LB/DON/76/07

ENHANCEMENT OF THE SORTPION PROPERTIES OF FOAM RUBBER BY

INCORPORATING A SUITABLE ADSORBENT

By

T. O. Kumanayaka

THIS THESIS WAS SUBMITTED TO THE DEPARTEMNT OF CHEMICAL AND PROCESS ENGINEERING OF THE UNIVERSITY OF MORATUWA IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE

66 (043)

DEPARTMENT OF CHEMICAL AND PROCESS ENGINEERING UNIVERSITY OF MORATUWA MORATUWA SRI LANKA

University of Moratuwa

87851

8785 |

FEBRUARY 2007

87851

DECLARATION

I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any university and to the best of my knowledge and belief if does not contain any material previously published ,written or orally communicated by another person except ,where due reference is made in the text.

UOM Verified Signature

T.O kumanayaka 04/8216

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

.

Certified by UOM Verified Signature (Dr.Shantha Walpolage) Supervisor

ACKNOWLEDGMENT

From the beginning I would like to offer my grateful thanks to Dr.Shantha Walpolage, Senior lecture, Department of chemical and Process Engineering, University of Moratuwa, for his kind and patience, supervision and excellent guidance during the entire course of this project.

My grateful thank also goes to Prof. Ajith de Alwis Head of the Chemical & Process Engineering Department, Dr Jagath Premachandra, Senior Lecturer and all other lectures of the Department of Chemical & Process Engineering, University of Moratuwa, who helped and encouraged me in various ways to complete this project successfully.

Then I'm very much thankful to the Wonderlight Consumer Products (Pvt.) Ltd. and Beco link (Pvt.) Ltd. for supplying raw materials for the project.

I wish to thank Mr.M.A Hemachandra, Miss. A.S.Wahalathanthri and Mr. M.G.S.K.De Silva and special thank goes to Mr.Janaka Madushanka for their support given me in various occasions during the project period.

I warmly remind my beloved parents and my husband Chamila Amaradiwakara for all the encouragement and the support given me as usual to success this project.

Finally I would like to thank my friends, especially Sashmial Dissanayaka, Poornima Jayasingha, Gayan Bandara & Chinthaka Narangoda who were with me and gave their kind co-operation through out this project.

CONTENTS

Acknowledgement	i
List of Tables	vi
List of figures	viii
Abbreviations	ix
Abstract	x

CHAPTER 1: INTRODUCTION

1.1 Natural rubber latex foam	01
1.2 Uses of Latex foam	01
1.3 Filler incorporation to latex foam	02
1.4 Objectives of the research	03

CHAPTER 2 : LITRATURE REVIEW

CHAPTER 2 : LITRATURE REVIEW	
2.1 Polymer Latex Sectoric Theses & Dissertations	04
2.2 Natural Rubber latex	04
2.2.1 Composition of field latex	04
2.2.2 Preservation of natural rubber latex	05
2.2.3 Concentration of natural rubber latex	06
2.3 Manufacture of natural rubber (NR latex foam)	07
2.3.1 Manufacturing process of foam rubber	08
2.4 Foam Economies	20
2.5 Theoretical aspects of adsorption	21
2.5.1 Factors affecting adsorption	21
2.5.2 Adsorbents	22
2.6 Activated Carbon	22
2.6.1 Manufacture of activated carbon	23
2.6.2 Pore structure of activated carbon	25
2.6.3 Activated carbon structure and surface chemistry	26

2.6.4 Application of activated carbon	28
2.7 Zeolite	
2.7.1 Origin of zeolite	29
2.7.2 Structure of zeolite	29
2.7.3 Pore structure of zeolite	32
2.7.4 Applications of zeolite	33
2.8 Incorporation of adsorbent into natural rubber latex foam	34
2.9 Applications of modified NR foam	35
2.9.1 Applications in indoor air pollution	35
2.9.2 Steps to improve the indoor air quality	37
2.9.3 Modified NR foam applications in odour removing	37
2.9.4 Physical adsorption	38

CHAPTER 3: METHODOLOGY

3.1 Experimental design	39
3.2 Testing of adsorbents	40
3.2.1 Determination of pH ^{w lib mrt ac lk}	40
3.2.2. Determination of Avg. particle size	40
3.2.3 Determination of moisture content	40
3.3 Methods of dispersion preparation	41
3.3.1 Determination of the best preparation method	41
3.4 Preparation of adsorbent dispersion with maximum TSC. &	
Investigate the Dispersion properties	42
3.4.1 Preparation of dispersion with varying TSC %	42
3.4.2 Determination of dispersion properties	43
3.5 Determination of the best dispersions for making a stable latex compound	45
3.5.1 Preparation of latex compound	45
3.5.2 Determination of the properties of the basic latex compound	47
3.5.3 Selection of the best adsorbent dispersion for making a	
Stable latex compound	49

3.6 Determination of the effect of dosage of adsorbent for stable NR foam	50
3.6.1 Stability of the latex compound at partially foam stage	51
3.6.2 Chemical stability towards gelling agents	51
3.6.3 Structure analysis of foam with different dosage of adsorbent	51
3.7 Determination of physical properties	52
3.7.1 Tensile strength	52
3.7.2 Indentation hardness	53
3.7.3 Density and shrinkage percentage	53
3.7.4 Flame retardant property	53
3.8 Determination of sorption capacity of modified NR foam with adsorbents	54
3.8.1 Determination ammonia gas sorption capacity	54
3.8.2 Determination of CO2 sorption capacity	55
3.8.3 Determination of Acetone sorption capacity	55

CHAPTER 4: RESULTS AND DISCUSSION

4.1 Properties of selected adsorbents	56
4.2 Preparation of adsorbent dispersions	57
4.2.1 Selection of the best preparation for zeolite powder	57
4.2.2 Selection of the best preparation for activated powder	57
4.3 Preparations of adsorbent dispersions with maximum T.S.C	61
4.3.1 Properties of dispersions with varying T.S.C. %	61
4.4 Incorporation of adsorbent dispersions to NR latex compound	65
4.4.1 Properties of basic latex compound	65
4.4.2 Effect of adsorbent dispersions for the stability of latex compound	65
4.5 Effect of dosage of adsorbent for preparing stable foam of NR latex	69
4.5.1Detemination of stability of latex foam varying zeolite dosage at	
Partial foamed stage	69
4.5.2 Chemical stability of latex compound with varying zeolite dosage	72
4.5.3 Structure analysis of foam with varying zeolite dosage	75
4.6 Physical properties of foam samples produced bb batch scale process	81

4.7 Measurement of sorption property of modified latex foam	91
4.7.1 Ammonia gas sorption of foam with adsorbents	86
4.7.2 Carbon dioxide sorption of foam with adsorbents	96
4.7.3 Acetone sorption of foam with adsorbents	99

CHAPTER 5: CONCLUSIOS AND RECCOMENDATIONS

5.1 Conclusions	102
5.2 Suggestions for further studies	103

REFERENCES

104

•

٠

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF TABLES

Table 2.1 A typical composition of field latex	05
Table 2.2 Composition of Centrifuged latex concentrates	07
Table 2.3 Effect of filler on some foam properties	20
Table 2.4 Chemical analysis of major elements in zeolite	29
Table 3.1 Formula for zeolte dispersions	42
Table 3.2 Formula for activated carbon dispersions	43
Table 3.3 Formula for latex compound with varying zeolite dosage	50
Table 3.4 Formula for latex compound with varying activated carbon dosage	50
Table 4.1 Properties of selected adsorbents	56
Table 4.2 Properties of Zeolite dispersions	57
Table 4.3 Properties of Activated carbons dispersions	58
Table 4.4 Properties of zeolite dispersions series	61
Table 4.5 Properties of activated carbon dispersions series	61
Table 4.6 Properties of compounded latex and Dissetutions	65
Table 4.7 Results of coagulum formation test with 1% adsorbent dosage	65
Table 4.8 Results M.S.T of latex compounds with 1% adsorbent dosage	65
Table 4.9 Variation of chemical stability in latex\x compound with 1% adsorbent	: 65
Table 4.10 Normalized foaming heights of latex compound at partially	
foamed stage for different dosages of zeolite	69
Table 4.11 Normalized foaming heights of latex compounds at partially	
foamed stage for different dosages of activated carbon	70
Table 4.12 Gel times of latex compounds series of zeolite	72
Table 4.13 Gel times of latex compounds series of AC	73
Table 4.14 Structure analysis of foam with zeolite adsorbent	75
Table 4.15 Structure analysis of foam with AC adsorbent	79
Table 4.16 Tensile strength of foam samples	82
Table 4.17 Indentation hardness of foam samples	84
Table 4.18 Density and shrinkage % of foam samples	86
Table 4.19 Flame retardant property of foam samples	89

Table 4.20 Ammonia gas sorption % of foam modified with zeolite	91
Table 4.21 Ammonia gas sorption % of foam with 8% dosage of zeolite	92
Table 4.22 Ammonia sorption capacity of foam with 85 dosage of zeolite	93
Table 4.23 Ammonia sorption capacity of foam modified with AC	94
Table 4.24 Minimum CO ₂ sorption % of foam with zeolite	96
Table 4.25 Minimum CO ₂ sorption % of foam with AC	97
Table 4.26 Acetone sorption % of foam with zeolite	99
Table 4.27 Acetone sorption % of foam with AC	100

1

٠

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

٠

LIST OF FIGURES

Figure 2.1 Structure of Isoprene	04
Figure 2.2 Schematic diagram of graphite lattice with a turbostratic structure	23
Figure 2.3 Structure of carbonized and activated carbon	24
Figure 2.4 Microscopic pore structure of activated carbon	25
Figure 2.5 Functional groups on activated carbon surface	27
Figure 2.6 Basic zeolite structure	30
Figure 2.7 Crystallographic structure of zeolite	31
Figure 2.8 Pore structure of zeolite	32
Figure 3.1 Ball milled machine	41
Figure 3.2 Mechanical stability tester	48
Figure 3.5 Experimental design for ammonia sorption	54
Figure 4.1 pH variations of dispersions	62
Figure 4.2 Particle size analysis of dispersions	63
Figure 4.3 Coagulum content of latex compound with different adsorbents	66
Figure 4.4 M.S.T of latex compound with different adsorbents	67
Figure 4.5 Gel time of latex compound with different adsorbents	68
Figure 4.6 Normalized foaming heights of latex compound with zeolite	70
Figure 4.7 Normalized foaming heights of latex compound with AC	71
Figure 4.8 Gel time of latex compound with zeolite	73
Figure 4.9 Gel time of latex compound with AC	74
Figure 4.10 Foam samples with zeolite	78
Figure 4.11 Foam samples with zeolite	80
Figure 4.12 Tensile strength of foam samples	83
Figure 4.13 Indentation hardness of foam samples	85
Figure 4.14 Density of foam samples	87
Figure4.15 Shrinkage % of foam sample	88
Figure 4.16 Flammability of foam samples	90
Figure 4.17 Ammonia sorption of foam with zeolite	92
Figure 4.18 Saturation & re sorption of foams with zeolite	93
Figure 4.19 Ammonia sorption % of foams with AC	94

Figure 4.20 CO_2 sorption % of foam with zeolite	97
Figure 4.21 CO ₂ sorption % of foam with AC	98
Figure 4.22 Acetone sorption of foam with zeolite	100
Figure 4.23 Acetone sorption of foam with AC	101

ABBREVIATIONS

.

TSC	Total solid content
MST	Mechanical stability time
AC	Activated carbon

•

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk ÷