
REAL-TIME C2C MATCHING OF SOCIAL MEDIA

MESSAGES

M.R.M. RILFI

148053N

Degree of Master of Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

May 2019

REAL-TIME C2C MATCHING OF SOCIAL MEDIA

MESSAGES

M.R.M. RILFI

148053N

Dissertation submitted in partial fulfillment of the requirements for the

degree Master of Science in Computer Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

May 2019

i

DECLARATION

I declare that this is my own work and this thesis/dissertation does not incorporate any

material previously submitted for a Degree or Diploma in any other University of

institute of higher learning and to the best of my knowledge and belief, it does not

contain any material previously published or written by another person except where

the acknowledgment is made in the text.

Also, I hereby grant to the University of Moratuwa the non-exclusive right to

reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic

or another medium. I retain the right to use this content in whole or part in future works

(such as articles or books).

……………………………………… ………………………………………..

M.R.M. Rilfi Date

The above candidate has carried out research for the Masters' Dissertation under my

supervision.

……………………………… …………..

Dr. H.M.N. Dilum Bandara Date

……………………………… …………..

Dr. Surangika Ranathunga Date

ii

Abstract

Social media enables personalization of the Consumer to Consumer (C2C) business model

where people could directly do business with each other without an intermediary by sharing

their products, services, and consumer requirements. However, messages shared by both the

sellers and potential buyers do not reach each other as they are embedded among other social

media messages. Moreover, C2C buy/sell interest matching in real time is nontrivial due to the

complexities of interpreting social media messages, number of messages, and diversity of

products and services. We present a platform for real-time matching of microblogging

messages related to product selling or buying in C2C. We adopt a combination of techniques

from natural language processing, complex event processing, and distributed systems. First,

we extract the semantics of messages such as product attributes and commercial intention of

the message either buying or selling using information extraction. Then the extracted buy/sell

messages are matched using a complex event processor. Moreover, NoSQL and in-memory

computing are used to enhance scalability and performance. The proposed solution shows a

high accuracy where commercial intent classification and Conditional random fields based

named entity recognition recorded an accuracy of 98.5% and 82.07%, respectively when

applied to a real-world dataset. Information extraction, in-memory data manipulation, and

complex event processing steps introduced low latency were latencies were 0.5 ms, 5 ms, and

0.2 ms, respectively. For the given setup with modest hardware, we were able to process 3,400

messages per second and overall latency was 0.76 ms.

Keywords: C2C; complex event processing; information extraction; named entity

recognition; stream processing;

iii

ACKNOWLEDGEMENTS

First and foremost, I express my sincere gratitude to my advisor Dr. Dilum Bandara.

His continuous support, patience, guidance, and advice made the successful

completion of this research possible. I am thankful to him for regular meetings and

productive discussions despite his busy schedule. I highly appreciate his tolerance

during times of my slow progress due to health problems or other issues. It has been a

wonderful experience working with him, during which I have acquired and improved

new knowledge and skills that will be useful to my career in the future. Also, I like to

thank my co-supervisor Dr. Ms. Surangika Ranathunga for her valuable guidance and

support.

I would like to thank members of my review committee Dr. Shehan Perera and Dr.

Lochandaka Ranathunga for their helpful feedback during my progress reviews.

My sincere thanks go to the Computer Science Department of the University of

Moratuwa for facilitating me with the necessary resources throughout the course of

my research. I am thankful to Dr. Shehan Perera and Prof. Sanath Jayasena for granted

me an Instructor position to me which helped me to carry out my research without any

hindrance. Thanks, are to the System Engineers of the Department, especially Mr.

Sujith Fernando, for helping me acquire, set up and manage hardware resources. I also

thank the department staff in general for their friendly interaction, making my time at

the department a fruitful and pleasant one.

iv

TABLE OF CONTENTS

DECLARATION .. i

Abstract .. ii

ACKNOWLEDGEMENTS .. iii

TABLE OF CONTENTS .. iv

LIST OF FIGURES ... vi

LIST OF TABLES ... vii

LIST OF ABBREVIATIONS ... viii

CHAPTER 1 INTRODUCTION .. 1

1.1 Background ... 1

1.2 Motivation ... 2

1.3 Problem Statement .. 3

1.4 Objectives .. 3

1.5 Outline ... 4

CHAPTER 2 LITERATURE REVIEW ... 5

2.1 Information Extraction .. 5

2.1.1 Text Preprocessing ... 7

2.1.2 Named Entity Recognition ... 8

2.1.3 Conditional Random Fields .. 9

2.2 Social Media Data ... 10

2.3 Stream Processing ... 11

2.4 Big data persistence and high frequent data manipulation 14

2.5 Existing Solutions for C2C matching .. 16

2.6 Summary ... 17

CHAPTER 3 RESEARCH METHODOLOGY ... 18

3.1 Information Extraction .. 18

3.2 Matching .. 19

3.3 Real-time big data processing ... 20

3.4 High-level architecture .. 20

CHAPTER 4 IMPLEMENTATION .. 25

4.1 Information extraction ... 26

4.1.1 Gazetteer list Generation from Linked Data 27

v

4.1.2 Product domain Named Entity recognition 32

4.1.3 Training dataset Generation using the gazetteer 33

4.1.4 String comparison in automated training 34

4.1.5 NER using Conditional Random Fields 34

4.1.6 Product group and commercial intention classification 36

4.1.7 Feature extraction on the classification 36

4.2 Real-time stream processing ... 37

4.2.1 Real-time information extraction ... 38

4.2.2 Parallelism in Information Extraction .. 41

4.3 Bigdata Storage and in-memory computing 45

4.3.1 Matching between real-time and persisted data 48

4.4 Non-functional aspects .. 50

4.5 Summary ... 51

CHAPTER 5 RESULTS AND ANALYSIS .. 52

5.1 Experimental setup .. 52

5.2 Performance Metrics ... 52

5.3 Results of product classification using logistic regression 53

5.4 Results of CRF-based product attribute extraction 56

5.5 Distributed information extraction performance 57

5.6 Results of high-frequency data manipulation from NoSQL 58

CHAPTER 6 CONCLUSIONS AND FUTURE WORK 61

6.1 Conclusions ... 61

6.2 Research Limitations ... 62

6.3 Future Work .. 63

REFERENCES ... 65

vi

LIST OF FIGURES

Figure 2.1 Typical stream processing with multiple sequence of task. 13

Figure 2.2 Acknowledgement mechanism in Storm. ... 14

Figure 2.3 Four types of stream grouping. ... 14

Figure 2.4 Lambda architecture and Kappa architecture ... 16

Figure 3.1 Association between three aspects of our research problem. 18

Figure 3.2 Two sample tweets with a mix of product attributes and greeting. 20

Figure 3.3 High level architecture of our framework. ... 21

Figure 3.4 The data flow between IE, In-memory, NoSQL and CEP. 22

Figure 4.1 Information extraction process ... 26

Figure 4.2 Data sources of gazetteer lists belong to product attributes. 27

Figure 4.3 Single product entry in triple format. ... 29

Figure 4.4 Graph view of CRF model. ... 35

Figure 4.5 Apache Storm physical architecture. .. 38

Figure 4.6 Storm topology graph representation.. 42

Figure 4.7 Sample input and output from each NER module. 43

Figure 4.8 Task distribution in a single server node .. 44

Figure 4.9 Read optimized Cassandra data model. .. 47

Figure 4.10 Matching component implemented using CEP. 48

Figure 4.11 Stream and execution plans in CEP. ... 49

Figure 4.12 Time and size window based matching operation. 50

Figure 5.1 Product distribution in our training dataset .. 54

Figure 5.2 Selling status model accuracy Vs training set size. 56

Figure 5.3 Product group model accuracy Vs training set size 57

Figure 5.4 Average latency of each information extraction modules 58

Figure 5.5 Data persistence latency Vs size of the database and throughput. 59

Figure 5.6 Persisting throughput .. 60

Figure 5.7 Data manipulation throughput .. 60

Figure 5.8 Matching RT vs NoSQL. throughput ... 60

Figure 5.9 Matching RT vs RT. throughput .. 60

Figure 5.10 Overall throughput .. 60

Figure 5.11 Overall latency. ... 60

file:///D:/msc/Thesis-Mohamed%20Rilfi%20v3.5/Thesis-Mohamed%20Rilfi%20v3.4.docx%23_Toc11307626
file:///D:/msc/Thesis-Mohamed%20Rilfi%20v3.5/Thesis-Mohamed%20Rilfi%20v3.4.docx%23_Toc11307627
file:///D:/msc/Thesis-Mohamed%20Rilfi%20v3.5/Thesis-Mohamed%20Rilfi%20v3.4.docx%23_Toc11307628
file:///D:/msc/Thesis-Mohamed%20Rilfi%20v3.5/Thesis-Mohamed%20Rilfi%20v3.4.docx%23_Toc11307629
file:///D:/msc/Thesis-Mohamed%20Rilfi%20v3.5/Thesis-Mohamed%20Rilfi%20v3.4.docx%23_Toc11307630
file:///D:/msc/Thesis-Mohamed%20Rilfi%20v3.5/Thesis-Mohamed%20Rilfi%20v3.4.docx%23_Toc11307632
file:///D:/msc/Thesis-Mohamed%20Rilfi%20v3.5/Thesis-Mohamed%20Rilfi%20v3.4.docx%23_Toc11307633
file:///D:/msc/Thesis-Mohamed%20Rilfi%20v3.5/Thesis-Mohamed%20Rilfi%20v3.4.docx%23_Toc11307634
file:///D:/msc/Thesis-Mohamed%20Rilfi%20v3.5/Thesis-Mohamed%20Rilfi%20v3.4.docx%23_Toc11307636
file:///D:/msc/Thesis-Mohamed%20Rilfi%20v3.5/Thesis-Mohamed%20Rilfi%20v3.4.docx%23_Toc11307637
file:///D:/msc/Thesis-Mohamed%20Rilfi%20v3.5/Thesis-Mohamed%20Rilfi%20v3.4.docx%23_Toc11307639
file:///D:/msc/Thesis-Mohamed%20Rilfi%20v3.5/Thesis-Mohamed%20Rilfi%20v3.4.docx%23_Toc11307640
file:///D:/msc/Thesis-Mohamed%20Rilfi%20v3.5/Thesis-Mohamed%20Rilfi%20v3.4.docx%23_Toc11307641
file:///D:/msc/Thesis-Mohamed%20Rilfi%20v3.5/Thesis-Mohamed%20Rilfi%20v3.4.docx%23_Toc11307642
file:///D:/msc/Thesis-Mohamed%20Rilfi%20v3.5/Thesis-Mohamed%20Rilfi%20v3.4.docx%23_Toc11307643
file:///D:/msc/Thesis-Mohamed%20Rilfi%20v3.5/Thesis-Mohamed%20Rilfi%20v3.4.docx%23_Toc11307644
file:///D:/msc/Thesis-Mohamed%20Rilfi%20v3.5/Thesis-Mohamed%20Rilfi%20v3.4.docx%23_Toc11307645
file:///D:/msc/Thesis-Mohamed%20Rilfi%20v3.5/Thesis-Mohamed%20Rilfi%20v3.4.docx%23_Toc11307646
file:///D:/msc/Thesis-Mohamed%20Rilfi%20v3.5/Thesis-Mohamed%20Rilfi%20v3.4.docx%23_Toc11307647
file:///D:/msc/Thesis-Mohamed%20Rilfi%20v3.5/Thesis-Mohamed%20Rilfi%20v3.4.docx%23_Toc11307648
file:///D:/msc/Thesis-Mohamed%20Rilfi%20v3.5/Thesis-Mohamed%20Rilfi%20v3.4.docx%23_Toc11307649
file:///D:/msc/Thesis-Mohamed%20Rilfi%20v3.5/Thesis-Mohamed%20Rilfi%20v3.4.docx%23_Toc11307650

vii

LIST OF TABLES

Table 2.1 Difference between batch processing and real-time stream processing. ... 12

Table 2.2 Three types of guaranteed processing in real-time processing. 12

Table 3.1 Three aspects and relevant technologies. ... 18

Table 3.2 Components implemented using distributed stream processing. 23

Table 4.1 Applied tools and their functionality ... 25

Table 4.2 Sources of Product Linked data and statistics. ... 28

Table 4.3 Few semantic entries from our product linked dataset. 29

Table 4.4 Semantic references belonging to product attributes. 31

Table 4.5 Dataset summery for gazetteer generation ... 31

Table 4.6 List of features used to classify the messages. ... 36

Table 4.7 POS based features .. 37

Table 4.8 NER modules in stream processing topologies.. 40

Table 4.9 Each module in the Topology and their parallelism. 43

Table 5.1 Accuracy of our both classification models ... 53

Table 5.2 Area measures of PR and ROC Under curve ... 55

Table 5.3 Accuracy measures of CRF models. .. 55

Table 5.4 Area measures of PR and ROC Under the curve 56

viii

LIST OF ABBREVIATIONS

ACK Acknowledgement

B2B Business to Business

B2C Business to Consumer

C2C Consumer to Consumer

CD Cardinal number

CEP Complex Event Processor

CRF Conditional random fields

DAS Data analytical server

DT Determiner

FW Foreign word

GPS Global Positioning System

HMM Hidden Markov Model

IE Information Extraction

IP Internet Protocol

JJ Adjective

JSON JavaScript Object Notation

JVM JAVA Virtual Machine

MD Modal

MEMM Maximum-entropy Markov model

NER Named Entity Recognition

NLP Natural Language Processing

NLTK Natural Language Toolkit

NN Noun, singular or mass

ix

NoSQL Not Only SQL

OLTP Online Transaction Processing

POS Part of Speech

RDBMS Relational database management system

RDD Resilient Distributed Dataset

RDF Resource Description Framework

SQL Structured Query Language

UI User Interface

VB Verb, base form

WARC Web Archive

1

CHAPTER 1

INTRODUCTION

This thesis presents a framework to identify potential buyers and sellers in Consumer

to Consumer (C2C) e-commerce using real-time matching of social media messages

based on product attributes and buy or sell intent. While addressing this research

problem, we address several challenges such as information extraction, real-time

processing, big data management, and matching of the semantic stream. We used the

Conditional Random Fields approach to extract the product attributes, the Logistic

Regression to classify the message based on commercial intent, Apache Storm for

distributed real-time stream processing, NoSQL database to store the data, and Apache

Spark for low latency query processing, and Complex Event Processor to match the

buy-sell messages based on semantics of the C2C messages.

1.1 Background

Social media is an interactive computer-mediated technology that facilitates the

sharing of ideas, career interests, information, and other forms of expression through

building virtual networks and communities. Social media can be considered the most

efficient communication medium in the twenty-first century [1]. Today, most people

express their opinions freely through social media. In other words, social media has

become an influential fact of every aspect of our human life. By design, social media

is internet-based and offers users easy and rich digital communication. Users often

utilize it for messaging.

Social media initiated as a tool that people used to interact with friends and family but

was later adopted by businesses that wanted to take advantage of a popular new

communication method to reach out to customers. It not only provides economic

benefits to the sellers by increasing the number of buyers, but also opens a new door

to the consumers to fulfill their product or service requirements easily and quickly, and

cost effectively.

2

Thus, social media plays a major role in e-commerce. Promotions, recommendations,

market-related sentiment analytics, product requirement sharing’s, polls, opinion

queries, reviews, and trend predictions are some of the ways big business entities

interact with social media [1]. Those procedures commonly belong to big business

organizations such as Business-to-Business (B2B) and Business-to-Consumer (B2C).

In addition to these two business models, the C2C business model is emerging as a

consumer-driven alternative [2]. The uniqueness of this model is that it does not have

any intermediary between the seller and buyer.

While C2C could vastly benefit from social media as a free channel to communicate

between consumer to consumer, conceptually, it can reach anyone in this globe and

provide anytime service without any interruption in hidden social media services,

handling huge data flow each second. However, the C2C consumers will not apply to

advanced social media techniques, rather they just post their product/service

requirements as social media messages with a set of simple words or images, it is

difficult to interpret what they mean to buy or sell. Also, those messages do not reach

a large audience and even the once that reach are buried among so many other

messages.

1.2 Motivation

While social media is useful in C2C e-commerce, there is no guarantee that a message

will reach potential users who are interested in those messages. Rather the messages

will only reach the friends or followers of the message producer sooner or later. If the

message can reach a wider audience who may have some association with that message

both the buyer and seller could benefit. Moreover, messages do not reach followers in

real-time, as followers may access messages based on their convenience and interest.

Moreover, due to the asynchronous nature of social media platforms [2] and user

behavior, sometimes it can take more than a day. This delay could lead to missed

business opportunities to both the buyers and sellers. By nature, social media messages

are written in natural language; hence, consists of unstructured text that is difficult to

be interpreted by a computer program. Also, these messages arrive at a high velocity

making it difficult to apply computationally expensive natural language processing

techniques. Finally, the diversity of products and their information make it further

3

difficult to interpret the content and context of messages.

There are a few existing solutions that partially fulfill such as product recommendation

systems, product attribute extraction and product databases. However, these solutions

are not geared toward filtering e-commerce related messages social media messages,

classifying those filtered messages based on their buy/sell intention, and all other

product attributes. Moreover, these solutions do not focus on near real-time processing,

big data management and matching sell/buy message semantics based on their product

attribute and commercial intent. Consequently, current solutions do not fully address

the potential for C2C e-commerce in social media.

1.3 Problem Statement

While C2C consumers can post their product/service related e-commerce messages in

social media. The messages will only reach the followers of the consumer with a

considerable delay. Most of the time the message will not reach the users who are

interested in those messages. Therefore, while social media is a major platform to C2C,

there is no effective way to connect potential consumers in real time based on their

messages related to products and services. Hence, the problem to be solved by this

study can be defined as:

How to develop an architecture/framework for real-time C2C matching, using

consumers’ text-based social media data?

1.4 Objectives

In this research, our main goal is to implement an architecture/framework that will

deliver real-time C2C matching using customers’ text-based social media data.

Therefore, the above research problem is to be addressed by satisfying the following

research objectives:

• To extract the semantics of social media messages and classify messages based

on their buy and sell intent

• To develop an indexing structure such that new incoming messages can be

matched with previous messages as close to real-time as possible

• To develop a framework to match C2C messages with high throughput and low

4

latency

• To evaluate the performance of the proposed framework using a real-life

dataset.

1.5 Outline

The rest of this task is organized as follows: Chapter 2 explains the context of this

research. This study focuses on extracting information from unstructured text,

processing message streams, messaging in a distributed environment, and querying

and analyzing large amounts of data. Chapters 3 and 4 present proposed approaches to

match relevant social media messages in relation to C2C in real time. Chapter 3

explains how to extract product-related attributes from unstructured text, and Chapter

4 explains how to implement a framework for querying and analyzing large amounts

of data and managing complex events. Chapter 5 describes the proposed approach

using real social media messages, and Chapter 6 summarizes our work and suggestions

for future work.

5

CHAPTER 2

LITERATURE REVIEW

Matching C2C users, i.e., connecting the C2C buyers and sellers that are interested in

the same product. Context-based matching using a well-defined structured stream of

social media is a complex task that is computationally expensive. Complex event

processor is the novel approach to solve this kind of complex computation on

structured streams. Another challenge is converting social media messages to be in a

well-defined structured form. Such mapping requires information extraction.

Moreover, we should consider the large volume of data and the need to process them

in real time. This chapter presents related work associated with each of the techniques

that we need to solve the research problem. Section 2.1 contains an overview of

information extraction though Section 2.2 describes the nature of social media data. In

Section 2.3, we present related research about stream processing. Big data persistence

and high-frequency data manipulation from the NoSQL database relevant technologies

are discussed in Section 2.4.

2.1 Information Extraction

Information extraction (IE) is the task of automatically generating structured

information from unstructured and/or semi-structured documents [3]. IE is one of the

important applications of Natural Language Processing (NLP). Most IE techniques are

text driven, especially when applying on the unstructured/semi-structured text.

Unstructured data (or unstructured information) refers to information that either does

not have a pre-defined data model or is not organized in a pre-defined manner.

Irregularities and ambiguities in the text make it difficult to understand using

traditional programs when compared to data stored in fielded form in databases or

annotated (semantically tagged) in documents [4]. The unstructured data is mostly

generated by systems like social networks, blogs, comments and mobile data content

like text messages, e-mail, etc., Therefore, the IE system takes unstructured text and

finally produces structured/tabular data. The IE system is a pipeline in the process.

6

Some of the main important parts of this pipeline are tokenization, Part of Speech

(POS) tagging, Named Entity Recognition (NER) and relation detection [3].

Tokenization is the process of taking the text or set of text and splitting them into its

individual words at the same time removing certain characters such as punctuations.

Then the POS tagging is the expansion of the part of the speech, which assigns parts

of speech to each word such as noun, verb, and adjective. There are two main

approaches in POS tagging: rule-based POS tagging and stochastic POS tagging. The

rule-based method uses contextual information to assign a label to unknown or

ambiguous words. Disambiguation is done using the linguistic features of the word, its

previous word, its next word, and other aspects [5]. NER classifies named entities from

text segments into pre-defined categories such as places, cities, dates, person and

organization. The major NER techniques are Dictionary Look-Up, Rule-Based (using

lexical, contextual and morphological information), Maximum Entropy Theory-based,

Hidden Markov Model, Conditional Random Fields (CRF), and Hybrid methods

(Statistical+ Linguistics) [6]. Among those techniques, most of them have solutions

with good accuracy. But the NER research field has been growing during recent days

and it has got the attention from both academe and business, because of its ability to

solve real-world problems.

Structured data is the most preferred form of computational processing. But the social

media messages are the most complex form of unstructured data. Sometimes, even

humans may face difficulties in reading those social media messages, so it is much

more complex for a computer system to understand those messages.

In our research problem, we focused on IE from text messages. There are many

methods to convert unstructured text data into a structured form such as text mining

approaches, text preprocessing, text representation, vector space model, text

classification, text clustering, NER, relation extraction, semantic web, linked data and

knowledge base. In our product attribute matching problem, we are focusing on the

methods that can apply to the extraction of product attributes. As a requirement, we

plan to extract five product attributes such as product name, brand of the product,

model of that product, which product group the product belongs to and the selling

status of that message. So, we assume the following approaches may help us to fulfill

7

our requirements such as text preprocessing, text classification, NER, semantic web,

and knowledgebase/linked data.

2.1.1 Text Preprocessing

In any text-based processing task, there must be a preprocessing step required. There

are a lot of methods that can apply on the text before the actual process such as

punctuation removal, numbers, lowercasing, stemming, stop word removal, n-gram

inclusion, infrequently used terms, document Indexing and string similarities.

Stemming is the process of getting the most basic form of a word.

In any text-based processing task, there must be a preprocessing step required. There

are a lot of methods that can apply on the text before the actual process such as

punctuation removal, numbers, lowercasing, stemming, stop word removal, n-gram

inclusion, infrequently used terms, document indexing, string similarities and removal

of hyperlinks [3], [4]. If you look at the important steps, detailed stemming is a

frequently used method in text preprocessing. Stemming can be defined as getting the

base form of a word. The goal of stemming is to reduce inflectional forms and

sometimes derivationally related forms of a word to a common base form. For

example:

am, are, is be

car, cars, car's, cars' car

According to the above transformation, a sentence and result after stemming can be

given as:

the boy's cars are different colors

the boy car be differ color

There are a lot of works done on stemming such as Lovins stemmer, Porter’s algorithm

[7] and Paice/Husk stemmer [8]. The n-gram a has a wide range of applications in text

preprocessing, such as improving the interpretation of the multi-word contiguous

sequence of tokens of length n [9] and improving the interpretability of bag-of-terms

[3]. Usually and n-gram is applied with a degree of 1, 2 and 3. However, the problem

is the explosion of vocabulary size. String similarities can also be considered as a text

preprocessing method. String comparing is the main application of string similarities.

8

There are many algorithms that can do this by measuring the edit distance between two

words usually used in a string comparison, for example, Damerau-Levenstein distance

[10]. The string distance is defined as the minimal edits necessary to get one from

another [11]. The edit distance can be generalized using a weighted edit distance using

a biosequence algorithm named Needleman–Wunsch algorithm [12]. The next

common string comparison method in use is Jaccard Distance which works at a token

level, checking two strings by first tokenizing them and then dividing the number of

tokens shared by the strings by the total number of tokens [13]. The next string

comparison algorithm defined by the U.S. Census Bureau for comparing single person

names named Jaro-Winkler Distance [14]. The final string similarity algorithm to list

is TF/IDF Distance which is based on vector similarity. The basic idea is that two

strings are more similar if they contain many of the same tokens with the same relative

number of occurrences of each [9].

2.1.2 Named Entity Recognition

NER is a process where an algorithm takes a string of text (sentence or paragraph) as

input and identifies relevant nouns (people, places, and organizations) that are

mentioned in that string or categorized to a certain topic. NER is useful in various NLP

applications such as information retrieval, question answering, and machine

translation. When labeling the sequence of tokens two types of labeling methods that

are followed widely are BIO and BILOU. Here B, I, and O represent Beginning or

Inside or Outside accordingly. Two challenges we need to address in NER are

recognition of named entity boundaries and recognition of named entity categories

(classes) [15].

There are two main types of approaches followed in the NER process rule-based NER,

statistical NER, and NER using deep learning. If we take the rule-based approach it

can be either a set of named entity extraction rules, gazetteers for different types of

named entity classes, and the extraction engine which applies the rules and the lexicons

to the text. Likewise, if we take the statistical approach the following two things are

always essential labeled training data and a statistical model. In this case, NER

becomes a supervised learning model, and it classifies the sequence of tokens.

9

The Hidden Markov Model (HMM) is one of the well-known approaches for the

sequence labeling problem. Here the states are representing the category or class which

can generate the tokens. Also, the classes depend on a few earlier tokens. The trained

HMM model is generated by calculating the probability of the above two sets of

parameters of different state of classes and generations of tokens in training data. So,

the trained model selects the class where it most likely maximizes the product of the

above two parameters. State of the art results on the MUC-6 and MUC-7 data using an

HMM-based tagger have reported in [16]. Here they used a wide variety of features,

which suggests that the relatively poor performance of the taggers used in CoNLL-

2002 was largely due to the feature sets used rather than the machine learning method.

The limitation in HMM is considering tokens as being independent to each other [17].

A few other richer models exist that overcome the limitations of HMM such as

Maximum Entropy [18], the Perceptron [19] and the CRF [20].

2.1.3 Conditional Random Fields

Conditional Random Fields (CRF) is a discriminative model used for predicting

sequences. They use contextual information from previous labels, thus increasing the

amount of information the model must make for a good prediction. In CRFs the

training and test data are sequential, and we must take the previous tag into

consideration when labeling a token. CRFs have all the advantages of the Maximum-

Entropy Markov Models (MEMMs) but also solves the label bias problem. The main

variation between CRFs and MEMMs is that MEMMs use per-state exponential

models for the conditional probabilities of the next state given the current state, while

a CRF has a single exponential model for the joint probability of the entire sequence

of labels given the observation sequence. Therefore, the weights of different features

at different states can be traded off against each other [20]. If we consider the

difference between the CRF and the Hidden Markov approaches both are applied to

label sequential data, even though both differ in many ways. For instance, the Hidden

Markov Models are generative and produce the end result by using the joint probability

distribution. Instead, the CRF is discriminative and also uses the conditional

probability distribution. CRFs do not depend on the independence assumption and

ignore label bias.

10

The CRF model defines dependencies among adjacent tags, based on the assumption

that these dependencies are influential [8]. This assumption neglects a few more

significant dependence facts, and it confirms that these facts can enhance the efficiency

of the CRF approach. Some specialty ontology features are included in CRF, and their

result proves that it can increase the performance [7]. In CRF, a result of the

transformed Viterbi approach joint with some other rules are used to get the N-Best

outcome [6]. Then, some rules are applied to separate the N-Best effects, which might

still cause poor results. It proves that it can get a good outcome.

The advantages of the CRF approach is more suitable for PRO NER than other

approaches. But, the CRF approach needs some more substantial dependence

information in some conditions.

2.2 Social Media Data

Social media messages exhibit the four Vs of big data. First, the velocity of a social

media messages can be high as thousands of messages are generated by hundreds of

millions of users [21]. Hence, the proposed solution should be able to process those

messages with the throughput identical to the velocity of the incoming social media

messages. In Section 2.3 we discuss how social media messages with high velocity

can be handled.

Second, due to the high velocity, social media messages also generate high volume of

message with time. In a matter of hours to days social media messages could generate

hundreds of terabytes of data. Such large volumes not only cause storage issues but

also lead to several other challenges such as the need for fast disk writes and low

latency searching/querying while maintaining core features of a storage system such

as availability, consistency, and partition tolerance.

Another characteristic of the social media message is the variety of content. Users of

social media generate a variety of content that are mostly unstructured [22], dynamic,

and unpredictable. Moreover, messages include different type of content such as text,

emoticons, links, videos, and images. Therefore, processing social media messages is

not that easy unlike processing a predefined stream with a single type of content.

Veracity is the last challenging nature of social media. The content of social media

11

apart from unstructured shows some nature of uncertainty. Also, there is a chance that

messages are interpreted with different meanings by different people. The content of

social media is too small, so it contains a lack of information, which makes it hard to

using only social media.

2.3 Stream Processing

From audio stream to Global Positioning System (GPS) Stream and sensor stream to

social media stream, all these streams are not only just for consumption, visualization

and filling the storage, but we can also utilize those streams to get more benefits in

real-time as well as in the future. Stream processing is one of the trending technologies

in the era of big data. You can see the usage of stream processing from stock exchange

predictions to weather forecasting and disaster management.

Since stream processing is a part of the big data ecosystem, it must be capable of

handling the stream data flow in big data dimensions, especially high velocity (in real-

time stream processing) and a large volume of data (in batch processing) [4]. There

are several other issues like guarantying the data consistency, availability (failover

mechanism), and complexity.

There are several use cases with different requirements in stream processing. In some

scenarios, the stream should be processed at very high speed and the result should be

produced in real-time. In some other cases, a little delay may be acceptable. In the

worst-case delay, like one hour or one day, it is suited for some large data processing

conditions. According to the time taken for the processing of the stream, we divide the

stream processing into two; real-time stream processing and/or near real-time stream

processing, and batch processing. Stream processing has several aspects such as real-

time processing, distributed stream processing, decentralized stream processing,

guaranteed stream processing, publisher-subscriber mechanism, fault-tolerance, and

scalable. If you take the real-time processing dimension in stream processing, this real-

time term is based on the time, latency and a few other factors such as data motion,

and data access. We can divide the big data process into two types; batch processing

and real-time processing. Table 2.1 compares the differences between batch processing

and real-time processing. Even if we use the term real-time processing, it is near real-

time if any system can process a single element of the data in less than 1 millisecond

12

can consider as near real-time processing. Next, we cannot avoid the third option,

which is a hybrid solution of real-time and batch processing. An example of such a

processing model is the Lambda Architecture that we discuss in detail in the following

section, Section 2.4 big data storage and processing. If we take the real-time

processing, there are a few requirements to fulfill; conditions such as keep the data

moving, having a stream-based SQL, handle the stream.

Table 2.1 Difference between batch processing and real-time stream processing.

Batch Processing Stream Processing

Data is at rest Data is in motion

Batch size is bounded Data is essentially coming in as a stream and is unbounded

Access to entire data Access to data in the current transaction/sliding window

Data processed in batches Processing is done at event, window, or at the most at micro batch

level

Efficient, easier administration Real-time insights, but systems are fragile as compared to batch

Imperfections (Delayed, Missing and Out-of-Order Data), Generate Predictable

Outcomes, Integrate Stored and Streaming Data, Guarantee Data Safety and

Availability, Partition and Scale Applications Automatically and Process and Respond

Instantaneously [23]. If we focus on a few important factors mentioned above. One of

the important requirements is to make sure that each message is processed. In this

aspect, the process has three types in the real-time process according to the

requirements; at most once, at least once and exactly once. Table 2.2 lists the

characteristics of each processing type.

Table 2.2 Three types of guaranteed processing in real-time processing.

At Most Once At Least Once Exactly Once

Subscribes to data from the

start of the next window

Operator brought back to its

latest checkpointed state and

the upstream buffer server

replays all subsequent windows

Operator brought back to its

latest checkpointed state and

the upstream buffer server

replays all subsequent windows

Ignore the lost windows and

continues to process incoming

data normally

Lost windows are recomputed

& application catches up live

incoming data

Lost windows are recomputed

in a logical way to have the

effect as if the computation has

been done exactly once

No duplicates & no re-

computation

Likely duplicates & re-

computation

No duplicates & re-

computation

Possible missing data No lost data No lost data

13

 Figure 2.1 shows that Spout A emits a tuple T(A), which is processed by bolt B, and

bolt C, which emits the tuples T(AB) and T(AC), respectively. So, when all the tuples

produced due to tuple T(A) – namely the tuple tree T(A), T(AB), and T(AC) – are

processed, we say that the tuple has been processed completely. If the message reaches

the destination task, it is considered as a completed message, otherwise, it is a failed

message. To implement guaranteed message processing, one of the recognized ways

is sending the acknowledgment to the root emitter. Figure 2.2 shows each task of

sending an acknowledgment to the spout if the message is successfully processed. If

the task is not sent the acknowledgment to the spout that message considered as a failed

message. So according to the guaranteed messages processing optimization either at

most one, at least one and exactly once, these failed messages may process again until

it processed successfully.

The next important feature in a real-time stream processing system is stream grouping.

Currently available stream grouping types are Shuffle grouping - which randomly

partitions the tuples, Fields grouping - which hashes on a subset of the tuple

attributes/fields, all grouping - which replicates the entire stream to all the consumer

tasks and Global grouping - which sends the entire stream to a single bolt [24]. Figure

2.3 illustrates the distribution of messages among tasks in each stream grouping type.

Figure 2.1 Typical stream processing with multiple sequence of task.

14

2.4 Big data persistence and high frequent data manipulation

In this section, we analyze a few main challenges in dealing with big data, specifically

big data manipulation. The problem is that we are storing the big data in a NoSQL

database, which contains hundreds of millions of data entries distributed among

multiple nodes, but the requirement is to be able to query the data from NoSQL with

low latency and high frequent queries. Here, we going to discuss four solutions for this

problem, namely NoSQL native solution, Lambda architecture, Kappa architecture,

and in-memory computing.

Figure 2.2 Acknowledgement mechanism in Storm.

Figure 2.3 Four types of stream grouping.

15

Several NoSQL database products currently in use, and among them Cassandra, it

performs well compared to other products [25]. If we analyze the arrangements in the

Cassandra NoSQL database for big data, when writing, initially the new data goes to

the commit log, then the data is stored in the memory for a while. Memtable is a

memory caching data structure where if the memtable reaches the upper bounty, the

data is permanently flushed into the stable (Sorted Strings Table), which is in the disk.

During the read operation or data manipulation, Cassandra consults a bloom filter that

checks the probability of a table having the needed data. If the probability is good,

Cassandra checks a memory cache that contains row keys and either finds the needed

key in the cache and fetches the compressed data on disk or locates the needed key and

data on disk and then returns the required result set.

Next, we discuss the lambda architecture [26]. Here, rather than directly reading from

the NoSQL table, a pre-computation process takes place and creates batch views. As

illustrated in Figure 2.4 the data comes to the system and splits into two layers, the

batch layer and the speed layer, for processing. Managing the master immutable

dataset and pre-computing the data views are the two main functions of the batch layer.

In the middle, the serving layer generates the indexes from the batch view to enable

low-latency data manipulation. Any data query can be obtained by combining both

results from real-time data and batch data.

As illustrated in Figure 2.4, Kappa Architecture is derived from Lambda Architecture.

There is no batch layer in Kappa architecture. Instead of the batch layer, it is cloned

into two real-time streams.

16

2.5 Existing Solutions for C2C matching

We are unable to find an existing solution that matches real-time C2C matching the

research domain, but there is some part of our problem that has been previously tried

by a few people. First, if we consider the product attribute extraction section, people

have approached this matter in two different ways, Rule-Based methods NER PRO is

mainly run using some manually created or automatically generated rules. Pierre [27]

has developed an English NER system that allows product names to be found in

product reviews. Like string template matching, a simple Boolean product name

classifier was used. However, in this way, many new product names are not included

in corpus training, and results may be worse in certain situations.

Statistical model-based approaches usually apply statistical models integrated with

Figure 2.4 Lambda architecture and Kappa architecture

Source: Adapted from [25].

17

some heuristics and external knowledge bases. For example, a bootstrap method using

two consecutive learners (syntax-based decision list and hidden Markov model) is

presented in English NER [25]. The main advantage of this method is that it avoids

manual annotation of the practical training corpus, but it has two problems. The other

is that it relies heavily on parser performance. In [26], another very similar approach

was used. There, all O & M ontology XML tags have been mapped to the OWL

concepts. Although the author describes access to annotated data on SPARQL queries,

SPARQL queries generate large amounts of traffic at low sample rates, so for

applications that need to access sensor data in real time, it is not effective. Therefore,

there remains a need for solutions for real-time semantic annotation as well as for the

efficient representation of sensor data knowledge in dynamic environments such as

smart cities.

2.6 Summary

In this chapter, we discussed the abstract architecture nd mplementation, which

includes our main components such as IE, Bigdata, and social media, stream

processing, bigdata persistence, and high-frequency data manipulation from a NoSQL

database. Furthermore, in IE, we discussed the main approaches we used, such as text

preprocessing and social media message normalization. Then we moved into NER,

here we presented the algorithms we used such as CRF and Logistic Regression. In

Section 2.2, we analyze the nature of social media data, particularly the bigdata feature

applied to social media messages. In the next section, we moved into the performance

problem. First, we drill down the available technologies in stream processing,

particularly the types of stream processing are batch processing and real-time

processing. Then we discussed guaranteed stream processing and parallelism in

distributed real-time stream processing. Finally, we discussed bigdata persistence and

high-frequency data manipulation. Here, we discussed available technologies for

managing huge data, especially a fully decentralized distributed NoSQL that has high

availability and low latency. Then we finished with low latency data manipulation in

a very high-frequency stream environment. We found the following technologies such

as batch processing, micro-batch processing, material view, and Lambda Architecture.

18

CHAPTER 3

RESEARCH METHODOLOGY

The objective of the research is to find the matching social media messages related to

the C2C business model. Figure 3.1 illustrates the three main aspects involved in this

problem, namely Information extraction (IE) from row social media messages,

matching the messages based on the semantics, and process above two in real-time.

Table 3.1 lists the three main aspects and technologies. Section 3.1 presents the

methodology of IE. The matching methodology is presented in Section 3.2. In the next

section, we talked about the approach we applied in the implementation of real-time

big data processing. Finally, in Section 3.4 we presented the high-level architecture of

our research.

Table 3.1 Three aspects and relevant technologies.

Information Extraction Matching Real-time Big Data Processing

Gazetteers Complex event processing Stream processing

Machine learning Business analytics Distributed computing

Linked data NoSQL database

Conditional random fields In-memory computing

Logistic regression Search & indexing

Named entity recognition

3.1 Information Extraction

As the social media messages are in unstructured form, it is difficult to compare

messages with each other and find the matching set of messages. There are several

reasons for this difficulty. One of the differences between the C2C social media

Information Extraction Matching

Real-time large-scale big data processing

Figure 3.1 Association between three aspects of our research problem.

19

messages and the product listing on general e-commerce sites like eBay or Ali Express

is the organized nature of the content. While most e-commerce product content is in

semi-structured form, social media messages are in unstructured plain text. Moreover,

C2C-related social media messages not only contain the product details as the user can

add irrelevant content to the message, e.g., but the messages may also contain greetings

with product attributes such as the example given in

Figure 3.2. Number 1 highlights the product attribute and the rest of the text is

irrelevant to the product. At the same time, the message contains non-dictionary words

as well (highlighted as number 2). The third reason is the inaccuracy in messages such

as typos or confusion. For example, the correct wording of the product should be “Sony

DSC -H400”. At the same time, the second message mostly contains the product

attribute in its text. If we compare both the messages using Levenshtein distance [28],

there is a large variation between the two messages. However, producing the semantics

or structured form of a message from the plain unstructured message is not straight

forward. IE needs to produce structured messages; in our case, as we use statistical IE.

3.2 Matching

As seen in Figure 3.3 to be able to match messages, we need to:

1. Work with a stream-based data flow

2. Detect matches between real-time messages

3. Detect matches between messages in near real-time

4. Match both real-time live messages and offline stored messages

5. Fulfill the availability and horizontal scaling needs

6. Match both complete matching and partial messages

To fulfill all the above requirements, we came up with a combination of multiple

emerging technologies. For example, complex event processing is used to process a

structured stream input data flow to find matches among real-time data and near real-

time data stream using time windows. To perform a high-frequency search with low

latency over a large database, we implemented a combination of big data technologies

like NoSQL database, data indexing, in-memory computing, and map-reducing. In the

upcoming sections, we discussed those methodologies in detail.

20

Figure 3.2 Two sample tweets with a mix of product attributes and greeting.

3.3 Real-time big data processing

IE and matching phases can handle a single message at a time and have relatively high

latency. Therefore, under the high input rate experienced in social media, messages

will get queued increasing the overall response time. The process-level distribution

could be used to solve this issue. To make it work in an optimized environment, we

split the above two main processing units such as IE and matching into several small

building blocks. Then, according to the workload/complexity and the latency of each

component will be assigned with a parallelism index in our distributed stream

processing environment.

3.4 High-level architecture

Figure 3.3 illustrates the data flow between each building block of our system. As

illustrated in Figure 3.4, the IE phase is used to convert the unstructured social media

messages into a structured form which is taking place in the Storm cluster. The

21

matching component is responsible for finding the matching messages among the

structured message stream produced by information extraction part. Matching process

happening inside the WSO2 DAS. To process this social media messages in real-time,

both IE of the messages and matching the messages must work with low latency in any

complex use cases. With a standalone application we cannot achieve this.

The real-time implementation facilitates three internal requirements, namely

processing social media message stream in near real-time, storing the huge volume of

semantics generated by stream processing, and real-time query processing. Mostly the

IE and some other supportive process were executing on top of the distributed parallel

stream processing.

So, with the help of distributed stream processing, each subtask executes multiple

instances parallelly. The list of sub-tasks and the purpose is given in Table 3.2.

According to the requirement, the parallelism of a task can be adjustable, e.g., five

message receiver instances, ten NER instances, and two persisting instances. Because

of this parallel execution feature provided by the distributed stream processing

implementation, the incoming social media messages can be processed in near real-

time with low latency.

Figure 3.3 High level architecture of our framework.

22

The raw/plain text of social media messages is collected by a message receiver. Then,

the messages will reach the IE task, named as Named Entity Recognition (NER). The

IE part is split into several subtasks to extract various product attributes such as product

name, model name, product group, brand name, and commercial intention of that

message. Next, the semantics stream of the messages is replicated into three streams

and NoSQL database, in-memory computing, and complex event processor. The

NoSQL database receive and store messages for future use. In-memory computing

system converting the real-time message stream into a query which manipulate the

related messages from messages stored in the NoSQL database. The Complex Event

Processor (CEP) takes the real-time message stream as one input stream and related

stream produced by the in-memory system as the second input and match the messages

through based on a predefined set of rules. To connect to each of the above units, we

implemented another three-stream data transferring connector, namely persisting bolt,

real-time data manipulation bolt and publishing bolt to connect with the CEP.

Figure 3.4 The data flow between IE, In-memory, NoSQL and CEP.

23

Table 3.2 Components implemented using distributed stream processing.

Task Purpose

Message receiver Retrieving social media messages

NER Converting the unstructured social media messages into structured form/

semantics through named entity recognition.

Persisting Persisting the extracted semantics to the NoSQL database

Real-time data

manipulation

Search and retrieve the resulting from the NoSQL database according to the

query parameters taken from incoming semantics by connecting to the in-

memory computing component

CEP publisher Publishing the semantics stream to the complex event processor

CEP receiver Receiving the matched messages from complex even processor and sending

those matchings to the C2C publisher

C2C publisher This the final task connecting the consumers through notifying social media

users about the messages relevant to the message published.

 So, the same data stream is used for different purposes by different units to find out

whether the extracted semantics from real-time match the other messages in the real-

time stream and offline data. Matching between real-time and offline data is more

challenge than matching among real-time data. Such matching is challenging because

of high velocity and volume of social media stream. while storing all the messages in

NoSQL database, we simultaneity convert each real-time message to act as a query on

already stored buy/sell messages on NoSQL database. Therefore, the velocity of the

live social media stream determines the frequency of the queries. However, such high

frequency queries are difficult to handle with most databases. Moreover, all these

queries may need to scan all the data stored in the database linearly increasing the

query time with respected to the number of messages already stored in the database.

In our solution, we use a NoSQL database to handle four Vs of big data [29] while

distributing both the storage and workload across the multi-node distributed cluster.

Through the persisting bolt first replicated stream will reach the NoSQL database.

Each message in the real-time stream will make a query on the NoSQL database to

find potentially matching more complicated entries. To handle these high-velocity

queries, we use in-memory computing, materialized views and indexing. This

increases the throughput of query processing while reducing the latency. The real-time

data manipulation bolt is responsible for converting the semantics into the CEP

publisher bolt.

24

Finally, the third replication of real-time semantics occurs and the results from the

query processing are sent to the CEP through the CEP publisher. The CEP receives

both the real-time semantics and the results of the queries collected from the NoSQL

database. The CEP has several execution plans to process those messages and will

finally produce the matches from both streams. In the end, the matching details will

reach the right users through the CEP receiver and the C2C publisher [30].

25

CHAPTER 4

IMPLEMENTATION

 In this chapter, we explain the detailed? implementation of our solution. Our solution

contains four main technical aspects IE, real-time stream processing, big data

processing and matching the semantics of the social media messages. First, we start

with IE on Section 4.1 and later in Section 4.2 we explain the real-time and big data

processing mechanisms. Also, in Table 4.1 listing the major aspects applied in our

implementation, relevant tools, and their applications.

Table 4.1 Applied tools and their functionality

Tools Aspect Application

Nltk Information Extraction Python Natural Language Toolkit

LingPipe Information Extraction Tool kit for processing text using computational

linguistics

Fuseki Information Extraction SPARQL server for manipulating Linked data in

triple RDF format

Gate Information Extraction A general architecture for text engineering

Spark Information

Extraction/real-time

big data processing

Fast and general engine for big data processing, with

built-in modules for streaming, SQL, machine

learning and graph processing

WSO2 Data

analytical server

Matching An analytics platform that analyzes data streams in

real time

WSO2 Complex

event processor

Matching Helps identify the most meaningful events and

patterns from multiple data sources, analyze their

impacts, and act on them in real time

Apache Storm Real-time big data

processing

Distributed real-time computation system

Apache

Zookeeper

Real-time big data

processing

Distributed, open-source coordination service for

distributed applications

Apache Kafka Real-time big data

processing

Real-time data pipelines and streaming apps

Apache Cassandra Real-time big data

processing

Distributed NoSQL database management system

designed to handle large amounts of data across

many commodity servers, providing high availability

with no single point of failure

26

4.1 Information extraction

In our case, we have two main requirements related to IE the NER of product attributes

and classification of the messages. Both requirements needed training dataset. The

detailed set of the process is illustrated in Figure 4.1. The accuracy of a supervised

machine learning model increases with the size of the training dataset. So, a very large

training data set is necessary to get good accuracy.

Figure 4.1 Information extraction process

27

As we were unable to find any proper training dataset with product attribute labeling,

we generated a large size of the training dataset. Manually labeling each message will

take a long time. Therefore, we came up with an automated training idea. In our case,

we needed to recognize product attributes such as product name, brand of the product,

model of the product and several other functional/performance attributes. As shown in

Figure 4.2, to create a label for each attribute we needed the global list of the whole

values of that attribute e.g., only if we have the whole list of brands, are we able to

label the brand in our training set. So, we needed to collect a large list of terms for

each product attribute.

4.1.1 Gazetteer list Generation from Linked Data

Figure 4.2 Data sources of gazetteer lists belong to product attributes.

Basically, the gazetteer list is a list of text phrases, which is one approach in NER to

identify a named entity. But there is no gazetteer list publicly available for identifying

product attributes. So, we planned to prepare a set of gazetteer lists for product

attributes such as brand, product, and model. So, we identify certain datasets relevant

to the product details that are in a semi-structured format such as product details on

Wikipedia, Product listings on e-commerce sites, review records of product listings.

Our first data source is Wikipedia data, which is available in different forms such as

ontologies, Linked Data, RDF, semi-structured data, XML, n-quads, and n-triples.

28

Table 4.2 Sources of Product Linked data and statistics.

 Here, we focus on product linked data. This linked data is a graph net between product

related entities. These datasets are also called triple data, which are subject, object and

predicate. As illustrated in Figure 4.3, each attribute of the product contains three parts

such as subject, object, and predicate. Product data is a collection of multiple sources

which are listed in Table 4.2.

29

Here the statistics of crawled data, such as number of pages, number of pages with a

triple, and triple were given. This data set contains 6 million pages from the multiple

sources mentioned, and in size will be over 350 GB of compressed data in WARC

format. Here in this dataset, we identified 250 different product-related semantic

attributes. Few semantic entries are listed in Table 4.3. But in our research, we only

focused on a few semantic fields of products, such as product name, product group,

product brand, product model and some others.

Table 4.3 Few semantic entries from our product linked dataset.

So, to store the data we used an RDF (Resource Description Framework) [31] based

server called Apache Jena Fuseki [32]. Apache Jena Fuseki is also a platform to run

Figure 4.3 Single product entry in triple format.

30

the manipulation queries on top of linked data. This query language is commonly

known as SPARQL i.e., a semantic query language for databases [33]. In our case also

we need to manipulate multiple product attributes separately from this linked data

server. Table 4.4 shows the list of semantic URI references belonging to product

attributes, which is the result of the following SPARQL query.

So, the following queries were used to generate the pre-normalized version of the

gazetteer list.

Product name manipulation query

 1 SELECT DISTINCT ?productName

 2 WHERE

 3 { GRAPH ?g {

 4 ?s <http://schema.org/Product/name> productName

 5 }

 6 }

Product model manipulation query

 1 SELECT DISTINCT ?productmodel

 2 WHERE

 3 { GRAPH ?g {

 4 ?s <http://schema.org/Product/model> ?productmodel

 5 }

 6 }

Product brand manipulation query

 1 SELECT DISTINCT ?productBrand

 2 WHERE

 3 { GRAPH ?g{

 4 ?s <http://schema.org/Brand/name> ?productBrand

 5 }

 6 }

From the RDF data store, we are able to generate a certain large size of the gazetteer

list of the various product attribute.

31

Also, we found semi-structured product data set from some other resources which are

in json form. Here mainly we collected from two sources metadata of Amazon product

listings [34] and gold standard Product Feature Extraction from webdatacommon [35].

Table 4.4 Semantic references belonging to product attributes.

http://schema.org/Product/offers

http://schema.org/Product/name

http://schema.org/Product/url

http://schema.org/Product/gtin13

http://schema.org/Product/review

http://schema.org/Product/mpn

http://schema.org/Product/aggregateRating

http://schema.org/Product/brand

http://schema.org/Product/color

http://schema.org/Product/model

http://schema.org/Product/description

Table 4.5 Dataset summery for gazetteer generation

Dataset no Source Type Obtained Product Attributes

Dataset1 Linked data N-Quarts(RDF) Product_name,model and brand

Dataset2 Amazon json Product_name, category, brand

Dataset3 Web data

common

json Product_name, brand, product_type,

manufacturer and phone_type

This dataset includes product reviews, rating, and metadata from Amazon, including

142.8 million reviews spanning May 1996 - July 2014 [36]. This dataset includes

reviews (ratings, text, helpfulness votes), product metadata (descriptions, category

information, price, brand, and image features), and links (also viewed/also bought

graphs). In this dataset the brand and product category ware very useful to our

experiment.

Here in this dataset, the records ware included from various e-commerce sites. The

labeled set contains out of 500 product entities, while the distinct labeled properties

are 338 in total. The product entities were labeled as JSON objects [37]. Here the

dataset includes many product attributes for each product. It may vary from product to

32

product. The headphones contain 36 attributes, phones contain 32 attributes and tv

contains 76 attributes.

So, from these three datasets, listed in Table 4.5 we were able to collect noisy product

attributes of product name, product model and product brand. From the above process,

we generated a gazetteer list for the above product attributes, which helped us in

labeling the training dataset to produce the machine learning model to NER. At the

same time, product category and sale status ware two classification problems. We

needed to classify each message to a suitable product group, as well as classify the

message to the right sale status among buy, sell, and neither. Our second dataset was

used to generate the classification of the product category. But all this data is very

noisy, so we implemented certain normalization techniques, which are described in the

following section.

4.1.2 Product domain Named Entity recognition

For NER we needed a labeled dataset but, in this case, the domain is very large. So

manually labeling a small number of messages will not give an accurate result. Using

gazetteers, we managed to label a significant number of messages. In the above step,

we directly produced three gazetteer lists belonging to the product name, product

model, and product brand. Even though those gazetteer lists were very noisy, we came

up with a normalized version of the gazetteer list through several steps, which are

mentioned below.

Normalizing the gazetteer list

For each product attribute, we got a very large number of noisy lists. Those lists had a

lot of problems, such as duplicated entries, case sensitive, containing prefixes,

containing suffixes, containing symbols, containing numbers, very long words and a

large number of words [38]. First, we filtered the entries that were less than four words.

Then, we removed the entries containing stop words, using the python NLTK library.

Also, if any entry had very long individual words, they were removed from the list. To

reduce the noise, we filtered the entries with numbers and symbols. Later, we

generated separate files according to the number of words, so we had 4 files for single

word entries e.g., maco, mage, malo, maps, tomato, maxx, and meco, two-word

33

entries, e.g., mosey life, mount pros, music hall, then tri word entries e.g., sp studio

lighting, sport supply group, stone case company.

For the single word list of brands names, we checked whether the word is a dictionary

word or not. If it is a dictionary word, we remove that word from the list. However,

we added popular brands that are even dictionary words, such as apple and orange.

When checking the dictionary, we used Wordnet [39] because helps to identify all the

forms of dictionary words. Also, we allowed single words that were the concatenation

of two dictionary words e.g., microelectronics. For the entries that had more than one-

word dictionary words, it was not an issue. Later, we sorted each list according to the

length (number of characters). In the end, we made a single list by merging all 3 lists

together according to the word size, and secondly length. Finally, we were able to

generate a brand gazetteer list with nearly 15000 entries. Most of the entries are

relevant to the C2C business model.

4.1.3 Training dataset Generation using the gazetteer

We had 5 datasets for different named entities brand, model, product name, product

group, and sale state. But these gazetteers generated above are used only for the brand,

model, and product name. We only selected the above five attributes due to the

research constraints and we are looking to expand the number of attributes in future

research. The datasets are a collection of social media messages from different sources

such as Twitter feeds, and product listings from different C2C and B2C websites such

as eBay and Amazon. The challenges in this training process are the labeling segment

not having a static length, i.e., the number of words in each labeling element is

different. Other than that, when thinking about automated training /labeling task we

cannot expect that the words will exactly match an element in the gazetteer list, e.g.,

GW Security Inc vs. gwsecurity in this case has very few differences such as the space

between GW and security, missing of Inc in training set, difference in case. The next

challenge was the overlapping between two elements e.g., smartworks consumer

products and smartworks. If both are in our gazetteer list, and if both represent two

different brand names, then there is a conflict as one of the brand name is a part of

another brand. The next challenge here is the occurrence of multiple entities of the

same type, i.e., multiple occurrences of product entity in a single message. So even

34

after detecting an entity, we cannot stop the process for the rest of the text as we have

to check against the gazetteer from the beginning.

4.1.4 String comparison in automated training

In our case, when we automatically trained the dataset it was a complicated task to

recognize the multi-token named entities. In our gazetteer list, we have elements up to

3 words after normalizing. As the gazetteer generation list is sorted according to a

number of words primarily, and the character length, the lengthy element will be

labeled, and the others ignored if that matched multiple elements. This was

implemented using n-gram [40]. First, the social media messages will go through an

n-gram with the size from 3 to 1. Then, there will be a segment with n number of words

next, that must compare with the gazetteer list. As we said earlier, a single instance

may be located with little difference in both places. So, to overcome this, we

implemented a few string similarity techniques. We only applied the string comparison

to the entities with a length of more than 5. For smaller words, it may not work well.

So we used the Jaccard Distance [13] based character distance edit method of 0.2 edit

distance, as well as a token-based Jaccard Distance of 0.2.

4.1.5 NER using Conditional Random Fields

Conditional Random Fields (CRF) is a conditionally trained unidirectional graphical

model. It can apply to standard linear-chain structure. So we selected the CRF [20]

approach over the maximum entropy classifier, hidden Markov model [20] approach

over maximum entropy classifier, hidden Markov model and maximum-entropy

Markov model. The above four methods are relevant to sequential labeling. The

Maximum-entropy Markov model makes decisions at each element independently

However, the hidden Markov model overcomes the drawback of not showing good

performance on the unknown label sequences. The Maximum-entropy Markov model

overcomes the shortages and combines the advantages of maximum entropy and the

hidden Markov model. So, we selected CRF it overcomes the problem with the

Maximum-entropy Markov model such as label biased problem and the CRF avoid

bias problem. The maximum-entropy Markov model is locally normalized but the CRF

is globally normalized. The CRF is now widely used in many domains because of its

state-of-the-art results.

35

Let X1: N denote the subset of a message and Z1: N the label of the named entity. Here,

the Z is the normalization factor. Feature Functions are a key component in CRF. In

our case, the feature function deals with many features e.g., the feature function will

generate binary values. It is 0 if the current word is “sony”, and if the current state Zn

is “BRAND”. If this feature condition is satisfied,

 𝑓1(𝑧𝑛−1,𝑧𝑛, 𝑥1: 𝑁, 𝑛) = {
1 𝑖𝑓 𝑧𝑛 = 𝑏𝑎𝑟𝑛𝑑 𝑎𝑛𝑑 𝑥𝑛 = 𝑠𝑜𝑛𝑦

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4-1)

Unlike other algorithms, CRF depends on other positions as well. So, the feature

function will calculate the previous and next label as well e.g., if the current label is

brand and the next label is a product, the feature function for Xn+1 will activate. The

following Figure 4.4 is a graphical model presenting the CRF. XI represents the word

elements and yi represents the labels.

In NER there are serval machine learning based approaches. The whole NER process

was done using a Java NLP framework called LingPipe [41]. First, we implemented a

training corpus compatible with Lingpipe.

Also, the ratio between the training dataset and the test dataset was 8:2. After the

creation of the corpus, we must tokenize the corpus. In tokenizing the corpus, we

implemented the BIO based tagging standard. This means that for each label, it may

contain one or more words. So for the labeling, we placed each word in separate lines,

then if the word was not in the label, it was labeled as –O, if the word was at the

beginning of the label, it was labeled -B, if the word was part of the label but not at the

start, then it was labeled as -I. In the model generated, feature extraction is a major

Figure 4.4 Graph view of CRF model.

36

component. We implemented the following feature extraction techniques.

4.1.6 Product group and commercial intention classification

The next information we extracted from the C2C related social media messages were

product group and commercial intention. Both of these attributes were not directly

extracted from messages. Rather, each message classifies into predefined categories.

In product classification, we have 3 categories that are available in our collected

dataset, namely, electronics, musical instruments, and cellphones. Likewise,

Table 4.6 List of features used to classify the messages.

Selling Feature Buying features

containing URL No URL

many product specifications No product /fewer product specifications

certain terms such as

• I'm selling

• buy cheap

• cheap

• for sale

• check out

• low price

• deal

• shop

• reasonable

• sell

• buy

• purchase

• retail

Usage of certain terms such as

• have to buy a

• I want a

• looking for a

• how much the

• planning to buy

• urgent need

• need a

• ready to buy

• can pay to

• wanted

• for buy

• to buy

Less abbreviations / non-dictionary words Usage of abbreviations

in commercial intention classification, we have another three buckets, namely, selling,

buying, and nether. Here, we used the Logistic Regression Classifier. In our total

corpus, nearly 1 million messages were included. The corpus was divided into a

training set and test set in an 8:2 ratio.

4.1.7 Feature extraction on the classification

Feature extraction is an important aspect of any supervised machine learning method.

In this logistic regression-based classification problem, we included several features

37

to classify both product group and commercial intention [42]. The features are listed

in Table 4.6.

POS sequence features are also very important in commercial intent classification. In

Table 4.7, we listed those POS sequences with example messages and the syntax tree

for each POS sequence. The list of POS sequences mostly occurred among C2C e-

commerce social media messages. Also, the selected sequences are specific to certain

commercial intent, either buying or selling.

Table 4.7 POS based features

POS Sequence attributes Status

VB JJ NN CD sell

NN CD CD sell

NN JJ CD sell

NN CD CD NN sell

NN IN DT JJS sell

VB DT JJ NN buy

VB JJ NN CD NN sell

NN JJ CD sell

JJ NN FW buy

FW MD buy

VB JJ NN buy

4.2 Real-time stream processing

At the end of the IE, we will have the semantics of the messages. The next thing is

matching relevant C2C messages based on the semantics. But the C2C social media

matching use case is a big data problem, so we must solve this from different aspects.

Both the IE and C2C message matching have two different big data challenges. To the

IE we to make sure that the C2C messages are processed in real-time. So, we

implemented a real-time IE solution for a high-velocity C2C social media stream using

distributed real-time stream processing. So, the next problem is real-time C2C

matching based on C2C. We had two challenges: real-time query processing from the

38

NoSQL database and real-time and batch-based matching within complex event

processing. We explained the detailed implementation in the following sections.

4.2.1 Real-time information extraction

In big data processing, we had mainly two processing types of first real-time

processing and batch processing. To implement the real-time IE we used distributed

stream processing. We implemented the distributed stream processing using Apache

storm. We can divide the implementation into two sections: physically distributed

cluster and programmable logical topology. In the following topic, we explained about

creating the cluster and the tools used in disturbed stream processing and the

supportive services needed to achieve this, such as message passing, data bus,

publisher-subscriber agent, distributed coordinator, and master-slave architecture.

Real-time distributed stream processing cluster implementation

As we explained earlier, to achieve real-time IE using distributed stream processing a

distributed solution was implemented on top of the multi-node cluster. We used

Apache Storm [43]as the software framework. It is a master-slave architecture given

in Figure 4.5 to connect all the nodes in the Storm cluster Apache Zookeeper

coordination service was used. This distributed infrastructure providing us the

parallelism to achieve real-time processing.

Figure 4.5 Apache Storm physical architecture.

39

Distributed coordination service

Coordination service is a core of the storm architecture. In Storm, Zookeeper is

used as the coordination service. So, we first implemented a single-node

Zookeeper cluster. In the Storm-distributed cluster, Zookeeper provided many services

such as sharing configuration information among every node in that cluster and

coordinating the various processes. Zookeeper acts as the storage space in the Storm

cluster to store all the data and task records. Finally, it provided the ability to ensure

availability through a multi-node cluster. As discussed earlier, using a distributed

election approach, Zookeeper elects a leader and rest of the nodes act as followers.

To keep the cluster working continuously, the live/running nodes should be greater

than n > 2. Also, as recommended, we assigned an odd number of nodes for our

experiment. If we use 4 nodes, the minimum number of live nodes should 3 (3 > 4 /

2). So here, only one node can die. If we use 5 nodes while keeping the system

available, two nodes can die.

The Zookeeper ensemble configuration is given below. Here the tickTime is the basic

unit of time in milliseconds used by ZooKeeper. It is used to send heartbeats, and the

minimum session timeout is twice the tickTime value. The four nodes of the Zookeeper

cluster are mentioned in each ensemble configuration, such as a server.1,

After implementing the coordination cluster using Zookeeper with four server nodes,

the second node was elected as the leader and all other three nodes were assigned as

followers.

Real-time distributed parallel stream processing cluster

We used Apache Storm as the real-time distributed stream processing engine. As the

main requirement for the Storm cluster implementation, the Zookeeper-based

coordination service cluster was implemented above. In the next step, we implemented

the physical distributed environment/infrastructure with both software and hardware

resources to fulfill the real-time IE requirements. So, we implemented a six-node

Storm cluster with 2 nimbus nodes and 4 supervisor nodes.

The nimbus nodes were configured by providing the IP address of the Zookeeper

40

clusters in the first place. In our Storm cluster, we assigned three Zookeeper node

clusters, so we mentioned those addresses in the configuration. At the same time, in

our Storm cluster, we assigned two nimbus nodes to overcome the failover. At the end,

the Storm cluster was implemented and up and running, and we could monitor the total

cluster using the Storm UI. Our distributed real-time IE infrastructure was completed

at this point. In the next section, we explain the software implementation of our

distributed processing of IE on top of this infrastructure.

Distributed real-time information extraction

We already did the core of the IE for regular application through sequence labeling /

NER models and classification models. Also, we implemented the multi-node

distributed cluster environment using Apache Storm and Zookeeper. In this section,

we are going to explain the implementation of real-time IE for the high-velocity social

media stream. Our solution has a clear architecture and implementation to solve this

issue. In the storm cluster framework, they use the term Storm topology for this

distributed parallel processing model. So, our storm topology contains two types of

processing modules, spouts and bolts. The spouts response for receiving the stream

and bolts for processing the stream. So, in our core Storm topology, we have a single

bolt to receive the Twitter stream. At some time, we have 7 bolts in our core IE

topology, as shown in Figure 4.6. In the upcoming sections, we will discuss additional

bolts for the additional feature implementations. In Table 4.8, we listed the spouts and

Table 4.8 NER modules in stream processing topologies

Name of the unit Type Functionality

TwitterSpout Spout Receiving the tweets

brandNERBolt Bolt Brand Named Entity recognition

productNERBolt Bolt Brand Named Entity recognition

nerjoiner Bolt Merging both NER output streams into a single stream

StateClassificationBolt Bolt Classifying the message either product selling or product

buying or neither

GroupClassificationBolt Bolt Classifying the messages among several product groups

classifierJoiner Bolt Merging both classifiers outputs streams into a single stream.

ModelRecognizerBolt Bolt Recognizing the model names from messages

41

bolts. Rather than working as a pipeline of sequence processing one after the other, we

implemented a total parallel solution where each module mentioned above works

independently. The graphical structure of our topology is shown in Figure 4.6.

The NER bolts can extract multiple NER entities such as a message containing

multiple brands in a single message. So, we are producing the output of each NER

bolts as a set, as shown in Figure 4.7.

4.2.2 Parallelism in Information Extraction

In our real-time distributed IE cluster implemented using Apache Storm, we have a

multi-node cluster including a nimbus, Zookeeper and supervisor nodes. But the

supervisor nodes are the execution part of the cluster. Each supervisor node is capable

of running multiple JVMs. Each JVM is called a worker process in Storm terminology.

The number of worker processes/JVMs in a single node can be configured with the

topology definition. In our cluster, we only use 3 supervisor nodes and, in each node,

we configured four workers processes/JVMs.

Now we have 16 JVM/worker processes going to process out IE modules. The next

important aspect in parallelism in Apache Storm is the executors in the word threads.

We can assign the number of threads/executors for each module in our topology, as

listed in Table 4.9.

42

F
ig

u
re

 4
.6

 S
to

rm
 t

o
p

o
lo

g
y
 g

ra
p
h
 r

ep
re

se
n
ta

ti
o
n

.

43

So accordingly, we need 30 executers for each node, and 10 executors will be assigned.

In each node, we have four worker processes so for distributed 10 executors among

four worker processes like three executers for first two worker process and two

executors for rest of the two workers process the clear picture illustrated in

Table 4.9 Each module in the Topology and their parallelism.

No Module No of Executers No of Tasks

Per Executer

Parallelism

of Module

1 Twitter Spout 1 1 1

2 Brand NER Bolt 6 2 12

3 Product NER Bolt 5 2 10

4 Model NER Bolt 5 2 10

5 NER joiner 1 1 1

6 Group Classification Bolt 5 2 10

7 State Classification Bolt 5 2 10

8 Classifier Joiner 1 1 1

9 Final Joiner 1 1 1

 Total 30 14 56

Figure 4.7 Sample input and output from each NER module.

44

The next parallelism concept in Apache Storm is Task, which means the instances of

each module in each executor. The numbers of instances mentioned in Figure 4.8

illustrates the distribution of the task.

Total parallelism

As mentioned in Table 4.9 BrandNER, we assigned 6 threads, and in each thread, 2

instances likewise, other 4 modules assigned 5 threads each running 2 instances and

rest of 4 modules assigned single threads and each running single instances so finally,

in our distributed stream processing cluster, we are running 56 instances parallelly.

Matching the C2C messages

In this matching requirement, we have considered a few things. First, matching

between real-time streams, then matching between real-time and recent data/recently

persisted data. If we need non-real-time matching, it is necessary to store the recent

messages in data storage to retrieve later. In our use case, the data source is social

media, and social media is a well-known example of big data. So, we needed big data

storage to persist in our recent data. The next requirement is manipulating the relevant

recent messages from big data storage according to the real-time messages. This real-

time message stream has a very high velocity. Each message from the real-time stream

Figure 4.8 Task distribution in a single server node

45

is considered as a query to manipulate the relevant messages from big data (recent

messages persisted in NoSQL database). But the challenge is manipulating the data

from the NoSQL database with high-frequency reading speed (High frequent data

manipulation with low latency). To overcome this problem, we applied the in-memory

indexing approach. Finally, matching stream-based data using conditional stream

joining stream routing and real-time matching detection. But implementing these

functionalities for a huge data stream with very high velocity is not easy. So, to

overcome this issue, we applied a complex even processor with low latency, high

throughput, and rich platform with many rich stream-based functionalities.

4.3 Bigdata Storage and in-memory computing

In the abstract, we applied three main technologies to solve the real-time big data

matching:

1. NoSQL database

2. In-memory indexing

3. Complex Event processing

We applied in-memory indexing of the NoSQL storage to achieve this. In this section,

we will see how to implement the NoSQL database. In our solution, we used Apache

Cassandra as our NoSQL database [44]. It can manage a huge volume of data through

distributed storage, a horizontally scalable nature, and flexible consistency options.

Our Apache Cassandra database will be receiving hundreds of thousand records in a

short time. Our purpose of storing this huge amount of data in the NoSQL database

was only because of making the matching between the real-time stream and offline

data stored in NoSQL database. So, we should run a query on top of the NoSQL

database based on the semantics of the real-time stream. Apache Cassandra shows a

better sequence read performance record.

We have many reasons to select the Cassandra NoSQL [45] database. In our use case,

we have a huge data storage, high writing rate, zero updates, and very low delete rate.

Cassandra was implemented and optimized with the above features. Also, as a

requirement, we must query the data in a very high frequency and low latency. But it

is not straight forward, and the reading performance of the Cassandra is not that good.

46

Even though it supports secondary indexing, which is a helpful feature. Due to this

reading problem, we did not apply multi-field queries while reading. Rather we only

used a single parameter (brand name) queries. But our matching needed comparison

between multiple fields. However, Cassandra does not support that kind of read

requirements.

To overcome this reading issue, we used an in-memory data storing technology on top

of the Cassandra NoSQL database, as shown in Figure 4.10. The in-memory storage

makes 10-100 X faster than read from Cassandra directly. We used Apache Spark to

achieve this. It is using an immutable in-memory storage facility called “Resilient

Distributed Datasets (RDDs). We can create immutable distributed memory RDDs for

our Cassandra tables, which is explained in detail in the following pages. Therefore,

the client will access spark RDDs rather than Cassandra directly. We implemented a

multi-node cluster with each node containing Apache Cassandra and Apache Spark.

After that, we created the schema according to our persisting stream. Cassandra is

different from RDBMS in many ways. Instead of a database, Cassandra uses a key

space. So, in Cassandra, we created a data model/schema considering our stream

nature, indexing and a lot of other optimizations. Unlike RDBMS, in Cassandra, data

is stored in different nodes and it does not support all types of queries that RDBMS

support. Moreover, data modeling must be based on the query we need rather than

being data-centric. To optimize the reading capability, we considered a few things:

partitioning the data and secondary index.

In Cassandra, according to the partition key, the rows persisted to different nodes

according to the hash values. So, it is easy to retrieve the data of a partial key from

particular nodes. Also, if we want to use a column as a query parameter, it must be a

part of the composite partition key and must be a secondary index.

Figure 4.9 illustrates our Cassandra data model and the data partition and row

distribution. In our model, product type and selling status were assigned as the

composite partition key. So, the row distribution among the nodes takes place

according to the partition key. At the same time, the clustering column helps us to

maintain the order. As illustrated in the above diagram, all the rows belonging to the

47

camera and with the status set as selling were stored in the first node and the rest of

the rows stored in different nodes according to the partition key. Also, we added a

secondary index to our data model. In Cassandra, if we want to create a secondary

index, that column must be included in the partition key. In our case, the product type

is already included in the partition key. At the same time, it is not good to select high

cardinality or low cardinality columns as a secondary index. In our data model, the

product type suits the secondary index. Also, it enables as to query the data based on

a secondary index.

Boosting read performance using in-memory computing

The Cassandra-based solution was optimized for our use case. To improve the read

performance, we applied the in-memory storage and in-memory computing component

on top of the Cassandra NoSQL database. So here, we are using Apache Spark, which

Figure 4.9 Read optimized Cassandra data model.

48

creates immutable storage units called Resilient Distributed Dataset (RDD). RDD is

the fundamental data structure of Spark, which makes data reading multiple times

faster compared to direct reading from the disk. So here, we are loading our table in

Cassandra to spark RDD and then manipulating the queries with very low latency.

4.3.1 Matching between real-time and persisted data

So, from the above Cassandra-Spark combination, we are able to query big data in near

real-time. This query results are considered as non-real-time data/ persisted relevant

data to the upcoming real-time messages. As illustrated in Figure 4.10 this step we are

going to take the real-time stream and the relevant messages persisted in the NoSQL

database, into our matching module as two different streams. The matching module

was implemented using a complex event processing technology.

In CEP, we implemented many executions plans. Some of the execution plan

visualizations are given in Figure 4.11. Each execution plan does different tasks. First,

we collect the real-time stream, then we split the stream into 5 different streams based

on the available semantics such as brand name, the product name, model name, product

group, and commercial intention. Also, another split stream from real-time stream goes

to a persisting execution plan where each message will remain for one second before

being stored in the NoSQL database. The other four splitters end with separate

execution plans. The execution plans are designed to find the matching semantics

among the messages, particularly the complete stream containing all the product

semantics, which will be compared with all the partial and complete streams, and all

Figure 4.10 Matching component implemented using CEP.

49

other partial streams compared with the streams accordingly. When a new message

reaches the CEP apart from real-time to real-time matching, the system runs a query

on in-memory storage containing the data loaded from the NoSQL database.

To fulfill our matching requirement, we are using WSO2 CEP, an efficient open-

source complex event processing engine. Here, we receive two streams into the

complex event processing i.e., real-time stream and relevant persisted stream. The

following execution plans were part of our matching module.

Figure 4.11 Stream and execution plans in CEP.

50

Window-based operations on matching using complex event processing are illustrated

in Figure 4.12 We used two types of windows operations in our stream-based matching

process Time based windows and length-based window. Here, we store the incoming

messages into a queue i.e., time window. It means we are storing all the messages in

the queue for a certain time e.g., 5 minutes. Comparing each real-time message i.e.,

length window with size 1 with messages stored in the queue. If we found the match

between messages stored in those two windows, then we will concatenate both

matchable messages into a single stream element and return as a matched message. In

Figure 4.12 the basic abstract of our window implementation is shown.

4.4 Non-functional aspects

As a research project, it is not an end-to-end solution to use by the public. But I can

direct some suggestions to make this research as a real working solution. If we start

from the beginning of the chain of process, the very first thing is receiving social media

messages. For our experiment using a large number of messages are offline because

of testing the performance. In a real-world application, there are many concerns about

retrieving social media messages and privacy policy issues. We can introduce a

Figure 4.12 Time and size window based matching operation.

51

hashtag through some marketing approach to the people who are interested in our

service. Then, if any message includes our hashtag, it is captured by our system.

Next, as a real-world application, prospective performance is a major concern. Now

our solution is implemented to work in a distributed environment and gives a good

performance result. But when we handle the performance aspect these days few things

must be considered, such as load balancing, modular based development, component

level scalability and microservice architecture.

The next aspect of wide range applicable nature is that the solution can be used better

for some other domains that have a similar requirement and pattern. With the current

implementation, it is particularly designed to work with the product domain. If we

wanted to adopt this solution to some other domain first, we must make changes to the

machine learning model. Our current solution has a product attribute extraction model.

So, if we are using for a different domain, we must create a separate domain model

and from the knowledge base, we are able to generate the training data set for various

domains. We must make some changes in the logic of matching.

4.5 Summary

In this chapter, we described the detailed implementation. Mainly this chapter was

divided into three sections such as IE in Section 4.1, real-time stream processing in

Section 4.2 and big data storage and in-memory computing in Section 4.3. In IE, we

discussed the training dataset preparation, NER using Conditional Random Fields and

extracting commercial intend using logistic regression. In the next section, we

concentrated on distributed real-time stream processing. Here, we apply the distributed

stream processing techniques on IE to achieve a near real-time IE with very low

latency for a very high-velocity social media stream.

Finally, the matching part of the C2C social media messages was explained in Section

4.3, which includes persisting data in a NoSQL database, high-frequency data

manipulation from a NoSQL database using in-memory computing and matching the

messages among real-time stream and non-real-time data using complex event

processing.

52

CHAPTER 5

RESULTS AND ANALYSIS

In results and analysis, we present the full nature of our system. As a multi-component

system, we have results for each component in our solution, as well as the results and

performance of the total system. Mainly, we present two types of measure results;

accuracy measures and performance measures. Some components only have accuracy

results, some have both accuracy and performance, and the rest of the components only

have performance measures. As a multi-component system, that includes information

extraction, big data manipulation, and matching using complex event processing.

Section 5.1 presents performance metrics. The experimental setup explained is

presented in Section 5.2. Section5.3 presents the results of classification-based

information extraction at the same time 5.4 presents CRF-based NER results. The

following Sections 5.5 and 5.6 present the performance results of our distributed

stream processing implementation, Big Data read-write performance and the Complex

Event Processor.

5.1 Experimental setup

Our experimental setup is heterogeneous, which means many different computers with

different configurations can be used based on availability. For the IE model creation,

we used a computer with the following configuration: i7 core processor with A clock

speed of 2.70 GHz, no of cores: 2, no of threads:4 cache sizes: 4 MB and CPU model:

Intel® Core™ i7-7500U. The memory of the computer is 16 GB. As a software tool,

we used the Lingpipe library with a heap size of 12 GB. As a dataset, we used messages

collected from Twitter. The ratio between the training data and test data was 8:2.

5.2 Performance Metrics

Our IE design was to extract five named entities i.e., product type, brand, model,

selling status and product group. To extract these five named entities, we applied three

different techniques, such as sequence statistical model using CRF, classification using

logistic regression, and rule-based IE using regular expressions. Among the five

53

entities to extract product type and brand, we used a CRF and to extract product group

and selling status we used the logistic regression classification approach, and finally,

to extract the product model, we used regular expressions.

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦

=
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

(5.1)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (5.2

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (5.3)

𝐹1 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
 (5.4)

5.3 Results of product classification using logistic regression

Here, we extract two product attributes by classifying the messages using logistic

regression. First, we classify the messages into product groups such as electronics,

cellphones, and music. The second classification is classifying the messages between

selling, buying, and neither. We followed the k-fold cross validation for the evaluation

to ensure the results represent the whole dataset.

Table 5.1 Accuracy of our both classification models

Classifying Accuracy Recall Precision F-measures

Product group 0.949 0.949 0.941 0.945

Selling status 0.99 0.991 0.991 0.991

The chart given in Figure 5.1 shows the distribution of three different product groups,

such as cellphones, electronics, and music related products. In Figure 5.2, you can

observe that the gradual improvement in the accuracy depends on the size of the

dataset. We got a high accuracy in both classifications. For the product group

54

classification, our evaluation shows 0.949 accuracies and for the selling status,

classification shows even more accuracy, 0.99. Table 5.1 lists the associated accuracy

measures, such as accuracy, precision, recall, and F1. We cannot determine a model

considering only the accuracy if one category represents most of the data points where

accuracy is not a good measure for assessing model performance. While recall

expresses the ability to find all relevant instances in a dataset, precision expresses the

proportion of the data points in our model says was relevant actually were relevant

[46]. We want to maximize either recall or precision at the expense of the other metric.

We want to find an optimal blend of precision and recall where we can combine the

two metrics using what is called the F1 score. The F1 score is the harmonic mean of

precision and recall taking both metrics into account. The following plots show the

gradient of the accuracy with the training size.

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (5.6)

Figure 5.1 Product distribution in our training dataset

0

100000

200000

300000

400000

500000

600000

Products

Product Group Distrubution in traing dataset

Cellphones Electronics Music Instruments

55

Next, an indicator of a perfect model is the Receiver Operating Characteristic (ROC)

curve shown in Table 5.2 and Table 5.4. The ROC curve shows how the recall vs

precision relationship changes as we vary the threshold for identifying a positive in

our model. A ROC curve plots the true positive rate on the y-axis versus the false

positive rate on the x-axis. Finally, we can quantify a model’s ROC curve by

calculating the total Area Under the Curve (AUC), a metric which falls between 0 and

1 with a higher number indicating better classification performance. An alternative to

the ROC curve is the Precise Return Curve (PRC). Although used less often as ROC

curves, PRC is suitable for unbalanced data sets.

Table 5.2 Area measures of PR and ROC Under curve

Classification

Name

Area Under PR Curve Area Under ROC Curve

Interpolated Uninterpolated Interpolated Uninterpolated

Product group

classification

0.9764 0.9747 0.9863 0.9863

Selling status

classification

0.9986 0.9981 0.9984 0.9982

Precision recall curves are often zig-zag curves, which often go up and down. Thus,

the precision recall curve intersects much more often than the ROC curve. This makes

comparisons between curves difficult. However, for perfect testing, curves near the

PRC (described later) are better than curves near the baseline. In other words, curves

over other curves have higher power levels. In Table 5.3, the measured values of the

area measurement sub-curves for PR and ROC are very close to 1, which is a good

indication of the best model.

𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =
𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (5.7)

Table 5.3 Accuracy measures of CRF models.

Classifying Accuracy Recall Precision F-measures

Product name 0.8397 0.9036 0.9223 0.9128

Brand Name 0.8207 0.8733 0.9316 0.9015

56

5.4 Results of CRF-based product attribute extraction

 For the rest of the product attributes we used the CRF to recognize the named entities.

If we take the accuracy of the CRF models, which are listed in Table 5.3 it shows that

the accuracy of the product name recognition model is 0.84 and the accuracy for the

brand name is 0.82. This is a good result and you can observe the improvement in the

accuracy according to the training dataset size in Figure 5.3.

Table 5.4 Area measures of PR and ROC Under the curve

NER model

name

Area Under PR Curve Area Under ROC Curve

Interpolated Uninterpolated Interpolated Uninterpolated

Product Name 0.9328 0.9219 0.9980 0.9980

Brand Name 0.9517 0.9515 0.9983 0.9983

 Figure 5.2 Selling status model accuracy Vs training set size.

0.965

0.97

0.975

0.98

0.985

0.99

0.995

6000 8000 11000 16000 18000 24000

P
er

fo
rm

an
ce

 m
ea

su
re

s

Training dataset size

Accuracy measures of selling status classification

Accuracy

pression

recall

f-1

Linear (Accuracy)

Linear (pression)

Linear (recall)

Linear (f-1)

57

5.5 Distributed information extraction performance

If we take the performance of the IE, as mentioned in the implementation details in

Section 4.2, this part is totally distributed altogether. We implemented nine

components in this distributed system. If we move to the latencies of each component,

it varies depending on the workload of the component. You can see the latency details

in Figure 5.4. where apart from joining components, others take around 0.5

milliseconds.

Figure 5.3 Product group model accuracy Vs training set size

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

10000 20000 30000 40000 50000 60000 70000 80000 90000

Accuracy measures of selling status
classification

Accuracy pression recall f-1

58

5.6 Results of high-frequency data manipulation from NoSQL

Big data manipulation is a major part of our solution. With the combination of the

Apache Cassandra NoSQL database and Apache Spark in-memory computing, enable

us a high-speed data manipulation. The following results show the write and read

performance. In Figure 5.5 it illustrates the writing operations per second and Figure

5.6 shows the average latency of the writing operation. We achieved around 350

messages written per second as throughput. So, our writing performance shows an

average latency of 4 ms. At the same time, the data manipulation performance is shown

in Figure 5.7 where the throughput of the data manipulation from the NoSQL database

reached around 9500 readings per seconds. In Figure 5.8, it presents the throughput of

matching between the real-time stream and manipulated data from the NoSQL

database where we achieved more than 82500 matches per second. At the same time,

the throughput of the matching among real-time stream is presented in Figure 5.9. This

Figure 5.4 Average latency of each information extraction modules

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

brandNERBolt

classifierJoiner

finalJoiner

GroupClassificationBolt

IEJoiner

ModelRecognizerBolt

nerjoiner

productNERBolt

StateClassificationBolt

brandNER
Bolt

classifierJ
oiner

finalJoine
r

GroupCla
ssification

Bolt
IEJoiner

ModelRec
ognizerBo

lt
nerjoiner

productN
ERBolt

StateClass
ificationB

olt

latency 0.333 0.006 0.014 0.402 0.005 0.302 0.005 0.644 0.533

latency

59

time we achieved more than 165000 matchings per second. Finally, the overall

performance is presented in Figure 5.10 and Figure 5.11. In Figure 5.10 we show the

overall throughput and reached around 4700 messages per second and as a latency, we

reached 0.76 milliseconds as presented in Figure 5.11.

10000

10000

100000

1000000
10000000

0

1

2

3

4

5

6

7

100
1000

1000
1000

1000

N
o

 o
f

re
co

rd
s

La
te

n
cy

 (
m

s)

Throughput per second

Latency of data persistence

10000 10000 100000 1000000 10000000

Figure 5.5 Data persistence latency Vs size of the database and throughput.

60

Figure 5.6 Persisting throughput

Figure 5.7 Data manipulation throughput

Figure 5.8 Matching RT vs NoSQL.

throughput

Figure 5.9 Matching RT vs RT.

throughput

Figure 5.10 Overall throughput

Figure 5.11 Overall latency.

0

50

100

150

200

250

300

350

1

1
0

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

1
0

0

1
0

9

1
1

8

#
M

es
sa

g
es

Time (seconds)

Persisting throughput

0

2000

4000

6000

8000

10000

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

#
m

es
sa

g
es

Time (seconds)

Data manipulation throughput

0

20000

40000

60000

80000

100000

1

1
0

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

1
0

0

1
0

9

1
1

8

#
m

es
sa

g
es

Time (seconds)

Matching RT vs NoSQL. throughput

0

50000

100000

150000

200000

1

1
0

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

1
0

0

1
0

9

1
1

8

#
m

es
sa

g
es

Time (seconds)

Matching RT vs RT. throughput

0

1000

2000

3000

4000

5000

1

1
0

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

1
0

0

1
0

9

1
1

8

#
m

es
sa

g
es

Time (seconds)

Overall throughput

0

0.2

0.4

0.6

0.8

1

1.2

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

T
im

e
(m

il
li

 s
ec

o
n

d
s)

Time

Overall Latency

61

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

Many industries started to adapt to big data technologies. Even ordinary people

adapted to depend on social media for many of their requirements, particularly in the

e-commerce industry where the influence of social media is very high. But there are

many challenges and problems in the social media-based e-commerce industry. One

of the problems we discovered in social media-based Consumer to Consumer (C2C)

is that product offers do not reach the right consumer.

As an outcome, we can pull real-time microblogging messages as social messages and

in near real-time, we were able to notify the C2C end users with the matching of their

message. Due to our solution, many C2C uses will benefit from real-time. To make

that possible most part of our solution is distributed among the multi-node cluster.

Initially, our system extracts product attributes from raw messages using machine

learning based IE. It is the part that controls the accuracy of the whole system. As our

trained product extraction model, the end results give good accuracy. Next, the output

is delivered in real-time or near real-time. In this aspect as well, we were able to

achieve good performance with very low latency. We applied three technologies to

achieve near real-time, such as distributed stream processing, in-memory computing,

and complex event processing. Third, according to the requirement, our system is

scalable in runtime. Finally, our system was implemented to overcome failover

occasions, in other words, our implementation ensures the availability of the system.

The internal modules and algorithms enable high accuracy and real-time performance.

For example, Conditional Random Fields (CRF) in NER in-memory computing in big

data manipulation and Complex Event Processing in matching the semantics. Apart

from the core components, we used a few tools in our solution, such as Lingpipe,

Apache Storm, Apache Spark, WSO2 CEP, and WSO2 DAS.

62

When we consider the performance of our implementation, we can divide the

performance records into each main component in our system. In the abstract for the

IE, the average latency is 0.5 ms. The latency of the persisting data on NoSQL is

around 6 ms. Even though it takes a little more time, it will not affect our overall

performance because we always retrieve the data that persisted 1000ms before at the

same time the persistence reached 350 writes per second as throughput. The high-

frequency data manipulation shows a high throughput as 9500 events per second,

which the matching between the real-time stream and non-real-time showed 82500

events per second as throughput and matching among real-time messages showed

165000 events per second. Overall, it takes 0.7 ms latency on average and shows 4700

events per second as maximum throughput.

6.2 Research Limitations

We can list a few things as our research limitations. First, in creating the NER model

we were able to create a single model for all our product attributes classes. Due to the

limited resources, rather than a single NER model, we created separate models for each

product attribute. Secondly, in the real-time distributed stream processing system for

each task, we created separate bolt components with different numbers of multiple

instances. For each instance of a task, the Apache Storm facilitates to maintain a state.

But as a single task, we do not have a common state among all its instances.

Even more, if you take the variety of products, it is a huge variety of products that are

available in the market. But in our research, we only implemented the solution for very

few products. Again, if you take the number of attributes of different products, it varies

from product to product. But our solution was only designed for very few attributes

such as product names, brand names, product group, and some more. The next

limitation is that with the new products in the market and a new set of attributes, our

system can recognize named entities that are not given in the training dataset. But

always in machine learning, if we increase the size of the training dataset, we can

produce the result with more accuracy. Now, we are using CRF and logistic regression

algorithms in our systems but if we move to the deep learning algorithms such as

LSTM and word embedding, we can produce more accurate and good performance

results.

63

6.3 Future Work

For our research, we only considered a few products attributes that we extract from the

raw messages, but each product has a different number of attributes. Some product

even contains hierarchical attributes. But in our current solution, we have only 5

attributes, such as product name, product brand, product model, product group and

product selling status. So, we have more scope to work on this product attribute NER.

Related to this product attribute extraction, we can focus on more things such as feature

engineering and the deep learning approach, which will increase the accuracy of the

system. As mentioned in the research limitations, if we have enough hardware

resources, particularly GPU, we can try for a single NER model for all the product

attributes.

Also, as mentioned in the research limitation, we can improve the distributed real-time

stream processing in many ways, such as enabling a synchronized approach to share

the same state between a different instance of the same task and enabling the runtime

auto resource scalability and load balance. Also, as a successful methodology, we can

follow deep learning approaches in NER.

In C2C matching we implemented the message matching based on 5 product attributes.

But there are a lot of opportunities that are not discovered that can help to match C2C

uses such as user behaviors in social media, profile details, friends and their

similarities. Using that information, we can predict the user needs and be able to

connect the consumers directly

In this era, almost all the products and services somehow reach social media, in

different ways. So, through collecting and storing that product information as a global

open source product database, it opens a new opportunity for C2C community.

The next opportunity that we can move forward in is that most social media messages

not only contain the text details, it also contains an image of the product. In this

scenario, we already worked on extracting the product attributes from the text

messages. We can convert this structured product attribute and the image of the

product will lead us to product recognition from the image and related opportunities,

including product matching based on social media product images.

64

Different types of databases are available in use such as relational database, NoSQL

database, graph database, document database, even more, have databases to store

specific information such as DNA database and a Drug database. Each database has

its pros and cons. Each type of database has been optimized for different use cases.

But here, the product information structure shows a huge amount of records and

replicating attribute terms. Also, sometimes, a product is a composition of multiple

products or may be part of another product. So, finding an optimized way to arrange

the product data itself is a challenge.

65

REFERENCES

[1] Y. C. Rathod, Methods and systems for brands social networks (bsn) platform.

Google Patents, 2011.

[2] V. N. Gudivada, D. Rao, and V. V. Raghavan, “NoSQL systems for big data

management,” in 2014 IEEE World congress on services, 2014, pp. 190–197.

[3] M. J. Denny and A. Spirling, “Text Preprocessing For Unsupervised Learning:

Why It Matters, When It Misleads, And What To Do About It,” Political

Analysis, vol. 26, no. 2, pp. 168–189, Apr. 2018.

[4] F. Sun, A. Belatreche, S. Coleman, T. M. McGinnity, and Y. Li, “Pre-processing

online financial text for sentiment classification: A natural language processing

approach,” in 2014 IEEE Conference on Computational Intelligence for

Financial Engineering Economics (CIFEr), 2014, pp. 122–129.

[5] C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, and D. McClosky,

“The Stanford CoreNLP natural language processing toolkit,” in Proceedings of

52nd annual meeting of the association for computational linguistics: system

demonstrations, 2014, pp. 55–60.

[6] D. Nadeau and S. Sekine, “A survey of named entity recognition and

classification,” Lingvisticae Investigationes, vol. 30, no. 1, pp. 3–26, 2007.

[7] “The Porter stemming algorithm: then and now | Program | Vol 40, No 3.”

[Online]. Available:

https://www.emeraldinsight.com/doi/abs/10.1108/00330330610681295.

[Accessed: 23-Jun-2018].

[8] C. D. Paice, “An Evaluation Method for Stemming Algorithms,” in Proceedings

of the 17th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, New York, NY, USA, 1994, pp. 42–50.

[9] R. R. Larson, “Introduction to Information Retrieval,” Journal of the American

Society for Information Science and Technology, vol. 61, no. 4, pp. 852–853.

[10] G. V. Bard, “Spelling-error tolerant, order-independent pass-phrases via the

Damerau-Levenshtein string-edit distance metric,” in Proceedings of the fifth

Australasian symposium on ACSW frontiers-Volume 68, 2007, pp. 117–124.

[11] E. Brill and R. C. Moore, “An Improved Error Model for Noisy Channel Spelling

Correction,” in Proceedings of the 38th Annual Meeting on Association for

Computational Linguistics, Stroudsburg, PA, USA, 2000, pp. 286–293.

[12] “Comparison of biosequences - ScienceDirect.” [Online]. Available:

https://www.sciencedirect.com/science/article/pii/0196885881900464.

[Accessed: 26-Jun-2018].

[13] M. U. S. Shameem and R. Ferdous, “An efficient k-means algorithm integrated

with Jaccard distance measure for document clustering,” in 2009 First Asian

Himalayas International Conference on Internet, 2009, pp. 1–6.

[14] W. E. Winkler, “Overview of record linkage and current research directions,”

66

BUREAU OF THE CENSUS, 2006.

[15] B. Mohit, “Named Entity Recognition,” in Natural Language Processing of

Semitic Languages, Springer, Berlin, Heidelberg, 2014, pp. 221–245.

[16] G. Zhou and J. Su, “Named entity recognition using an HMM-based chunk

tagger,” in proceedings of the 40th Annual Meeting on Association for

Computational Linguistics, 2002, pp. 473–480.

[17] D. M. Bikel, S. Miller, R. Schwartz, and R. Weischedel, “Nymble: A High-

performance Learning Name-finder,” in Proceedings of the Fifth Conference on

Applied Natural Language Processing, Stroudsburg, PA, USA, 1997, pp. 194–

201.

[18] A. L. Berger, V. J. D. Pietra, and S. A. D. Pietra, “A Maximum Entropy Approach

to Natural Language Processing,” Comput. Linguist., vol. 22, no. 1, pp. 39–71,

Mar. 1996.

[19] M. Collins, “Discriminative Training Methods for Hidden Markov Models:

Theory and Experiments with Perceptron Algorithms,” in Proceedings of the

ACL-02 Conference on Empirical Methods in Natural Language Processing -

Volume 10, Stroudsburg, PA, USA, 2002, pp. 1–8.

[20] J. Lafferty, A. McCallum, and F. Pereira, “Conditional Random Fields:

Probabilistic Models for Segmenting and Labeling Sequence Data,”

Departmental Papers (CIS), Jun. 2001.

[21] G. Bello-Orgaz, J. J. Jung, and D. Camacho, “Social big data: Recent

achievements and new challenges,” Information Fusion, vol. 28, pp. 45–59,

2016.

[22] A. Gandomi and M. Haider, “Beyond the hype: Big data concepts, methods, and

analytics,” International Journal of Information Management, vol. 35, no. 2, pp.

137–144, 2015.

[23] M. Stonebraker, U. Çetintemel, and S. Zdonik, “The 8 Requirements of Real-

time Stream Processing,” SIGMOD Rec., vol. 34, no. 4, pp. 42–47, Dec. 2005.

[24] A. Toshniwal et al., “Storm@Twitter,” in Proceedings of the 2014 ACM

SIGMOD International Conference on Management of Data, New York, NY,

USA, 2014, pp. 147–156.

[25] H. Gokavarapu, “Exploring Cassandra and HBase with BigTable Model,”

Indiana University Bloomington.

[26] Z. Hasani, M. Kon-Popovska, and G. Velinov, “Lambda architecture for real time

big data analytic,” ICT Innovations, pp. 133–143, 2014.

[27] J. M. Pierre, “Mining knowledge from text collections using automatically

generated metadata,” in International Conference on Practical Aspects of

Knowledge Management, 2002, pp. 537–548.

[28] E. S. Ristad and P. N. Yianilos, “Learning string-edit distance,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 5, pp.

522–532, May 1998.

67

[29] A. B. M. Moniruzzaman and S. A. Hossain, “NoSQL Database: New Era of

Databases for Big data Analytics - Classification, Characteristics and

Comparison,” arXiv:1307.0191 [cs], Jun. 2013.

[30] S. Suhothayan, K. Gajasinghe, I. Loku Narangoda, S. Chaturanga, S. Perera, and

V. Nanayakkara, “Siddhi: A Second Look at Complex Event Processing

Architectures,” in Proceedings of the 2011 ACM Workshop on Gateway

Computing Environments, New York, NY, USA, 2011, pp. 43–50.

[31] J. Z. Pan, “Resource Description Framework,” in Handbook on Ontologies,

Springer, Berlin, Heidelberg, 2009, pp. 71–90.

[32] A. Jena, “Apache Jena Fuseki,” The Apache Software Foundation, 2014.

[33] O. Hartig, C. Bizer, and J.-C. Freytag, “Executing SPARQL Queries over the

Web of Linked Data,” in The Semantic Web - ISWC 2009, 2009, pp. 293–309.

[34] R. He and J. McAuley, “Ups and downs: Modeling the visual evolution of fashion

trends with one-class collaborative filtering,” in proceedings of the 25th

international conference on world wide web, 2016, pp. 507–517.

[35] P. Petrovski, A. Primpeli, R. Meusel, and C. Bizer, “The WDC gold standards

for product feature extraction and product matching,” in International

Conference on Electronic Commerce and Web Technologies, 2016, pp. 73–86.

[36] J. McAuley and A. Yang, “Addressing Complex and Subjective Product-Related

Queries with Customer Reviews,” in Proceedings of the 25th International

Conference on World Wide Web, Republic and Canton of Geneva, Switzerland,

2016, pp. 625–635.

[37] P. Petrovski, A. Primpeli, R. Meusel, and C. Bizer, “The WDC Gold Standards

for Product Feature Extraction and Product Matching,” in E-Commerce and Web

Technologies, 2016, pp. 73–86.

[38] L. Derczynski, A. Ritter, and S. Clark, Twitter Part-of-Speech Tagging for All:

Overcoming Sparse and Noisy Data. .

[39] G. A. Miller, “WordNet: a lexical database for English,” Communications of the

ACM, vol. 38, no. 11, pp. 39–41, 1995.

[40] W. B. Cavnar and J. M. Trenkle, “Ngram-based text categorization,” in In

Proceedings of SDAIR-94, 3rd Annual Symposium on Document Analysis and

Information Retrieval, 1994, pp. 161–175.

[41] B. Carpenter, “LingPipe for 99.99% recall of gene mentions,” in Proceedings of

the Second BioCreative Challenge Evaluation Workshop, 2007, vol. 23, pp. 307–

309.

[42] B. Hollerit, M. Kröll, and M. Strohmaier, “Towards Linking Buyers and Sellers:

Detecting Commercial Intent on Twitter,” in Proceedings of the 22Nd

International Conference on World Wide Web, New York, NY, USA, 2013, pp.

629–632.

[43] A. Jain, Mastering Apache Storm: Real-time Big Data Streaming Using Kafka,

Hbase and Redis. Packt Publishing, 2017.

68

[44] A. Chebotko, A. Kashlev, and S. Lu, “A Big Data Modeling Methodology for

Apache Cassandra,” in 2015 IEEE International Congress on Big Data, 2015,

pp. 238–245.

[45] N. Neeraj, Mastering Apache Cassandra. Packt Publishing Ltd, 2013.

[46] W. Koehrsen, “Beyond Accuracy: Precision and Recall,” Towards Data Science,

03-Mar-2018. [Online]. Available: https://towardsdatascience.com/beyond-

accuracy-precision-and-recall-3da06bea9f6c. [Accessed: 10-Jun-2019].

