INFLUENCE OF STATION DENSITY AND INTERPOLATION METHODS ON SPATIAL AVERAGING OF RAINFALL FOR WATER RESOURCES MANAGEMENT

Thisuni Kaushala Abeysing Kodippili

(158561E)

Degree of Master of Science

Department of Civil Engineering

University of Moratuwa Sri Lanka

May 2019

INFLUENCE OF STATION DENSITY AND INTERPOLATION METHODS ON SPATIAL AVERAGING OF RAINFALL FOR WATER RESOURCES MANAGEMENT

Thisuni Kaushala Abeysing Kodippili

(158561E)

Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Water Resources Engineering and Management

> Supervised by Professor N.T.S. Wijesekera

UNESCO Madanjeeth Singh Centre for South Asia Water Management (UMCSAWM) Department of Civil Engineering

> University of Moratuwa Sri Lanka

> > May 2019

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person expect where the acknowledgment is made in text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

.....

.....

Thisuni Kaushala Abeysing Kodippili

Date

The above candidate has carried out research for the Master's thesis under my supervision.

.....

Professor N.T.S. Wijesekera

Date

ACKNOWLEDGEMENT

First and foremost, I am deeply indebted to my research supervisor Professor N.T.S. Wijesekera for his immense support throughout my study with his patience and knowledge. His challenging questions and critical suggestions were beneficial for me to remain on the correct path till towards the completion. Without his encouragement and motivation with continuous guidance, it would have not been possible to complete this study. It is a real privilege and honor for me to study under the supervision of an extraordinary teacher like you.

I also would like to express my sincere gratitude to Dr. R.L.H. Lalith Rajapakse for the support and guidance extended in terms of academic to pursue my goals. His sincere and consistent encouragement is greatly appreciated.

Further I am grateful to the staff of University of Moratuwa for their support in different ways during this research period. I would also like to thank Late. Shri Madanjeet Singh, and the University of Moratuwa for giving me this opportunity to pursue a Master Degree of Water Resource Engineering and Management, at UNESCO Madanjeet Singh Centre for South Asia Water Management, Department of Civil Engineering, University of Moratuwa, Sri Lanka.

I also extend my sincere thanks to all my colleagues and friends for their support in numerous ways whenever I needed it. The assistance extended in the difficult times are highly appreciated.

Last but not least, I would like share my heartfelt thanks to my parents and my sister for their unconditional support, encouragement and love throughout this study. It would have not been possible to come this far without them.

INFLUENCE OF STATION DENSITY AND INTERPOLATION METHODS ON SPATIAL AVERAGING OF RAINFALL FOR WATER RESOURCES MANAGEMENT

Abstract

Rainfall is a major concern when dealing with water resources because it is the major input for estimation of streamflow using mathematical models. Rainfall which is a point measurement, needs conversion as a spatially distributed entity for watershed applications. Though there are many concerns regarding the representativeness of the method, conversion of rainfall from several stations generally use station configuration as the basis. However, going further towards the reality, some methods suggest the use of watershed characteristics for this purpose. There are diverse views regarding the recommended station densities. Some work indicate that higher station densities do not lead to the watershed average rainfall value while there is documentation supporting that even one station would be adequate for hydrologic modelling. Based on a comprehensive literature review it was identified that focused research efforts on the selection of rainfall stations to determine areal average rainfall is required. The ongoing literature show that most opted option to compute the areal average is the Thiessen method. The present study explored the influence of station density and spatial intepolation methods when computing spatially averaged rainfall using monthly data for water resources planning and engineering applications. Monthly rainfall data of twelve stations from the Ellagawa (1395 km²) sub catchment in Kalu Ganga basin over the period from 2006-2014 was used. Station density influence on areal average rainfall was evaluated with different station configuration scenarios while selecting mostly opted Thiessen rainfall method as the spatial averaging method. Monthly, seasonal and annual watershed average rainfall was evaluated using 283 rational configurations determined by the location of raingauges. The comprehensive study of station density influence was carried out by evaluating only rainfall input and by evaluating runoff estimated with a water balance model. Mean ration of absolute error was selected as the objective function for the comparative analysis. The influence of spatial interpolation method for spatial averaging of rainfall was tested by comparing Thiessen polygon, Inverse Distance, and Spline and Kriging methods and using four types of station layouts under two different station density configurations.

Annual, seasonal and monthly rainfall only analysis revealed that 8 stations and above a density of 175 km² per station will provide consistent rainfall for any configuration. Comparison of rain gauging density influence on watershed streamflow by using a set of parameters derived from atypical model also indicated that consistent streamflow estimations can be achieved only with a station configuration denser than 175km²/station. Streamflow comparisons carried out by optimising model parameters for each rainfall configuration also resulted in the same threshold density for consistent streamflow estimations. However the best model performance was with a two gauging stations layout having a density of 698 km²/station. Comparison of Thiessen weights corresponding to best streamflow estimation inputs revealed that there are three rain gauges mostly contributing to the streamflow of Ellagawa watershed. These results showed that it is prudent to commence watershed modelling with a consistent station density and then carryout optimisation of station weights along with model parameters. Analysis of the influence of spatial interpolation methods on streamflow estimations indicated only a marginal difference in the output derived from selected methods. In all methods, the weakest results were when maximum stations were located outside the watershed. Consideration of computation resource requirement concluded that the Thiessen method is the best option to compute watershed areal rainfall.

Achieving both rainfall input consistency and consistent streamflow estimations using a monthly watershed model, was at a threshold density of one station per 175 km^2 . The best streamflow estimations could be obtained with a two-rain gauging station layout.

KEYWORDS: Rainfall, Spatial Interpolation, Station Configuration, Station Density, Two-Parameter model, Thiessen Average, Inverse Distance weighted, Spline, Kriging, Mean Ration of Absolute Error

TABLE OF CONTENTS

D	ECL	LARA	TION	i
A	CKN	NOW	LEDGEMENT	ii
A	bstra	act		iii
1	Π	NTRO	DUCTION	1
	1.1	Pr	oblem Statement	3
	1.2 Stu		udy Area and Data	3
	1.3 Ob		ojectives	3
	1.3.1		Overall Objective	3
	1	.3.2	Specific Objectives	4
2	LITERA		ATURE SUMMARY AND REVIEW	6
	2.1	Ge	eneral	6
	2.2	Ra	infall Station Density Selection	6
	2	.2.1	Guidelines and Inclination	6
	2	.2.2	Threshold Station Density	8
	2.2.3		Effects of Spatial Distribution	9
	2.2.4		Reality of Selection	10
	2.3	Sp	atial Interpolation Method	12
	2.4	OĮ	otimum Station Influence	14
	2.5	Fil	ll Missing Data	15
	2.6	Hy	drological Modelling	16
	2	.6.1	Monthly Water Balance Model	16
	2.6.2		Model Calibration and Parameter Optimization	17
	2.7	Oł	pjective Function	
	2	.7.1	Input Data Verification through Streamflow Estimations	19
	2.8	Su	mmary	19
3	Ν	1ETH	ODOLOGY	22
	3.1	Int	fluence of Rainfall Station Density	
	3.1.1		General	23
	3	.1.2	Rainfall-Only Option (RO Option)	23

3.	1.3	Rainfall-Runoff Option (RR Option)	24
3.2	Infl	uence of Spatial Interpolation Methods	26
3.2	2.1	General	26
3.2	2.2	Rainfall Surface Generation	26
3.2	2.3	Comparison of Rainfall-Runoff Estimations	28
3.2	2.4	Computational Time	29
4 D.	ATA A	AND DATA CHECKING	30
4.1	Dat	a	30
4.	1.1	Rainfall Data	31
4.	1.2	Streamflow Data	34
4.	1.3	Evaporation Data	35
4.	1.4	Data filling	35
4.2	Dat	a Checking	36
4.2	2.1	Visual Data checking	36
4.2	2.2	Outlier Checking	40
4.2	2.3	Graphical Checking	40
4.2	2.4	Consistency Checking	42
4.2	2.5	Water Balance Checking	43
5 Al	NALY	SIS AND RESULTS	45
5.1	Ana	alysis of Station Selection in Practice	45
5.2	Ana	alysis of Influence of Station Density	48
5.2	2.1	Rainfall Only option (RO Option)	48
5.2	2.2	Rainfall-Runoff Option 1 (RR Option 1)	61
5.2	2.3	Rainfall-Runoff Option 2 (RR Option 2)	81
5.3	Infl	uence of Spatial Interpolation methods	103
5.3	3.1	General	103
5.3	3.2	Annual Areal Rainfall	106
5	3.3	Maha Season Rainfall	107
5.3	3.4	Yala Season Rainfall	108
5.3	3.5	Watershed Response	109

	5.3	8.6	Rainfall Processing Time (RT)	119	
	5.3	8.7	Parameter Variation	119	
6	DI	SCUS	SSION	121	
	6.1	Stat	te of art Rain Gauge Selection	121	
	6.2	Stat	te of art Spatial Averaging Method	122	
	6.3 G		iging Station Selection	122	
	6.4	Stat	tion Density- Rainfall Only Option	123	
	6.4	.1	General	123	
	6.5	Infl	uence of Station Density	123	
	6.5	5.1	Rainfall Only Option	123	
	6.5	5.2	Rainfall-Runoff Option 1	125	
	6.5	5.3	Rainfall-Runoff Option 2	128	
	6.5	5.4	Comparison of Rainfall-Runoff Options	129	
	6.6	Stat	tion Influence on Areal Rainfall	136	
	6.7 Eva		luation of Spatial Interpolation Method		
	6.7	7.1	Rainfall Variation	137	
	6.7	.2	Watershed Response	137	
	6.7	7.3	Evaluation of Deviations	143	
	6.7	'.4	Processing Time	143	
	6.7	.5	Influencing Factors	144	
7	CC	ONCL	USIONS	145	
8	RE	ECON	IMENDATIONS	146	
•	REF	EREN	VCES	147	
Al	NNE	X A -	Data and Data Checking	162	
	Data.			163	
	Rainfall Variation	168			
	Doub	le Ma	ass Curve Plots	172	
Al	NNEZ	X B -	Station Combinations	176	
Thiessen Weights for Selected Rainfall Station Configuration					
Al	NNEZ	X C -	Rainfall Variation (RO Option)	186	

Rainfall Dev	iation				
Monthly Rai	Monthly Rainfall Distribution and Frequency of Occerence				
Monthly Rai	nfall with Statistical Indicators				
Deviation of	Average Monthly Rainfall in Density Variation				
ANNEX D -	Results Summary (RR Option 1)				
Overall Resu	Ilts (RR Option 1)				
Hydrographs	(RR Option 1)				
Flow Duration	on Curves (RR Option 1)				
ANNEX E -	Results Summary (RR Option 2)				
Overall Resu	Ilts (RR Option 2)				
Hydrographs	s (RR Option 2)				
Flow Duration	on Curves (RR Option 2)				
ANNEX F -	Results Summary of Station Influence				
ANNEX G -	Results Summary of Influence of Spatial Interpolation M	1ethods252			
Rainfall Var	iation				
Streamflow	Variation				