing a pre-processor to ease complications arising from the large number of analyses encountered with solution of continuous segmental bridge problems.

In this research different construction techniques such as span-by-span construction, balanced and progressive Cantilever methods and incremental launching have been examined. A four span continuous bridge example where each span is fabricated using eight equal segments have been studied under different construction techniques. These involve evaluating the effects of loads arising from force or displacement induced changes which occur during construction stages and perhaps be temporary or permanent depending on the circumstances. Also it has been possible to compare results and identify both advantages and disadvantages of the various methods. The study reveals the effect of serviceability indices such as stresses and deformations which are affected in different forms depending on the method of construction.

Acknowledgements

This research was carried out for the partial fulfilment the Degree of Master of Science in Structural Engineering at the University of Moratuwa, Sri Lanka. It would not have been successful without the guidance and motivation given to me by Dr. I.R.A. Weerasekera, the project supervisor. I express my heartfelt gratitude for his patience, understanding and encouragement during the entire course of work.

With great pleasure I extend my thanks to other members of the progress review committee, consisting of Prof. W.P.S. Dias and Dr. S.A.S. Kulathilake for their help and constructive criticisms. My special thanks go to Dr. Asoka De Silva, the external examiner and cordially mention Dr. U.G.A. Puswewala for his kind support whenever needed.

The other post-graduate students, friends deserve special mention for their assistance, especially R. Thivakar, B.H.D.Y. Madunoraj and R. Wicramasinghe. The Financial assistance for research work granted by the Asian Development Bank is thankfully acknowledged.

Also wish to acknowledge the help given by the technical staff of the Department of Civil Engineering, University of Moratuwa.

H. M. I. Thilakarathna.Department of Civil EngineeringUniversity of MoratuwaSeptember 2006.

Dedication

To my parents and my teachers.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Table of contents

Declaration	 ii
Abstract	 iii
Acknowledgement	 iv
Dedication	 v
Table of contents	 vi
List of Tables	 xi
List of Figures	 xii
Notations	 xiv

1.0 Introduction

2.0

1.1 General	01
1.2 Advantages and disadvantages of continuous	bridges 01
1.3 Importance of the serviceability studies	
1.4 Research objectives	
1.5 Methodology	
1.6 Scope and limitations and of Moratuwa Sri Lanka	
1.7 Thesis organization.	
1.8 Conclusion and recommendation	
Literature review	
2 General	
2.2 Different construction methods used in the it	dustry.
2.2.1 Span- by-span method.	
2.2.2 Balanced cantilever method.	
2.2.3 Progressive cantilever method.	
2.2.4 Incremental launching method.	
2.3 Segmental constructions	
2.3 1 Pre-cast constructions	
2.3.2 Cast-In-Place Constructions	18
2.3.2 Loints of the segments	18
2.4. Selection of the Box Girder dimensions	
2.4 Selection of the Box-Offder dimensions	10
2.4.1 Selection of geometrical properties	es 19

2.4.2 Cross-section.

20

.

2.4.3	Constant Vs. variable depth.		20
2.4.4	Span-to-depth ratio.		20
2.4.5	Superstructure shape.		21
2.5 Bridge loa	ding.		
2.5.1	General		22
2.5.2	American Association of Stat	e Highway and	
	Transportation Officials		22
2.5.3	Live load		24
2.5.4	Truck loading	•••••	24
2.5.5	Lane loading		25
2.5.6	Effects of the Dead load in st	age constructions	26
2.5.7	Design loads and the Load fa	ctors	26
2.6 Pre-stressi	ng		
2.6.1	General	•••••	27
2.6.2	Pre-stressing tendons.		28
2.6.3	Bonded and un-bonded tendo	ons	28
2.7 Effect of d	lifferent tendon arrangement i	n segmental constructions.	. 28
2.7.1	Coupled straight tendons.	nka.	30
2.7.2	Overlapped straight tendons.		30
2.7.3	External straight tendons.		31
2.7.4	Antagonist tendons.	••••••	32
2.8 Pre-stress	Losses in steel.		32
2.8.1	Relaxation of pre-stressing st	eel	32
2.8.2	Intrinsic relaxation.		33
2.8.3	Fatigue	• • • • • • • • • • • • • • • •	33
2.8.4	Corrosion		34
2.9 Losses du	ring post-tensioning.		
2.9.1	Frictional Losses		35
2.9.2	Influence of the eccentricity	of tendons within	
	ducks		36
2.10 Differen	t types of deviators	•••••	38
2.11 Importat	nce of shear keys in serviceabi	lity analysis	38
2.12 Time de	pendent Material Properties.		
2.12.1	Creep of concrete		39
2.12.2	Shrinkage of concrete	·····	40
2.12.3	Creep superposition		41
	vii		

	2.12.4	Aging co-e	fficient		• • • • • • • • • • • •	••••	42
	2.12.5	Age adjust	ed elasticity r	nodules.	•••••	· • • • • .	42
	2.13 State of t	he art analy	sis approach			•••••	43
	2.13.1	Time deper	ndent stress a	nd strain i	n a com	posite	
		section	•••••		••••		46
	2.13.2	Instantaneo	ous stress and	strain at a	age t _o	•••••	47
	2.13.3	Change in a	stress and stra	ain during	the period	od t_o to t	49
	2.14 Effect of	temperatur	e and curing.		• • • • • • • • • • • •	• • • •	51
	2.15 Effects o	of time depe	ndent phenon	nena on la	unched l	oridges	53
3.0	Methodology	of the inv	estigation				
	3.1 Introduction	on.					
	3.1.1	Analysis V	s design.				55
	3.1.2	Design obj	ectives.				55
	3.1.3	Design app	proaches.				55
	3.2 Loading st	ages.	•••••				56
	3.3 Allowable	stresses.	•••••		•••••		57
	3.4 Longitudir	nal design.	ersity of Moratuwa tronic Theses & Di-	ssertations	· · · · · · · · · · · · · · · · · · ·		57
	3.5 Transverse	e design of a	segment				58
	3.6 Advantage	es and disad	vantages of so	egmental	construct	ions	58
	3.7 Transfer le	ength and de	evelopment le	ength	•	•••••	59
	3.8 End zone	reinforceme	nt in pre-tens	ioning me	mbers	• • • • • • • •	60
	3.9 End zone i	in post-tensi	oning membe	ers.			
	3.9.1	Analysis o	f stresses.		••••••	•••••	60
	3.9.2	Anchorage	zone design.		•••••	•••••	60
	3.10 Deflection	on computat	tions.				
	3.10.1	Deflection	types and cha	aracteristi	cs		61
	3.10.2	Serviceabi	lity deflectior	ns.			62
	3.10.3	Short-term	deflections i	n pre-stres	ssed men	nbers.	
		3.10.3.1	Uncracked n	nembers.		• • • • • • • •	62
		3.10.3.2	Cracked mer	nbers.		• • • • • • • •	63
	3.10.4	Long-term	deflections.			•••••	63
	3.11 Sp	an-by-span	method of co	nstruction	l .		
	3.11.1	Different t	echniques ado	opted in th	ne indust	ry. ·	63
	3.11.2	Stages of c	asting.				64

	3.12	Bal	ance cantilever method.		
		3.12.1	Different techniques adoption	pted in the industry	64
		3.12.2	Stages of casting.		65
		3.12.3	Support conditions		65
	3.13	Pro	gressive cantilevering tec	hnique.	
		3.13.1	Different techniques adoption	pted in the industry	65
		3.13.2	Stages of casting.		66
		3.13.3	Idealization.		66
	3.14	Inc	remental launching techn	ique.	
		3.14.1	Casting phases		66
		3.14.2	Launching technique.		68
		3.14.3	Front nose.		69
		3.14.4	Selection of launching no	ose	70
			3.14.4.1 Recovery of e	elastic deflection of the nose.	71
		3.14.5	Assumptions.	••••••	72
		3.14.6	Support conditions.		73
		3.14.7	Removal of tendons at th	e end of launch	74
	3.15	Co	mputer software CPF	Sri Lanka. sertations	
		3.15.1	Introduction ^{ab mrtaclk}		74
		3.15.2	Sign conventions.		76
		3.15.3	Data feeding to the progr	ram CPF	77
		3.15.4	Outputs obtain from the	program	79
4.0	Observ	vations,	data and the results.		
	4.1 Br	idge loa	ding simplification		80
	4.2 De	eference	between the actual and th	e analyzed loading	81
	4.3 Sp	an-by-s	pan method		
		4.3.1	Sequence of construction	18	80
		4.3.2	Bending moment envelo	pe	81
		4.3.3	Deflection along the spar	n	83
		4.3.4	Stress criteria for section	IS	83
		4.3.5	Tendon arrangement.		86
	4.4 Ba	alance ca	antilever method.		
		4.4.1	Sequence of construction	ns	87
		4.4.2	Bending moment envelo	ре	88

4.4.3	Deflection along the span.		88
4.4.4	Stress criteria for sections.		91
4.4.5	Tendon arrangement.	•••••	93
4.5 Progressi	ve cantilevering.		
4.5.1	Sequence of constructions.		94
4.5.2	Bending moment envelope.		95
4.5.3	Deflection along the span.		95
4.5.4	Stress criteria for sections.		97
4.5.5	Tendon arrangement.		100
4.6 Incremen	tal launching		
4.6.1	Sequence of constructions.		97
4.6.2	Bending moment envelope.	•••••	97
4.6.3	Deflection along the span.		104
4.6.4	Stress criteria for sections.		104
4.6.5	Tendon arrangement.		107
5.0 Analysis and 5.1 Time dep 5.2 Time dep 5.3 Summary	endant changes in deflections for endant changes in stresses for d of the results	or different methods.	109 116 120
6.0 Conclusion a	nd recommendations.		
6.1 General		••••••	123
6.2 Conclusio	on	•••••	123
6.3 Recomme	endations.		126
References & Bi	bliography		128
Appendix – A: D	Data File for the Span-By-Span	method	132
Appendix – B: D	ata File for the Balanced Cantil	lever method.	144
Appendix – C: D	ata File for the Progressive Car	ntilever method.	170
Appendix – D: D	Data File for the Incremental lau	nching Method	200
Annexes – A: Ou	tput data from the program		230
Annexes – B: Str	resses, Deflections and Bending	Moments	258

х

List of Tables

Table 2.1:	Economical span ranges for Segmental Constructions		19
Table 2.2:	Design loads and load factors		27
Table 2.3:	Freyssinet Multistrand System		29
Table 2.4:	Typical relaxation of pre-stressing steel at 1000hours		33
Table 2.5:	Friction Coefficient for typical tendons.		36
Table 2.6:	Eccentricity of tendons within ducts.	••••••	37

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk ī

xi

List of Figures

Figure 1.1:	Advantages and disadvantages of continuous constructions 02		
Figure 1.1:	Twenty-one months stop in the construction of the		
	Serio River Bridge	03	
Figure 2.1:	Cable stayed cantilever constructions.	10	
Figure 2.2:	Span-by-span constructions	11	
Figure 2.3:	Balanced cantilever constructions	12	
Figure 2.4:	Progressive cantilever constructions	13	
Figure 2.5:	Incremental launching technique	15	
Figure 2.6:	Placement of a typical segment	16	
Figure 2.7:	Girder depth limits for Incremental launching technique.	21	
Figure 2.8:	Stress Vs Strain curve for concrete.	40	
Figure 2.9:	Creep of concrete under the effect of sustained stress.	40	
Figure 2.10:	Stresses Vs Time for a concrete member subjected to uniaxial		
	stress of magnitude varying with time	41	
Figure 2.11:	Strain distribution of a section	43	
Figure 2.12:	Example of cross section	46	
Figure 2.13:	Definition of symbols, www.segme.com	46	
Figure 2.14:	Temperature development of the segment after moist-curing.	52	
Figure 3.1:	Longitudinal section of the segmental bridge	58	
Figure 3.2:	Cross section of the Box-Girder.	58	
Figure 3.3:	Prestressing anchor block permit anticipation of anchorage stresses.	61	
Figure 3.4:	Pier Table constructions.	65	
Figure 3.5:	Selection of a proper launching nose.	70	
Figure 3.6:	Progression of MB with launch for $\ln/l = 0.65$ and $Enln/El = 0.2$ in		
	relation to the relative weight q _n /q.	71	
Figure 3.7:	Recovery of elastic deflection of the nose.	71	
Figure 3.8:	launching of bridge over the first two piers.	72	
Figure 3.9:	The desktop view of the program CPF.	75	
Figure 3.10:	The desktop view of the Pre-processor.	77	
Figure 4.1:	Span-by-Span method - Sequence of construction.	81	
Figure 4.2:	Span-by-Span method - Bending moment envelope	82	
Figure 4.3:	Span-by-Span method - deflection along the span	84	
Figure 4.4:	Span-by-Span method - Stress criteria for sections	85	
Figure 4.5:	Span-by-Span method - tendon arrangement.	86	

Figure 4.6:	Balanced Cantilever method - Sequence of constructions.	87
Figure 4.7:	Balanced Cantilever method - Bending moment envelope.	89
Figure 4.8:	Balanced Cantilever method - deflection along the span	92
Figure 4.9:	Balanced Cantilever method - Stress criteria for sections	93
Figure 4.10:	Balanced Cantilever method - tendon arrangement.	93
Figure 4.11:	Progressive Cantilever - Sequence of constructions.	96
Figure 4.12:	Progressive Cantilever - Bending moment envelope	97
Figure 4.13:	Progressive Cantilever - Deflection along the span	99
Figure 4.14:	Progressive Cantilever - Stress criteria for sections.	100
Figure 4.15:	Progressive Cantilever – Tendon arrangement.	101
Figure 4.16(I): Incremental Launching - Sequence of constructions	102
Figure 4.16(II): Incremental Launching - Sequence of constructions	103
Figure 4.17:	Incremental Launching - Bending moment envelope	104
Figure 4.18:	Incremental launching - Deflection along the span	105
Figure 4.19:	Incremental Launching - Stress criteria for sections	106
Figure 4.20(i): Incremental Launching -Tendon arrangement	107
Figure 4.20(ii): Incremental Launching -Tendon arrangement	108
Figure 5.1:	Time dependent deflections (Span-by-span method)	109
Figure 5.2:	Span-by-span method – Member arrangement	109
Figure 5.3:	Time dependent deflections (Balanced cantilever method)	111
Figure 5.4:	Balanced cantilever method – Segment arrangement	111
Figure 5.5:	Time dependent deflections (Progressive cantilever method)	113
Figure 5.6:	Progressive Cantilever method – segment arrangement	113
Figure 5.7:	Time dependent deflections (Incremental launching)	114
Figure 5.8:	Incremental Launching technique – Segment arrangement	114
Figure 5.9:	Time dependent changes of stresses (Span by span method)	116
Figure 5.10:	Span-by-span method – Member arrangement	116
Figure 5.11:	Time dependent changes of stresses (Balanced cantilever method).	117
Figure 5.12:	Balanced cantilever method – Member arrangement.	117
Figure 5.13:	Time dependent changes of stresses (Progressive cantilever method).	118
Figure 5.14:	Progressive cantilever method – Member arrangement	119
Figure 5.15:	Time dependent changes of stresses (Incremental Launching method)).119
Figure 5.16:	Incremental Launching technique – Member arrangement	120
Figure 5.17:	Time dependent changes of deflection.	120

Notations.

Theses & Dissertations

B - Buoyancy.

BM - Bending moment

CF - Centrifugal force.

D - Dead load.

E - Earth pressure.

EI - Flexural stiffness of the beam.

 E_nI_n -Flexural stiffness of the nose.

EQ - Earthquake.

G - Modulus of rigidity.

H - Hours.

I - Live load impact.

ICE - lice pressure.

K- Wobble friction coefficient.

L - Live load.

LF - Longitudinal force from live load.

M_o - Moment due to dead load on the structure...wa Sri Lanka

Ms - Moment due to live load and dead load on the structure.

N - Number of cycles.

R - Rib shortening.

S - Shrinkage.

SF - Stream flow pressure.

T - Temperature.

W - Wind load on structure.

WL - Wind load on live load.

X,Y,Z - Global orthogonal coordinate system.

At - Pre-steaming period.

B_t - Temperature rise period.

C₁ - Constant temperature period.

D_t - Cooling period.

C^o- Celsius.

F^o- Furan height

E_c- Modulus of elasticity.

 M_B - Bending moment at support B.

S_o - A range of stresses.

- e Exponential of a value.
- f Real number
- l- Effective span between piers.
- h- Box-girder Height
- q Unit weight of the beam.
- r Corresponding slope of the stress diagram.
- t- Time.
- x,y,z- Local orthogonal coordinate system.
- d_p. Depth to the centroid of the prestressing steel.
- I_n Length of the launching nose.
- q_n Unit weight of the nose.
- $(L+I)_n$ Live load plus impact load.
- A_{ps}. Cross section area of tendon
- β Coefficient, see table 3.22.1.A (Ref: 1)
- γ Load factor, see Table 3.22.1.A (Ref: 1)
- v Poison's Ratio.
- χ Aging coefficient.
- ψ Corresponding curvature of the stress diagram.

www.lib.mrt.ac.lk

- σ Stress
- f_{pi}- Initial stress in steel.
- f_{p} Characteristic strength of steel.
- f_{pu}- Ultimate strength of steel.
- f'_c- Characteristic strength of concrete.
- f_{cu}- Ultimate strength of concrete.
- μ- Curvature friction coefficient.
- $\sigma_c(t_0)$ Concrete stress at age to
- $d\sigma_c(\tau)$ An elemental stress applied at age τ .
- $E_c(t_0)$ Modulus of elasticity of concrete at age to.
- $E_c(\tau)$ Modules of elasticity of concrete at age τ .
- $E_c(t,t_0)$ Age adjusted elasticity modulus.
- $\varepsilon_c(t_0)$ Strain occur in age to.

 ε_{so} - Total shrinkage of concrete up to time infinity.

to, t- Ages of concrete when the initial stresses applied and when the strain considered.

 $\varepsilon_{cs}(t,t_0)$ – Strain develops due to free shrinkage between two ages of concrete to and t.

 $\Delta \sigma_c(t)$ -stress increment introduced at the age t_o and sustained to age t.

 $\phi(t, t_0)$ – Ratio of creep to the instantaneous strain.

 β_s - A dimension less time function.

 $\phi(t,\tau)~$ – Coefficient of creep at time for loading at age $\tau.$

 $\phi(t,to)$ - Creep coefficient.

University of Moratuwa, Sri Lanka, Electronic Theses & Dissertations www.lib.mrt.ac.lk