
 

 

 

Coding Standard Violation Detection by 

Pattern Analysis 

 

 

 

B.V Tishantha Dilruk 

158756G 

Supervised by Mr. Chaman Wijesiriwardana 

 

 

 

 

 

 

 

Master of Science in Information Technology 

University of Moratuwa, Sri Lanka 

February 2019



 

i 

 

Declaration 

 

I hereby declare that this is my own work and has not been submitted in any form for another 

degree or diploma at any university or any other institution of tertiary education. Information 

derived from the published or unpublished work of others has been acknowledged duly in the 

text and a list of references is given as per the standard. 

 

 

Name of Student      Signature of Student 

 

B.V. Tishantha Dilruk      ……………………… 

 

        Date: ……………….. 

 

Supervised by 

 

Name of Supervisor      Signature of Supervisor 

 

Mr. Chaman Wijesiriwardana     ………………………. 

 

        Date: ………………...  

 

 

 

 

 



ii 

 

Acknowledgment 

Firstly, I want to thank my supervisor Mr. Chaman Wijesiriwardana Senior Lecturer, Faculty 

of Information Technology, the University of Moratuwa for all the shared wisdom and 

guidance during the process of making this thesis. Secondly, I would be grateful to Prof. 

Asoka Karunananda who has continuously guided me for conducting comprehensive research 

work.  

Thirdly I would like to thank all my batch mates specially Nadun and Lahiru who gave me 

some helpful technical support and also to Dananjaya, Asanga, Kalindu, Kaushalya, and 

Dilan for their support to the evaluation of this project. 

I, of course, owe a special thank you to my family and my girlfriend Hemalie and her family 

for the support and trust always kept on me throughout the task. Without you, it is impossible 

to complete this research. 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

Abstract 

Today we live in the era of Information Technology. The success of any other industry is 

linked with the way how they use Information Technology to handle their operations. In 

order to fulfill that requirement, presently there are various kinds of software have been 

developed. Developing software is not that much of an easy task since it has a development 

lifecycle to build successful software. However, there are some critical issues that we can 

identify when developing a software project. Software complexity, maintainability, and 

enhancement are the major issues which we can highlight in our literature review section. 

Poor cording standard drive makes the most of the software projects complex and extremely 

difficult to enhance and maintain.  

In this thesis we have proposed the coding standard violation detection mechanism by pattern 

analyzing. With this approach, a standard coding guideline is kept through an online 

reference using pattern analyzes mechanism. This tool helps the developer to do the 

developments through a standard guideline. It will also prevent violations done by the 

programmer. In this tool, it would provide a facility to add a coding standard through the 

online reference. Then the proposed tool will take it as the model to follow the standard. 

Whenever the developer violates the standard the error will be shown. 

 

 

 

 

 

 

 

 

 

 

 

 



iv 

 

Table of Content  

1. Introduction ........................................................................................................................ 1 

1.1 Prolegomena ................................................................................................................ 1 

1.2 Background and Motivation ........................................................................................ 1 

1.3 Problem in Brief .......................................................................................................... 2 

1.4 Aim and Objectives ..................................................................................................... 2 

1.5 Proposed Solution ....................................................................................................... 3 

1.6 Summary ..................................................................................................................... 3 

2 Developments and Challenges in Software Development  Lifecycle ................................ 4 

2.1 Introduction ................................................................................................................. 4 

2.2 History of cording standard violation and their effects ............................................... 4 

2.3 Usage of Pattern analysis ............................................................................................ 5 

2.4 Encoding and Decoding in String matching ............................................................... 6 

2.5 Usage of encoding and decoding ................................................................................ 6 

2.6 Exiting Tools ............................................................................................................... 7 

2.7 Challenges and Gaps Identified by the Literature Review .......................................... 8 

2.8 Problem Definition ...................................................................................................... 8 

2.9 Summary ..................................................................................................................... 9 

3 Coding Standard Violation Detection by Pattern Analysis .............................................. 11 

3.1 Introduction ............................................................................................................... 11 

3.2 Hypothesis ................................................................................................................. 11 

3.3 Input .......................................................................................................................... 11 

3.4 Output ........................................................................................................................ 11 

3.5 Process ....................................................................................................................... 12 

3.6 Features ..................................................................................................................... 14 

3.7 Summary ................................................................................................................... 14 

4 Design ............................................................................................................................... 15 

4.1 Introduction ............................................................................................................... 15 

4.2 High-Level Architecture of the proposed solution .................................................... 15 

4.3 Database Design ........................................................................................................ 16 

4.4 Backend programming .............................................................................................. 16 

4.5 Summary ................................................................................................................... 17 

5 Implementation ................................................................................................................. 18 



v 

 

5.1 Introduction ............................................................................................................... 18 

5.2 Tools and Technologies used to Implement the proposed solution .......................... 18 

5.3 Fetching the standard guideline from online reference ............................................. 18 

5.4 Database implementation .......................................................................................... 20 

5.5 Capture the developer code ....................................................................................... 21 

5.6 Identify the violations using Pattern Analysis Mechanism ....................................... 22 

5.7 Summary ................................................................................................................... 22 

6 Evaluation ......................................................................................................................... 23 

6.1 Introduction ............................................................................................................... 23 

6.2 Purpose of evaluation ................................................................................................ 23 

6.3 Evaluation method..................................................................................................... 23 

6.4 Data collection........................................................................................................... 24 

6.5 Evaluation of results .................................................................................................. 25 

6.6 Summary ................................................................................................................... 25 

7 Conclusion ........................................................................................................................ 26 

7.1 Introduction ............................................................................................................... 26 

7.2 Overall Conclusion .................................................................................................... 26 

7.3 Objective Wise Conclusion ....................................................................................... 27 

7.4 Limitation .................................................................................................................. 27 

7.5 Further Works ........................................................................................................... 27 

8 References ....................................................................................................................... 28 

9 Appendix-A ...................................................................................................................... 31 

10 Appendix-B ...................................................................................................................... 32 

11 Appendix-C ...................................................................................................................... 34 

12 Appendix-D ...................................................................................................................... 35 

13 Appendix-E ....................................................................................................................... 38 

 

 

 

 

 



vi 

 

List of Figures 

Figure 1- Leading reasons for software project failure according to developers worldwide, as 

of 2015 ....................................................................................................................................... 2 

Figure 2-Software Development Life Cycle .............................................................................. 4 

Figure 3 – Proposed Pattern Analysis method ......................................................................... 13 

Figure 4-High-Level Architecture ........................................................................................... 15 

Figure 5 - Interface to fetching the guideline from an online reference .................................. 19 

Figure 6- Generated patterns for the online guideline ............................................................. 20 

Figure 7 - Set of database tables .............................................................................................. 21 

Figure 8 – Interface to capture developer codes ...................................................................... 21 

Figure 9 - Possiblescenarios to identify coding standard violations. ....................................... 23 

 

  



vii 

 

List of Tables 

Table 1 – Exiting tools and gaps ................................................................................................ 8 

Table 2- Database Table and Purpose ...................................................................................... 16 

Table 3 - Sample code segment generated by the proposed tool ............................................. 21 

Table 4 -Sample Pattern occurrence in both guideline and the developer code ...................... 22 

Table 5 - Summary of Evaluation Forms ................................................................................. 24 

Table 6 - Result of Evaluation Form........................................................................................ 25 

 

 

 

 

 

 

 

 

 

 

 



 

1 

 

Chapter 1 

1. Introduction 

1.1 Prolegomena 

This chapter we will present an introduction about this thesis by detailing the project 

background and motivation which lead to start this research. Also, this chapter presents a 

brief description about the proposed solution as well as identifying the aims and objectives. 

1.2 Background and Motivation 

Nowadays information system software becomes a key factor to success in any other field in 

the business industry. However, developing software is a large process and that has a 

standard called software development life cycle (SDLC). When comes to SDLC, Software 

development methodologies should be addressed [1]. There are several software development 

methodologies are available. But a few of them are considered as major software 

development methodologies. SDLC for particular software is beginning with those 

methodologies. Selecting a suitable methodology will be depending on the software project. 

Even the correct methodology is chosen, unstructured development will increase complexity 

of the project and also increases the time duration to complete the project.[2] 

According to the statistics as of 2015, [Figure 1] it can be identified few major reasons for a  

project failure.[3] Poor documentation or requirement changes, lack of resources, 

organization or management problems, insufficient time allocation for testing, developers 

change, delivery time, time constraint and pre-mature software release and Immature 

development tools and application platforms are the main reasons that can be highlighted. As 

we can see in the Figure 1, there are 48% of software project failures cased due to 

requirements changes and poor documentation. Therefore, it is very important to study about 

the requirements changes and documentation in a software project. Since the software 

requirement specification (SRS) is a complete description about the project and functions, 

some projects have become unsuccessful by failing to address the user requirements. In many 

cases, at the first release the system works properly, but failed to apply an enhancement or a 

modification. 

 



2 

 

 

Figure 1- Leading reasons for software project failure according to developers worldwide, as 

of 2015 

To conclude, as we live in the era of Information Technology, there are so many things to 

consider when developing a software project. After developing most of the software, it is 

required to maintain continuesly. Especially Enterprise Resource Planning (ERP) and 

financial applications need to be maintained properly and there can be critical enhancements 

depending on the industry type and business requirements. 

1.3 Problem in Brief 

Requirements changing and modification requests are frequent requests in a large software 

solution. When developing a software solution, developers can follow their own standard to 

build the codes. Even the solution is working properly, there can be arose many bugs and 

difficulties in future developments.  

1.4 Aim and Objectives 

The aim of this research is to implement and maintain a software project according to a set of 

coding standard captured from the online guideline. In order to achieve that goal, we propose 

a coding standard violation detection tool using pattern analysis technique to embed with 

development IDE. Apart from that, the following objectives can be highlighted. 



3 

 

1. Study previous works and identifying gaps 

2. Develop a hypothesis 

3. Design a tool to detect coding standard violations 

4. Implement a tool 

5. Evaluate a tool 

1.5 Proposed Solution 

We proposed a tool to do the software cording through an online guideline, which will 

prevent the violations of coding standard. This solution will be developed by pattern analysis 

mechanism which is used in many comparison applications. 

1.6 Summary 

In this chapter, we describe the over role idea about the document. Next chapter will percent 

the challenges in software development life cycle and a brief discussion about the 

background of software development methodologies with the important of coding standard. 

Also, it will present a detail study about previous researches and exiting tools. 

 

  



4 

 

Chapter 2   

2 Developments and Challenges in Software Development  

Lifecycle 

2.1 Introduction 

This section summarizes previous journals related to our research problem and identifies 

research space we try to address. Firstly, we discuss the evaluation of the coding standard and 

the importance of the cording standard in future development. Secondly, we review existing 

problems in cording standard violation in the software industry and discussing their common 

effects. Thirdly, we review existing empirical research on defects discovered in cording 

standard violation and find contradicting evidence related to our research problem.  

2.2 History of cording standard violation and their effects 

Research in software development back dated to mid-1960s[4]. The software development 

frame works offer facilities to build a software solution by going through the software 

development life cycle (SDLC) [5]. The process in the SDLC varies across industries and 

organizations. But standard such as ISO/IEC/IEEE 12207:2017[6] represent processes and 

provide a mode for the development, acquisition, and configuration of software systems [7]. 

Implementation and Maintaining are very important parts of SDLC which include the 

development of the software, modification of existing system and enhancement of the 

software.  

 

Figure 2-Software Development Life Cycle 

  



5 

 

When considering a large industrial software like Enterprise Resource Planning (ERP) and 

financial applications, system modifications and changes are a common thing due to the 

Industry and business domain[8]. However, according to the statistics when developing those 

modifications, it will cause for the most of the software failures[3]. And as the major reason 

for this issue is software complexity, due to coding standard violation can be identified. There 

are some studies available which addresses similar problem as discussed in our research. 

Cathal Boogerd and Leon Moonen have done a research on Evaluating the Relation between 

Coding Standard Violations and Faults Within and Across Software Versions.[9] According 

to that research, they have described three research questions regarding the point of view. The 

first question is “Do the releases with a higher violation density more fault-prone?” They 

have addressed this question using Cross-release analysis. However, they couldn’t find any 

relation between version releases with higher violation density apart from some individual 

rules. Next question is “Do the files or modules with a higher violation density more fault-

prone?” To answer this question, they have used In-release analysis and by this analysis, they 

found a relation between violation density and number of defects of a software project. The 

last question is “Do the lines with violations more likely to point to faults than lines 

without?” The line-based analysis is used to investigate this problem. The result found was 

that adherence to a complete coding standard without customization may increase the 

probability of faults. 

Moreover, in order to prevent coding standard violations and to keep the quality of code, pair 

programming method is used.[10] In this method two developers cross-checked their codes in 

order to find defects. However,this method also has some drawbacks. Since this is a manual 

test, there is a much probability to make mistakes. 

2.3 Usage of Pattern analysis 

Usually, the pattern analysis is used to detect patterns automatically from the same data 

source and make predictions of upcoming patterns from the same data source.[11] These data 

can be taken by many forms such as text, image, transaction history records, genome 

sequence, and family tree. By the way, there are some applications like anti-virus software 

and instruction detection systems which used to improve the data security over the internet 

using string matching techniques.[12] Apart from those applications analysis of protein 

expression, analysis of chemical formulas,[13] gene identifications, sequence analysis and 

evolutionary biological studies are commonly used for string matching techniques. Other than 

that, many other scientific subjects like Artificial Intelligence, Image Processing,[14] 

Computational Linguistics, Sound systems used string matching algorithm to implement their 

logic and tools. 

In the year 2010, S. Harris, A. Averbuch, and N. Rabin found a fast compact prefix encoding 

for pattern matching in limited resources devices.[15] There they had an address to search 

and decompress textual data in a machine or device that has limited memory. They have used 

a binary representation of an integer as the prefix to encode the text. 



6 

 

 

Ofir Pele and Michael Werman presented a method for robust real-time pattern matching.[16] 

They introduced a group (collection) of image distance measures, the Image Hamming 

Distance set. There are four main components robust to occlusion, small geometrical 

transforms, light changes, and non-rigid deformations. Then they have presented a novel 

Bayesian framework for sequential hypothesis testing on finite populations. Based on that 

framework, they have designed a sampling algorithm to optimal rejection or acceptance. 

Using this algorithm, they can quickly determine whether two images have similarities with 

respect to a number of the image Hamming distance set. They have also presented a fast 

framework that can design a near optimal sampling algorithm. The test results of their 

experiment showed excellent performance.  

2.4 Encoding and Decoding in String matching 

The purpose of encoding is to convert some information from one format to another format or 

code.[17] The encoder can be a device, circuit, transducer, software program, algorithm or a 

person. Encoding is used to standardization, secrecy, speed up, security, or saving space by 

shrinking the size. The encoder encrypts information using a combination of logic and the 

decoder is used to retrieve back the original information from encoded data by using the same 

logic. 

2.5 Usage of encoding and decoding 

Encoding has a different meaning from coding. Cording is the set of instruction that tells the 

computer what to do. This means that entire computer programming systems are based on 

cording since computers have no freewill without explicit instruction.[18] All of these 

applications we do with computers like playing games, sending emails, search for something 

on Google, write a word document, take a selfie by a smart phone which is also a mini 

computer, talk with our family member on Skype, watch a movie on VLC player or buy 

something from eBay, are software written in cords.  

The terms “encoding” and “decoding” are rapidly used in reference to the processes of 

analogue to digital conversions like in radio conversations and digital to analogue conversion 

like in television conversations.[19] In addition, these terms can also apply to any form of 

data, including text, images, audio, video, multimedia, computer programs, signals in sensors, 

telemetry, and control systems. 

Encoding is rapidly used in computers since it is a process of putting a sequence of characters 

like letters, numbers, punctuation and certain symbols into a specialized format for efficient 

transmission or storage.[20] Decoding is used in computers to convert an encoded format 

back into the original sequence of characters. Both Encoding and Decoding are used in 

industries like data communications, networking, and storage. These terms are exceptionally 

using full in wireless communication systems. 



7 

 

Since numerous encoding and decoding are exist, there are few specialized coding systems 

which are used only by specialized groups of people such as Amateur radio operators, for 

example. The oldest code of all, originally used in the landline telegraph systems In 21st 

century.[21] Also in digital electronic projects, these encoding and decoding systems play an 

important role. Generally, these encoding systems are frequently used in the 

telecommunication, networking and transfer data from one end to the other end. In the same 

way encoding and decoding also used in the digital domain for easy transmission of data, 

placed with the codes and then transmitted.  

2.6 Exiting Tools 

Reshaper is one of the best tools developed by JetBrains team which helps developers to 

manage their coding standard.[22] It allows the developers to configure them manually or by 

default Reshaper which has been widely accepted in conventions and best practices. With this 

tool, violations of the code, style is detected with code inspections and it can be fixed with 

quick-fixes or code cleanup. However, the Reshaper needs to be configured manually for 

each developer. It doesn’t contain a global configuration mechanism.  

CodeRush is another tool present by DevExpress team.[23] Apart from Reshaper, CodeRush 

can be considered as the main alternative to the Reshaper. There is no significant difference 

to be identified between these tools. The developer can experience the enhanced refactoring 

and productivity plugin which will extend the inbuilt functionality of Microsoft Visual Studio 

by using CodeRush. However, we couldn’t find any feature to maintain a common set of 

coding standard guideline by using this tool too.   

The Telerik team developed a tool that can be integrated with Visual Studio 2005, 2008, 2010 

and 2012 as an add-on.[24] It provides on-the-fly code analysis and error checking, 

refactoring codes and smart code navigation which can boost the Microsoft .NET framework 

based development productivity. Mainly, JustCode has a cross-language engine. Therefore, it 

can be used to develop C#.NET, VB.NET, ASP.NET, XAML, Razor, HTML, Java Script and 

CSS. However, it doesn't provide any coding standard violation detection mechanism. 

There are some other features provide by Microsoft Visual Studio[25] as inbuilt features 

including enhanced support for multi-targeting, parallel programming and debugging, call 

hierarchy of methods, XSLT profiling and debugging, quick search, XSD designer and UML 

Designer. However, it only provides features to fast development and it doesn't provide any 

coding standard violation detection mechanism. 

The Whole Tomato Software team present Visual Assist[26] as a plug-in for Microsoft 

Visual Studio. Main features of this plug-in are IntelliSense and syntax highlighting and it 

also enhances the code suggestion. Apart from the above features, it will provide refactoring 

commands and support for comments including spell checking suggestions. The Visual Assist 

will be able to detect basic syntax mistakes like the use of undeclared variables, code after 

return and data type mismatch. From the year 2017, Visual Assist also implemented for 

supporting Visual C++ 6.0 through the most of Visual Studio versions, including Visual 



8 

 

Studio Community edition version 2017 and Visual Studio version 2017. However, Visual 

Studio Express edition has some problems in third-party extensibility and it uses a separate 

extensibility model and therefore Visual Assist cannot be installed for the Studio Express 

editions. 

VSCommands[27] is a tiny tool developed by a group of software developers. They believe 

coding should be easy with correct tools. The first release of VSCommands was in 2010 and 

VSCommands has been downloaded more than 2,000,000 times. Also the VSCommands tool 

has been used by thousands of developers in the world and it can increase developer 

productivity. VSCommands has two versions namely VSCommandslite (free version) and 

VSCommands pro (paid version).  

In addition, there are several tools proposed in the literature in the direction of software 

security violation detection[28] and code clone detection[29]. However, these tools focus on 

software quality in general.  

2.7 Challenges and Gaps Identified by the Literature Review 

For the method used to maintain coding standard of the above exciting tools we have 

identified in our literature reviewis limited to specific programming language. Mainly all the 

above tools are focusing on identifying the syntax errors and logical errors and speed up the 

codings by providing interactions and code refactoring facility. Therefore, the coding 

standard violation detection is not properly addressed by those tools. Table-1 shows a 

summary of the gaps we have identified. 

Exiting tool Gaps in detect coding standard violation 

Reshaper Can configure to detect coding standard violation rules, however, 

there is no feature to manage standard using a common reference 

CodeRush Same as the Reshaper, only individual configurations are allowed 

Telerik Add-on Does not support to manage coding standard violations 

VS Inbuilt functions  Does not support to manage coding standard violations 

Visual Assist Does not support to manage coding standard violations 

VSCommands Does not support to manage coding standard violations 

Table 1 – Exiting tools and gaps 

2.8 Problem Definition 

As we mentioned in the previous highlights of journals related to coding standard violations, 

we can clearly identify the un-standard coding styles without best practices that can lead to 

the project failures. We have identified a few exiting tools which can help developers to do 



9 

 

the implementation through a pre-defined standard. However, we could not find a common 

coding standard guideline from any of these tools except individual configuration. 

2.9 Summary 

This chapter discussed the evaluation of the coding standard violation and their effects with 

past, current and future challenges of software development domain. We also identified our 

research problem as the difficulty of software maintaining and enhancement due to 

unstructured coding patterns of individual developers. In addition, we identified developing a 

coding standard violation detection tool which will address the issue. Next chapter will 

describe our approach to solve the problem.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



10 

 

 

  



11 

 

Chapter 3 

3 Coding Standard Violation Detection by Pattern 

Analysis 

3.1 Introduction 

In the previous chapter we discussed a literature review of coding standard violation 

detection. This chapter we presents our approach to addressing the problem of cording 

standard violation in software development. For this purpose, we describe our hypothesis 

input-output process users and features in our approach.   

3.2 Hypothesis 

Our hypothesis is that the software failures in enhancement and future development, coding 

standard violations should be reduced by using pattern analysis mechanism. This hypothesis 

was inspired by looking at the importance of structuring and ordering in living and non-living 

things in the world. 

When we consider about two cities in two different countries where one is from 3rd world 

country and other one from developed country, we can inspire very important facts about 

ordering and structuring things. That is similar to software development too. Without a 

proper standard, it is very difficult to handle the software development life cycle even though 

the software is working properly at the moment. The request for a change will be the 

beginning of the end of that software’s life cycle, if it doesn’t have a proper standard. 

3.3 Input 

As the input for the proposed tool required a coding standard guideline through the online 

reference and the source code to analyze. The online reference will be a web URL which 

contains a code segment with the standard guideline. Appendix-A shows the sample code 

segment. 

3.4 Output 

The Result of the pattern analyzing between standard guideline and the developer's codes will 

be the output. The output will be display on the screen. If any coding standard violation was 

detected, then the output contains a description of the violation and suggestions. 

 

 



12 

 

3.5 Process 

When the inputs are submitted, this tool will capture the standard coding samples from the 

online reference. That will be stored in a database. Then it will generate encoded character 

stream which includes the behavior of the coding, captured from the guideline. Figure-3 will 

show the diagram of the entire process. Appendix-A shows a sample of the online source and 

its encoded character stream. Then the developer’s source code also converted to a character 

stream using the same encoding method.  

In order to generate the encoded character stream for program code, we need to abstract all 

the properties and behaviors from the guideline program. Therefore, we have decided a list of 

common attributes and behaviours for a specific program. Appendix-B will show the detailed 

list. Generated character stream contains two digits to explain its attribute or behavior. Now, 

we have two character streams for the guideline program and the developer's program. Using 

this output, we will analyze the pattern and identify the differences of the two programs. The 

deviation of the developer program from the guideline program will be identified and then it 

is possible to capture the coding standard violations and acceptable differences.  



13 

 

 

Figure 3 – Proposed Pattern Analysis method 



14 

 

3.6 Features 

The proposed tool can be integrated with the development IDE and detect coding standard 

violations using a common standardguideline. 

3.7 Summary 

This chapter we discussed our hypothesis to solve the research problem, and also discussed 

the inputs and output of this solution. With this hypothesis, we propose a solution to our main 

research problem of coding standard violation. Next chapter we will discuss the design which 

will explain the high-level architecture of the solution.  



15 

 

Chapter 4 

4 Design 

4.1 Introduction 

Chapter3 we described our Approach to solve the research problem. This chapter presents a 

detail view of the design phase, in order to provide a brief description of our solution 

architecture. Here we will discuss the components and their individual roles, front end and 

backend designs to solving the problem of cording standard violation in software 

development. 

4.2 High-Level Architecture of the proposed solution 

The proposed tool has three major components as the data capture module, the database 

module, and the data analysis module. Data capture module contains capture data from the 

online reference and capture data from the user inputs. Database module is used to store the 

standard guideline. Analysis module used to analyze both user and guideline and identify the 

deference. 

 

Figure 4-High-Level Architecture 



16 

 

 Capture Data 

This module is used to extract the guideline from an online reference. It accepts an 

URL which contains the guideline code as the input. Also, this module will generate 

the patterns according to the pre-defined attribute description. 

 

 Database Module 

This module will keep the master data tables for the system and stored procedures 

used to implement pattern marching algorithm. 

 

 Analysis module 

The analysis module is used to identify the coding standers violations using native 

pattern searching algorithm  

4.3 Database Design 

In the database design step, we have identified the main database requirement as in Figure 7. 

We need a suitable database to store our code description and online reference patterns to 

develop this system. In order to develop backend logic, we create a set of data tables as in 

Table 2 

Table Name Description 

Code Line Used to store the guideline code line by line with its relevant pattern 

generated by the proposed tool 

 

Code Master Used to store two digit codes and their descriptions 

 

Keywords Used to store specific keywords 

 

Table 2- Database Table and Purpose 

4.4 Backend programming 

When developing the backend programming, all the variables and functions will be named 

according to the framework. There is a logical relationship between each and every function 

and variables. 



17 

 

4.5 Summary 

This chapter we have discussed the Design of the proposed solution. Here we have identified 

the objects need to be implemented to achieve our goal. Next chapter will describe the 

implementation of the proposed solution. 

 

 

 

 

 

 

 



18 

 

Chapter 5 

5 Implementation 

5.1 Introduction 

The previous chapter explains the overall design of the proposed solution. This chapter will 

give a brief explanation about the implementation (database, front end, and back end) of each 

module with actual interfaces and codes which we identified in chapter 4. Also, this chapter 

will give a brief description about the tools and technologies used to implement the proposed 

solution. 

5.2 Tools and Technologies used to implement the proposed solution 

MS SQL Server[28] also known as Microsoft SQL server is used to present the database role 

of the proposed framework. Microsoft SQL Server is a relational database management 

system developed by Microsoft to be used to manage and store information. Using MS SQL 

we create our data table’s stored procedures and functions related to the proposed framework. 

As a programming language, we used C#.NET[29] to design and implement the sample 

project. C#.NET is a framework which contains Microsoft standard class Libraries. Since we 

are developing a windows form application, C# is the best language for writing Microsoft 

.NET applications. C# is one of the best languages which support the object-oriented concept 

(OOP) Abstraction, Encapsulation, Polymorphism and Inheritance. It also provides support to 

rapid application development. 

5.3 Fetching the standard guideline from online reference 

One of the major objectives of the proposed solution captures the standard guideline from an 

online reference. For the purpose of capturing the standard guidelines from an online 

reference, we have implemented our tool as below [Figure 5]. When the reference URL was 

submitted, the content will be loaded into the browser and then we identify the codes in the 

HTML content pages. Then the code extraction will be done. The code snippet for this 

function will be shown in Appendix-D. 



19 

 

 

Figure 5 - Interface to fetching the guideline from an online reference 

 

 

  



20 

 

For each codeline we have captured from the online reference, will be stored in the database. 

In this step, we identify also the code patterns for those codelines. Figure-6 will show how 

the auto-generated patterns and code lines are stored in the database. 

 

Figure 6- Generated patterns for the online guideline 

 

5.4 Database implementation 

In order to generate patterns, we have used 3 physical data tables in Figure-7. Based on the 

requirement to keep exiting keywords in C#.NET language, we have to use the KeyWord 

table. CodeMaster table is used to keep the description of 2 digit codes which we used to 

encode the codelines. CodeLine table is used to store the guideline and its auto-generated 

patterns. 



21 

 

 

Figure 7 - Set of database tables 

5.5 Capture the developer code 

We have developed an interface to capture the developer code. This interface is also used to 

display the result of the pattern analysis which will inform the violations of coding standard. 

Figure-8 shows the interface to capture developer code. 

 

Figure 8 – Interface to capture developer codes 

Once we compare the patterns in order to test our hypothesis, we need to collect sample data 

sets from an online reference and developer code. Sample code segments will be shown in 

Table-3 

Online Reference Generated Pattern Developer Code Generated Pattern 

 

class YourClass 

 

030004020507 

 

public class 

MyTestClass 

 

0300030004020507 

   

public class mytestclass 

 

03000300040105 

   

public class Mytestclass 

 

0300030004240624 

 

Table 3 - Sample code segment generated by the proposed tool 

 



22 

 

5.6 Identify the violations using Pattern Analysis Mechanism 

In this step, we have used Native Pattern Searching algorithm to compare patterns on both 

guideline codes and the developer code. The comparison should be done to find patterns on 

the guideline from the developer code as well as to find patterns on the developer code from 

the guideline. Because patterns can occur as Table-4 

Guideline (Reference Code) Developer Code 

class YourClass public class MyTestClass 

030004020507 0300030004020507 

  

private Int. variable Int. number 

03000300040105 0300040105 

Table 4 -Sample Pattern occurrence in both guideline and the developer code 

 

Once we implement this algorithm, it is essential to cross-check patterns to detect pattern 

occurrences in both sides. If the pattern does not match in both sides, then it is identified as a 

coding standard violation. The Native Pattern Searching algorithm implementation code 

snippet will be shown in Appendix-E. 

The following pseudocode will be demonstrating the Native pattern Search algorithm. Slide 

the pattern over the search, text one by one and check for matching parts. If a matching index 

is Identified, then it shifts by 1 again next to check for other subsequent matches. 

txt = “AABAACAADAABAAABAA”;  

pat =“AABA”; 

        M = pat.Length; N = txt.Length;  

        FOR i = 0 TO i <= N – M   

            J =0  

            FOR j = 0 TO j < M 

if (txt[i + j] != pat[j])  

                    BREAK  

if j == M   

THEN  PRINT PATTER FOUND AT i 

 j++ 

i++  

5.7 Summary 

In this chapter we have discussed the Implementation of the proposed solution. The next 

chapter will describe how the database and backend coding was implemented. Next chapter 

will show the evaluation of our solution to detect coding standard violation by pattern 

analysis mechanism.  

 



23 

 

Chapter 6 

6 Evaluation 

6.1 Introduction 

The previous chapter shows the implementation of the proposed tool with a detailed review 

of database and coding implementation. In this chapter, we will present an evaluation of the 

test result against the primary objectives of the project. This chapter also provides our data 

collection and the results of the evaluation method. 

6.2 Purpose of evaluation 

The evaluation of the system has been carried out to check the achievements of the objectives 

of the project. For this purpose, we have considered materials to be tested which are included 

in the approach.  As such, the evaluation is concern with input-output process users and 

features in connection with the hypothesis.  

6.3 Evaluation method 

First, we have created an evaluation form with a sample program that has some coding 

standard violations to cover a few coding standard rules according to the selected guideline. 

The sample program will be shown in Appendix-C 

Then we have to contact 7 software engineers and asked them to go through a sample 

program code and identify the coding standard violations. The evaluation form will be shown 

in the Appendix-D section. After collecting the evaluation forms which were manually done 

by the selected software engineers we have summarized the results from each individual. A 

summary table will be shown in Table-5. Then we have identified that there can be three 

scenarios as in Figure-9. 

 

Figure 9 - Possiblescenarios to identify coding standard violations. 



24 

 

6.4 Data collection 

The following Table 5presents the summary of Evaluation forms.  

Software Engineer Identified coding standard violations 

Dananjaya Mathes 

Software Engineer 

Scienter Technologies PTE 

Service Experience 5 Years 

0773525924 

1. Declare classes and variables using 

specialcharacters 

2. Create multiple instances to thesame class object 

3. Interface name should begin with the letter “I” 

S.G.A Chandrakumara 

Software Engineer 

Scienter Technologies PTE 

Service Experience 11 Years 

0778151151 

1. Classes and method names should be declared 

using Pascal case 

2. Method argument and local variables should be 

declared using camel case 

3. Cannot use underscore to declare to identifiers 

4. Interface name should start with “I” 

 

W.A.T Kaushalya 

Tech Lead 

Scienter Technologies PTE 

Service Experience 8 Years 

0772531679 

1. Unnecessaryif else statements 

2. Underscore used to declare classes 

3. The interface should start with “I” letter 

Kalindu Kasun 

Software Engineer 

Scienter Technologies PTE 

Service Experience 6 Years 

071624299 

1. Variable cannot be declared with an underscore 

2. The methodcannot be declared with an underscore 

3. Class names can not contain numbers 

4. The method should be declared with Pascal Case 

5. The interface should be declared using “I” as a 

prefix 

Dilan Semasinghe 

Senior Software Engineer 

Scienter Technologies PTE 

Service Experience 5 Years 

1. Does not usemeaningful class variable and names 

for some classes  

2. Does not used appropriate prefixes 

3. Does not used appropriate pascal case and 

camelcase to declare variables methods and classes 

Table 5 - Summary of Evaluation Forms 

Here we can highlight the following coding standard violations. 

 Special character underscore “_” used as the first letter of class declaration (identified 

by 5 software engineers) 

 Special character underscore “_” used as the first letter of variable declaration 

(identified by 5 software engineers) 

 Special character underscore “_” used as the first letter of method declaration 

(identified by 5 software engineers) 

 Multiple object creation for the same instance (identified by 1 software engineer) 

 Interface class does not declare with the letter “I” as a prefix (identified by 5 software 

engineers) 

 Unnecessary else statement (identified by 1 software engineer) 

 Method and class should be declared using Pascal case (identified by 3 software 

engineers) 



25 

 

 The local variable should be declared with camel case (identified by 3 software 

engineers) 

 Class name contains numbers (identified by 1 software engineer) 

 Unnecessary if else statement (identified by 1 software engineer) 

 Does not usemeaningful names to class, method, and variables (identified by 1 

software engineer) 

Following Table 6 present the result of evaluating the same code using the proposed tool 

Coding standard violation Is detected 

by the 

software 

engineers 

Is detected 

by the 

proposed 

tool 

No of 

Detection  

Special Characters used in class, method and 

variable declaration 

YES YES 5/5 

Multiple object creation for the same 

instance 

YES YES 1/5 

Interface class does not declare with the 

letter “I” as a prefix 

YES YES 5/5 

Unnecessary else statement YES YES 1/5 

Method and class should be declared using 

Pascal case 

YES YES 3/5 

The local variable should be declared with 

camel case 

YES YES 3/5 

Class name contains numbers YES NO 1/5 

Does not usemeaningful names to class, 

method, and variables 

YES NO 1/5 

Table 6 - Result of Evaluation Form 

6.5 Evaluation of results 

We have highlighted a new factor, when we check the code using Pair Programming there is 

more probability of missing the identification of some coding standard violations. Because 

the evaluation results show some experienced software engineers also could not notice some 

violations even the simple program. 

6.6 Summary 

Here we have discussed the evaluation of our solution to coming standard violation detection 

by pattern analysis. Our evaluation method shows the preface of the proposed solution. In the 

next chapter, we will discuss the conclusion of this research. 

  



26 

 

Chapter 7 

7 Conclusion 

7.1 Introduction 

The previous chapter we discuss the evaluation of this project. There we’ve analyzed the 

results from various samples. This chapter will discuss the conclusion of this project and also 

further developments. 

7.2 Overall Conclusion 

Based on the evaluation in Chapter 7, the proposed solution can detect coming standard 

violations using their pattern analyzing mechanism. Therefore, the proposed tool can prevent 

coding standard violations. According to the result of evaluation forms, this tool clearly 

shows its performance identifying the coding standard violations detected by the selected 

group of software engineers. 

We have highlighted a major point in our evaluation, which is about pair programming. The 

pair programming is used to keep the code quality and standard by cross-checking the codes 

by using two developers. However in this evaluation, we have provided a sample class to five 

experience software engineers. But only two violations out of six, identified by all of them 

and four other violations identified by a few of them. This shows pair programming can have 

some probabilities to make mistakes.  

When manually evaluated a code, there can be some individually defined rules which are not 

in according to the standard. Therefore, we can conclude that, an automated coding standard 

detection system is required to prevent that issue and it should be able to configure using a 

common guideline. 

In our evaluation, one software engineer was mention that there should not include numbers 

to the class names. However, that this point is arguable because some meaningful names also 

contain numbers. Area51, Zone24 and T56 can be taken as some example for the names with 

numbers. This point also related to the fact that we have previously mentioned. 

 

 

 



27 

 

7.3 Objective Wise Conclusion 

Our main objective is to design a tool that can identify coding standard violations. We have 

successfully designed a tool to achieve that goal. Then we have implemented the tool we 

designed which can address the problem that has been identified in our literature review. We 

have evaluated the tool and we have implemented using five professional and experienced 

software engineers. Finally, we have published a thesis to illustrate our journey to implement 

the proposed tool to the end from the beginning successfully. 

7.4 Limitation 

In our evaluation form, one software engineer has mentioned that there should be meaningful 

names to class, methods, and variables. However, that particular feature has not been 

implemented in this tool since there is a technical difficulty to catch the meaning. By the way, 

none of the exiting tools provided that feature and assigning meaningful names is totally 

depend on the developer. 

7.5 Further Works 

As further works, we will develop this tool to identify meaningful words. In order to achieve 

that target, we should identify some technical differences between meaningful words and 

meaningless worlds. However, the concept of coding standards violation can be effectively 

explored with the help of software engineering analytics tools as proposed in [32] and [33].  

Moreover, as the future development, the proposed pattern analysis mechanism can be used 

for grammar checking purpose for any language because the encoded pattern is independent 

of its original source.   



28 

 

8 References 

[1] T. Cowling, “Model-driven development and the future of software engineering 

education,” in Software Engineering Education and Training (CSEE&T), 2013 IEEE 

26th Conference on, 2013, pp. 329–331. 

[2] V. Chiew and Y. Wang, “A large-scale empirical study on the cognitive complexity of 

software,” in CCECE 2010, Calgary, AB, Canada, 2010, pp. 1–4. 

[3] “Leading reasons for software project failure according to developers worldwide, as of 

2015.” https://www.statista.com. 

[4] C.-Z. Li, K.-H. Hsu, and G.-Y. Chen, “Discovering Aspects through Analyzing Code 

Changes in Software Development Histories,” 2015, pp. 297–302. 

[5] A. Dearle, “Software deployment, past, present and future,” in 2007 Future of Software 

Engineering, 2007, pp. 269–284. 

[6] N. A. Razak and M. Ghazali, “Usability in software development: Frameworks 

comparison between IKnowU and user behavior analysis framework (UBAF),” in 

Software Engineering (MySEC), 2011 5th Malaysian Conference in, 2011, pp. 330–335. 

[7] A. Carzaniga, A. Fuggetta, R. S. Hall, D. Heimbigner, A. Van Der Hoek, and A. L. Wolf, 

“A characterization framework for software deployment technologies,” DTIC Document, 

1998. 

[8] J. L. B.-J. Nelson Martínez-Araujo and Alejandro González-García1, “Software Reuse 

and Continuous Software Development: A Systematic Mapping Study,” IEEE, 2018. 

[9] C. Boogerd and L. Moonen, “Evaluating the relation between coding standard violations 

and faultswithin and across software versions,” in Mining Software Repositories, 2009. 

MSR’09. 6th IEEE International Working Conference on, 2009, pp. 41–50. 

[10] M. Nawahdah and D. Taji, “Work in progress: Investigating the effects of pair-

programming on students’ behavior in an advanced computer programming course,” in 

2015 IEEE International Conference on Teaching, Assessment, and Learning for 

Engineering (TALE), Zhuhai, China, 2015, pp. 157–160. 

[11] Prof. Bennett, “Math Model of Learning and Discovery,” 

http://www.rpi.edu/~bennek/class/mmld/talks/lecture2-05.ppt, 14-Feb-2005. 

[12] X. Li and Q. Wen, “A fast multi-pattern matching algorithm for anti-virus scanning,” 

in 2011 4th IEEE International Conference on Broadband Network and Multimedia 

Technology, Shenzhen, China, 2011, pp. 42–45. 

[13] A. Yamaguchi, Y. Yamamoto, J.-D. Kim, T. Takagi, and A. Yonezawa, 

“Discriminative Application of String Similarity Methods to Chemical and Non-chemical 



29 

 

Names for Biomedical Abbreviation Clustering,” in 2011 IEEE International Conference 

on Bioinformatics and Biomedicine, Atlanta, GA, USA, 2011, pp. 544–549. 

[14] Y. Watanabe and K. Takahashi, “A fast structural matching and its application to 

pattern analysis of 2-D electrophoresis images,” in Proceedings 1998 International 

Conference on Image Processing. ICIP98 (Cat. No.98CB36269), Chicago, IL, USA, 

1998, vol. 3, pp. 804–808. 

[15] S. Harrusi, A. Averbuch, and N. Rabin, “A Fast Compact Prefix Encoding for Pattern 

Matching in Limited Resources Devices,” in 2010 Data Compression Conference, 

Snowbird, UT, USA, 2010, pp. 533–533. 

[16] O. Pele and M. Werman, “Robust Real-Time Pattern Matching Using Bayesian 

Sequential Hypothesis Testing,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 8, 

pp. 1427–1443, Aug. 2008. 

[17] G. M. Landaut and S. Skiena, “Matching for Run-Length Encoded Strings,” p. 9. 

[18] J. Heer and M. Agrawala, “Software design patterns for information visualization,” 

IEEE Trans. Vis. Comput. Graph., vol. 12, no. 5, pp. 853–860, 2006. 

[19] G. R. Higgie and A. C. M. Fong, “Efficient encoding and decoding algorithms for 

variable-length entropy codes,” IEE Proc. - Commun., vol. 150, no. 5, p. 305, 2003. 

[20] M. A. El Affendi and K. H. S. Al Rajhi, “Text encoding for deep learning neural 

networks: A reversible base 64 (Tetrasexagesimal) Integer Transformation (RIT64) 

alternative to one hot encoding with applications to Arabic morphology,” in 2018 Sixth 

International Conference on Digital Information, Networking, and Wireless 

Communications (DINWC), Beirut, 2018, pp. 70–74. 

[21] R. W. P. King, “Electric fields induced in cells in the bodies of amateur radio 

operators by their transmitting antennas,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 

11, pp. 2155–2158, Nov. 2000. 

[22] JetBrains Team, “Resharper,” Resharper. [Online]. Available: 

https://www.jetbrains.com/resharper/. 

[23] DevExpress Team, “CodeRush,” CodeRush, 01-Aug-2018. [Online]. Available: 

https://www.devexpress.com/products/coderush/. 

[24] Telerik, “JustCode,” JustCode. [Online]. Available: https://www.telerik.com/. 

[Accessed: 06-Aug-2018]. 

[25] Microsoft, “Visual Studio,” Visual Studio. [Online]. Available: 

https://visualstudio.microsoft.com/. 

[26] Whole Tomato Software, “Visual Assist,” Visual Assist, 06-Oct-2018. [Online]. 

Available: https://www.wholetomato.com/. 



30 

 

[27] Squared Infinity, “VSCommands,” VSCommands. [Online]. Available: 

https://marketplace.visualstudio.com/items?itemName=SquaredInfinityJarekKardas.VSC

ommands14forVisualStudio2015. 

[28] Wijesiriwardana, C., & Wimalaratne, P. (2017, May). On the detection and analysis of   

software security vulnerabilities. In 2017 International Conference on IoT and 

Application (ICIOT)(pp. 1-4). IEEE. 

[29] Wijesiriwardana, C., & Wimalaratne, P. (2017, November). Component-based 

experimental testbed to faciltiate code clone detection research. In 2017 8th IEEE 

International Conference on Software Engineering and Service Science (ICSESS) (pp. 

165-168). IEEE. 

[30] Microsoft, “Microsoft SQL Server,” Microsoft SQL Server, 10-Oct-2018. [Online]. 

Available: https://www.microsoft.com/en-us/sql-server/sql-server-2016. [Accessed: 10-

Oct-2018]. 

[31] Microsoft, “Microsoft C#.NET,” Microsoft C#.NET, 10-Oct-2018. [Online]. 

Available: https://docs.microsoft.com/en-us/dotnet/csharp/getting-started/introduction-to-

the-csharp-language-and-the-net-framework. [Accessed: 10-Oct-2018]. 

[32] Wijesiriwardana, C., & Wimalaratne, P. (2019). Software Engineering Data Analytics: A 

Framework Based on a Multi-Layered Abstraction Mechanism. IEICE Transactions on 

Information and Systems, 102(3), 637-639. 

[33] Wijesiriwardana, C., & Wimalaratne, P. (2018). Fostering Real-Time Software Analysis 

by Leveraging Heterogeneous and Autonomous Software Repositories. IEICE 

TRANSACTIONS on Information and Systems, 101(11), 2730-2743. 

  



31 

 

9 Appendix-A 

the sample code segment captured from the URL https://docs.microsoft.com/en-

us/dotnet/csharp/programming-guide/inside-a-program/general-structure-of-a-csharp-

program 

Sample code from the online reference Encoder pattern 

// A skeleton of a C# program  

using System; 

namespaceYourNamespace 

{ 

public classYourClass : ISomeClass 

    { 

    } 

 

structYourStruct 

    { 

    } 

 

interfaceIYourInterface 

    { 

    } 

 

delegateintYourDelegate(); 

 

enumYourEnum 

    { 

    } 

 

namespaceYourNestedNamespace 

    { 

structYourStruct 

        { 

        } 

    } 

 

classYourMainClass 

    { 

staticvoidMain(string[] args)  

{ 

//Your program starts here... 

        } 

    } 

} 

 

 

 

Keyword, Space, Keyword, Space, Not a 

keyword,First letter is capital,the Second 

letter is not capital, Space, Colen, 

Space,Not a keyword,theFirst letter is 

capital,the Second letter is capital,Brackets 

(0011001102030411221102030599) 

 

 

 



32 

 

10 Appendix-B 

Sample two digits code and its description 

Code Description 

00 White Space 

01 First Letter is Simple 

02 First Letter is Capital 

03 Key Word 

04 Not a Key Word 

05 The second Letter is Simple 

06 The second Letter is Capital 

07 More than one capital letters 

08 Only one capital letter 

09 Only the first two capital letters 

10 First two capital letters and more than one other capital letters 

11 ` 

12 ~ 

13 ! 

14 @ 

15 # 

16 $ 

17 % 

18 ^ 

19 & 

20 * 

21 ( 

22 ) 

23 - 

24 _ 

25 = 

26 + 

27 { 

28 } 

29 [ 

30 ] 

31 : 

32 ; 

33 ' 

34 " 

35 , 

36 < 

37 > 



33 

 

38 . 

39 / 

40 \ 

41 ? 

42 | 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



34 

 

11 Appendix-C 

using System; 
usingSystem.Collections.Generic; 
usingSystem.Linq; 
usingSystem.Text; 
usingSystem.Threading.Tasks; 
 
namespacePaternAnalyzis 
{ 
publicclass_EvaluationProgram 
    { 
privatestaticintcurrentIndex; 
privatestaticint_nextIndex; 
public _EvaluationProgram() 
        { 
currentIndex = 0; 
            _nextIndex = 1; 
        } 
privatevoidTestMethod() 
        { 
intidNext = 
newNestedClass1().GetNextIndex(); 
 
NestedClass1obj = newNestedClass1(); 
intidCurrent = obj.GetCurrentIndex(); 
        } 
privateclassNestedClass1 : IRefresh 
        { 
internalintGetNextIndex() 
            { 
return _nextIndex; 
            } 
internalintGetCurrentIndex() 
            { 
returncurrentIndex; 
            } 
publicint Refresh() 
            { 
if (currentIndex == 1){ 
return 1; 
                } 
else 
                { 
return 0; 
                } 
            } 

 

publicvoid cancel() 
            { 
if (currentIndex == 1) 
                { 
 
                } 
else 
                { 
 
                } 
            } 
        } 
privateclassnestedClass2 : Multiply 
        { 
publicint Multiplication() 
            { 
return _nextIndex> 0 ? _nextIndex * 
currentIndex : 1; 
            } 
        } 
 
    } 
publicinterfaceMultiply 
    { 
int Multiplication(); 
    } 
 
publicinterfaceIRefresh 
    { 
int Refresh(); 
void cancel(); 
    } 
} 

 

 

 

  



35 

 

12 Appendix-D 

Code snippet to capture the online guideline from aURL 

privatevoidReadCode(string code) 
        { 
code = Regex.Replace(code, @"<[^>]*>", String.Empty); 
string[] lines = code.Split(new[] { "\r\n", "\r", "\n" }, StringSplitOptions.None); 
CodeModel c = newCodeModel(); 
Service<CodeModel>obj = newService<CodeModel>(); 
intCodeGroupID = obj.GetNextGroupID<CodeModel>(c).CodeGroupID; 
for (int i = 0; i <lines.Length; i++) 
            { 
c.CodeGroupID = CodeGroupID; 
c.CodeContent = lines[i]; 
if (!obj.InsertToCodeLine(c)) 
                { 
//insert error  
                } 
            } 
        } 

 

privatevoid webBrowser1_DocumentCompleted(object sender, 
WebBrowserDocumentCompletedEventArgs e) 
        { 
HtmlDocumenthtmlDocument = webBrowser1.Document; 
HtmlElementCollectionhtmlElementCollection = htmlDocument.All; 
 
List<HtmlElement>eList = htmlElementCollection.Cast<HtmlElement>().ToList(); 
 
List<HtmlElement>eListOut = (from a ineList 
wherea.TagName.ToUpper().Contains("CODE") 
select a).ToList(); 
 
foreach (HtmlElement elm ineListOut) 
            { 
ReadCode(elm.InnerHtml); 
            } 
        } 

Generating patterns 

set@cols=REPLACE(@cols,'{',' { ') 
 set@cols=REPLACE(@cols,'}',' } ') 
 set@cols=REPLACE(@cols,')',' ) ') 
 set@cols=REPLACE(@cols,'(',' ( ') 
 set@cols=REPLACE(REPLACE(@cols,CHAR(13),' '),CHAR(10),' ') 
 set@cols=REPLACE(REPLACE(REPLACE(ltrim(@cols),' ',' %'),'% ',''),'%','') 
 
 Select*,0asgIDinto#tfrommaster.dbo.split(@cols,' ') 
 
 createtable#ob(idintidentity(1,1),obIDint) 
 createtable#obtocb(idintidentity(1,1),obIDint,cbIDint) 
 declare@kint=1, 
   @iint=1, 
   @lastOBindexint, 
   @itemvarchar(max) 
 while@k<=(selectcount(*)from#t) 



36 

 

 begin 
  select@item=itemsfrom#twherenameindex=@k 
  if@item='{' 
  begin 
   insertinto#obselect@k 
   set@lastOBindex=@k 
  end 
  elseif@item='}' 
  begin 
   insertinto#obtocb 
   select@lastOBindexob,@kcb 
 
   deletefrom#obwhereobID=@lastOBindex 
   set@lastOBindex=(selecttop 1 obIDfrom#oborderbyiddesc) 
  end 
  set@k+=1 
 end 
 
 declare@rangetable (IDintidentity(1,1),startIDint,endIDint) 
 insertinto@range 
 selectobID,cbIDfrom#obtocborderbyobID 
 
 declare@i1int=1,@startIDint,@endIDint 
 
 while@i1<=(selectcount(*)from@range) 
 begin 
  select@startID=startID,@endID=endID 
  from@rangewhereID=@i1 
  update#tsetgID=@startID 
  wherenameindexbetween@startIDand@endID 
  set@i1+=1 
 end 
 
 selectt.*,ROW_NUMBER()over(partitionbyt.gIDorderbyt.nameindex)pID,b.cbID 
 into#a 
 from#ttleftouterjoin 
 #obtocbbont.nameindex=b.obID 
 orderbyt.nameindex 
 
 select*,ROW_NUMBER()over(orderbynameindex)newOdr,0 
seqinto#bfrom#aorderbynameindex 
 declare@btable(idintidentity(1,1),gidint,seqint) 
 declare@prvGidint=0,@currGidint=0,@seqint=1 
 
 set@i=1 
 while@i<=(selectcount(*)from#b) 
 begin 
  select@currGid=gIDfrom#bwherenameIndex=@i 
  if(@currGid<>@prvGid) 
  begin 
   set@seq+=1 
   insertinto@bselect@currGid,@seq 
   set@prvGid=@currGid  
  end 
  else 
  begin 
   insertinto@bselect@currGid,@seq 
  end 
  set@i+=1 
 end 
 updateb2setb2.seq=b1.seqfrom@bb1innerjoin#bb2onb2.nameIndex=b1.id 
 declare@linetable (idintidentity(1,1),linevarchar(max)) 



37 

 

 set@i=1 
 set@seq=1 
 declare@gIdint,@itmvarchar(max),@strvarchar(max)='',@maxPIDint,@pidint,@prvHead
ervarchar(max)='' 
 while@i<=(selectcount(*)from#b) 
 begin 
  select@gId=gID,@itm=items,@pid=pID,@seq=seq 
  from#bwherenewOdr=@i 
  select@maxPID=max(pid)from#bwheregID=@gId 
  if@gId=0 
  begin 
   set@str+=' '+@itm 
   ifcharindex(';',@itm)>0 
   begin 
    insertinto@lineselect@str 
    set@str='' 
   end  
   elseif@pid=@maxPID 
   begin 
    insertinto@lineselect@str 
   end 
   set@str=LTRIM(@str) 
  end 
  else 
  begin 
   declare@headervarchar(max)='' 
   ;withtas( 
   
 selectitemsfrom#bwheregID=@gIdanditemsnotin('{','}')andseq=@seq 
   )select@header+=stuff((select' '+items+' ' 
   fromtforxmlpath(''),type).value('.','nvarchar(max)'), 1, 1,'') 
   ifisnull(@header,'')<>'' 
   begin 
    if@prvHeader<>@header 
    begin 
     insertinto@line 
     Selectltrim(items)frommaster.dbo.split(@header,';') 
     set@prvHeader=@header 
    end 
   end 
  end 
  set@i+=1 
 end 
 
 selectlinefrom@linewherelinenotlike'%;'orderbyid 
 
 droptable#t 
 droptable#obtocb 
 droptable#ob 
 droptable#a 
 droptable#b 

  



38 

 

13 Appendix-E 

Code snipt of the Native Pattern Search Algorithm 

declare@textvarchar(max),@linevarchar(100)='public void _class _class' 
--exec GetPatternForCodeline @line,@text output  
   
set@line=' '+@line+' ' 
set@line=REPLACE(@line,'{',' { ') 
set@line=REPLACE(@line,'}',' } ') 
set@line=REPLACE(@line,')',' ) ') 
set@line=REPLACE(@line,'(',' ( ') 
set@line=REPLACE(REPLACE(@line,CHAR(13),' '),CHAR(10),' ') 
set@line=REPLACE(REPLACE(REPLACE(ltrim(@line),' ',' %'),'% ',''),'%','') 
 
SelectnameIndex,LTRIM(RTRIM(items))code,''aspattern,''errinto#tblfrommaster.dbo.split(
@line,' ') 
altertable#tblaltercolumnpatternvarchar(max) 
altertable#tblaltercolumnerrvarchar(max) 
 
declare@zint=1,@cdvarchar(500),@txvarchar(max) 
while@z<=(selectcount(*)from#tbl) 
begin 
 set@cd=''set@tx='' 
 select@cd=codefrom#tblwherenameIndex=@z 
 execGetPatternForCodeline@cd,@txoutput 
 update#tblsetpattern=@txwherenameIndex=@z 
 set@z+=1 
end 
 
declare@inint=1,@userPatternvarchar(max) 
while@in<(selectcount(*)from#tbl) 
begin 
 set@userPattern='' 
 select@userPattern=patternfrom#tblwherenameIndex=@in 
 
 -- Split the codeline, get the list of the keywords, filter it   
  declare@tbltable( 
  idintidentity(1,1), 
  CodePatternvarchar(500), 
  keyword1varchar(500), 
  keyword2varchar(500), 
  keyword3varchar(500), 
  result1int, 
  result2int 
  ) 
 
  --declare @userPatternvarchar(max)=@text 
  ;withtas( 
 
 selectc.CodeID,c.CodeContent,c.CodePattern,k.KeyWordNamekeyword1,len(k.KeyWordN
ame)+2 start, 
  len(c.CodeContent)-len(k.KeyWordName)-1 length 
  from[dbo].[CodeLine]cinnerjoin[dbo].[KeyWord]kon 
  k.KeyWordName=substring(c.CodeContent,1,len(k.KeyWordName)) 
  ),mas( 
 
 selectt.CodeID,t.CodeContent,t.CodePattern,t.keyword1,k.KeyWordNamekeyword2, 
  len(k.KeyWordName)+len(t.keyword1)+2 start,len(t.CodeContent)-
(len(k.KeyWordName)+len(t.keyword1))-1 length 
  fromtinnerjoin[dbo].[KeyWord]kon 



39 

 

 
 k.KeyWordName=substring(substring(t.CodeContent,t.start,t.length),1,len(k.KeyWo
rdName)) 
  wheret.length>1   
  ),jas( 
 
 selectm.CodeID,m.CodeContent,m.CodePattern,m.keyword1,m.keyword2,k.KeyWordNamek
eyword3 
  fromminnerjoin[dbo].[KeyWord]kon 
 
 k.KeyWordName=substring(substring(m.CodeContent,m.start,m.length),2,len(k.KeyWo
rdName)) 
  wherem.length>1 
  ),las( 
  selectCodePattern,keyword1,keyword2,keyword3, 
  PATINDEX('%'+ 
  ((SELECTSTUFF(( 
  SELECTpattern+'00' 
  from#tblwherenameIndexin(1,2) 
  orderbynameIndex 
  FORXMLPATH(''),TYPE).value('.','NVARCHAR(MAX)'), 1, 0,''))) 
   +'%',CodePattern)result1,-- index 1 
 
  PATINDEX('%'+CodePattern+'%',((SELECTSTUFF(( 
  SELECTpattern+'00' 
  from#tblwherenameIndexin(1,2) 
  orderbynameIndex 
  FORXMLPATH(''),TYPE).value('.','NVARCHAR(MAX)'), 1, 0,''))))result2 
 
  fromjunion 
  selectCodePattern,keyword1,keyword2,''keyword3, 
 
  PATINDEX('%'+((SELECTSTUFF(( 
  SELECTpattern+'00' 
  from#tblwherenameIndexin(1,2,3) 
  orderbynameIndex 
  FORXMLPATH(''),TYPE).value('.','NVARCHAR(MAX)'), 1, 0,''))) 
  +'%',CodePattern)result1,-- index 1,2 
 
  PATINDEX('%'+CodePattern+'%',((SELECTSTUFF(( 
  SELECTpattern+'00' 
  from#tblwherenameIndexin(1,2,3) 
  orderbynameIndex 
  FORXMLPATH(''),TYPE).value('.','NVARCHAR(MAX)'), 1, 0,''))))result2 
  frommunion 
  selectCodePattern,keyword1,''keyword2,''keyword3, 
  PATINDEX('%'+((SELECTSTUFF(( 
  SELECTpattern+'00' 
  from#tblwherenameIndexin(1,2,3,4) 
  orderbynameIndex 
  FORXMLPATH(''),TYPE).value('.','NVARCHAR(MAX)'), 1, 
0,'')))+'%',CodePattern)result1,-- -- index 1,2,3 
  PATINDEX('%'+CodePattern+'%',((SELECTSTUFF(( 
  SELECTpattern+'00' 
  from#tblwherenameIndexin(1,2,3,4) 
  orderbynameIndex 
  FORXMLPATH(''),TYPE).value('.','NVARCHAR(MAX)'), 1, 0,''))))result2 
  fromt) 
   
  --insert into 
@tbl(CodePattern,keyword1,keyword2,keyword3,result1,result2) 
  select*fromlwhereresult1>0 orresult2>0  



40 

 

 
 
  select*from@tbl 
 
 
  if(selectcount(*)from@tbl)=0 
  begin 
   update#tblseterr= 
   (SELECTSTUFF(( 
   SELECT' '+CodeMasterName+',' 
   fromdbo.SplitStringByWord(@text,2)kinnerjoin 
   [dbo].[CodeMaster]conc.CodeMasterCode=k.Result 
   wherec.CodeMasterCodenotin('03','00','04') 
   orderbyrefID 
   FORXMLPATH(''),TYPE).value('.','NVARCHAR(MAX)'), 1, 1,'')) 
   wherenameIndex=@in  
  end 
  else 
  begin 
   update#tblseterr=''wherenameIndex=@in 
  end 
 set@in+=1 
end 
declare@errvarchar(max)='' 
selecttop 1 @err=isnull(err,'')from#tblwhereerr<>'' 
select@errerr 
 
 
((SELECTSTUFF(( 
  SELECTpattern+'00' 
  from#tblwherenameIndexin(1,2,3,4) 
  orderbynameIndex 
  FORXMLPATH(''),TYPE).value('.','NVARCHAR(MAX)'), 1, 0,''))) 
 
select*from#tbl 
 
droptable#tbl 


