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Abstract 

 

Social media enables personalization of the Consumer to Consumer (C2C) business model 

where people could directly do business with each other without an intermediary by sharing 

their products, services, and consumer requirements. However, messages shared by both the 

sellers and potential buyers do not reach each other as they are embedded among other social 

media messages. Moreover, C2C buy/sell interest matching in real time is nontrivial due to the 

complexities of interpreting social media messages, number of messages, and diversity of 

products and services. We present a platform for real-time matching of microblogging 

messages related to product selling or buying in C2C. We adopt a combination of techniques 

from natural language processing, complex event processing, and distributed systems. First, 

we extract the semantics of messages such as product attributes and commercial intention of 

the message either buying or selling using information extraction. Then the extracted buy/sell 

messages are matched using a complex event processor. Moreover, NoSQL and in-memory 

computing are used to enhance scalability and performance. The proposed solution shows a 

high accuracy where commercial intent classification and Conditional random fields based 

named entity recognition recorded an accuracy of 98.5% and 82.07%, respectively when 

applied to a real-world dataset. Information extraction, in-memory data manipulation, and 

complex event processing steps introduced low latency were latencies were 0.5 ms, 5 ms, and 

0.2 ms, respectively. For the given setup with modest hardware, we were able to process 3,400 

messages per second and overall latency was 0.76 ms. 

 

Keywords: C2C; complex event processing; information extraction; named entity 

recognition; stream processing; 
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CHAPTER  1  

 

INTRODUCTION 

 

This thesis presents a framework to identify potential buyers and sellers in Consumer 

to Consumer (C2C) e-commerce using real-time matching of social media messages 

based on product attributes and buy or sell intent. While addressing this research 

problem, we address several challenges such as information extraction, real-time 

processing, big data management, and matching of the semantic stream. We used the 

Conditional Random Fields approach to extract the product attributes, the Logistic 

Regression to classify the message based on commercial intent, Apache Storm for 

distributed real-time stream processing, NoSQL database to store the data, and Apache 

Spark for low latency query processing, and Complex Event Processor to match the 

buy-sell messages based on semantics of the C2C messages. 

1.1 Background 

Social media is an interactive computer-mediated technology that facilitates the 

sharing of ideas, career interests, information, and other forms of expression through 

building virtual networks and communities. Social media can be considered the most 

efficient communication medium in the twenty-first century [1]. Today, most people 

express their opinions freely through social media. In other words, social media has 

become an influential fact of every aspect of our human life. By design, social media 

is internet-based and offers users easy and rich digital communication. Users often 

utilize it for messaging. 

Social media initiated as a tool that people used to interact with friends and family but 

was later adopted by businesses that wanted to take advantage of a popular new 

communication method to reach out to customers. It not only provides economic 

benefits to the sellers by increasing the number of buyers, but also opens a new door 

to the consumers to fulfill their product or service requirements easily and quickly, and 

cost effectively.  
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Thus, social media plays a major role in e-commerce. Promotions, recommendations, 

market-related sentiment analytics, product requirement sharing’s, polls, opinion 

queries, reviews, and trend predictions are some of the ways big business entities 

interact with social media [1]. Those procedures commonly belong to big business 

organizations such as Business-to-Business (B2B) and Business-to-Consumer (B2C). 

In addition to these two business models, the C2C business model is emerging as a 

consumer-driven alternative [2]. The uniqueness of this model is that it does not have 

any intermediary between the seller and buyer.  

While C2C could vastly benefit from social media as a free channel to communicate 

between consumer to consumer, conceptually, it can reach anyone in this globe and 

provide anytime service without any interruption in hidden social media services, 

handling huge data flow each second. However, the C2C consumers will not apply to 

advanced social media techniques, rather they just post their product/service 

requirements as social media messages with a set of simple words or images, it is 

difficult to interpret what they mean to buy or sell. Also, those messages do not reach 

a large audience and even the once that reach are buried among so many other 

messages. 

1.2 Motivation 

While social media is useful in C2C e-commerce, there is no guarantee that a message 

will reach potential users who are interested in those messages. Rather the messages 

will only reach the friends or followers of the message producer sooner or later. If the 

message can reach a wider audience who may have some association with that message 

both the buyer and seller could benefit. Moreover, messages do not reach followers in 

real-time, as followers may access messages based on their convenience and interest. 

Moreover, due to the asynchronous nature of social media platforms [2] and user 

behavior, sometimes it can take more than a day. This delay could lead to missed 

business opportunities to both the buyers and sellers. By nature, social media messages 

are written in natural language; hence, consists of unstructured text that is difficult to 

be interpreted by a computer program. Also, these messages arrive at a high velocity 

making it difficult to apply computationally expensive natural language processing 

techniques. Finally, the diversity of products and their information make it further 
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difficult to interpret the content and context of messages. 

There are a few existing solutions that partially fulfill such as product recommendation 

systems, product attribute extraction and product databases. However, these solutions 

are not geared toward filtering e-commerce related messages social media messages, 

classifying those filtered messages based on their buy/sell intention, and all other 

product attributes. Moreover, these solutions do not focus on near real-time processing, 

big data management and matching sell/buy message semantics based on their product 

attribute and commercial intent. Consequently, current solutions do not fully address 

the potential for C2C e-commerce in social media. 

1.3 Problem Statement 

While C2C consumers can post their product/service related e-commerce messages in 

social media. The messages will only reach the followers of the consumer with a 

considerable delay. Most of the time the message will not reach the users who are 

interested in those messages. Therefore, while social media is a major platform to C2C, 

there is no effective way to connect potential consumers in real time based on their 

messages related to products and services. Hence, the problem to be solved by this 

study can be defined as: 

How to develop an architecture/framework for real-time C2C matching, using 

consumers’ text-based social media data? 

1.4 Objectives 

In this research, our main goal is to implement an architecture/framework that will 

deliver real-time C2C matching using customers’ text-based social media data. 

Therefore, the above research problem is to be addressed by satisfying the following 

research objectives: 

• To extract the semantics of social media messages and classify messages based 

on their buy and sell intent 

• To develop an indexing structure such that new incoming messages can be 

matched with previous messages as close to real-time as possible 

• To develop a framework to match C2C messages with high throughput and low 
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latency 

• To evaluate the performance of the proposed framework using a real-life 

dataset. 

1.5 Outline 

The rest of this task is organized as follows: Chapter 2 explains the context of this 

research. This study focuses on extracting information from unstructured text, 

processing message streams, messaging in a distributed environment, and querying 

and analyzing large amounts of data. Chapters 3 and 4 present proposed approaches to 

match relevant social media messages in relation to C2C in real time. Chapter 3 

explains how to extract product-related attributes from unstructured text, and Chapter 

4 explains how to implement a framework for querying and analyzing large amounts 

of data and managing complex events. Chapter 5 describes the proposed approach 

using real social media messages, and Chapter 6 summarizes our work and suggestions 

for future work.
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CHAPTER  2  

 

LITERATURE REVIEW 

 

Matching C2C users, i.e., connecting the C2C buyers and sellers that are interested in 

the same product. Context-based matching using a well-defined structured stream of 

social media is a complex task that is computationally expensive. Complex event 

processor is the novel approach to solve this kind of complex computation on 

structured streams. Another challenge is converting social media messages to be in a 

well-defined structured form. Such mapping requires information extraction. 

Moreover, we should consider the large volume of data and the need to process them 

in real time. This chapter presents related work associated with each of the techniques 

that we need to solve the research problem. Section 2.1 contains an overview of 

information extraction though Section 2.2 describes the nature of social media data. In 

Section 2.3, we present related research about stream processing. Big data persistence 

and high-frequency data manipulation from the NoSQL database relevant technologies 

are discussed in Section 2.4. 

2.1 Information Extraction 

Information extraction (IE) is the task of automatically generating structured 

information from unstructured and/or semi-structured documents [3]. IE is one of the 

important applications of Natural Language Processing (NLP). Most IE techniques are 

text driven, especially when applying on the unstructured/semi-structured text. 

Unstructured data (or unstructured information) refers to information that either does 

not have a pre-defined data model or is not organized in a pre-defined manner. 

Irregularities and ambiguities in the text make it difficult to understand using 

traditional programs when compared to data stored in fielded form in databases or 

annotated (semantically tagged) in documents [4]. The unstructured data is mostly 

generated by systems like social networks, blogs, comments and mobile data content 

like text messages, e-mail, etc., Therefore, the IE system takes unstructured text and 

finally produces structured/tabular data. The IE system is a pipeline in the process. 
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Some of the main important parts of this pipeline are tokenization, Part of Speech 

(POS) tagging, Named Entity Recognition (NER) and relation detection [3]. 

Tokenization is the process of taking the text or set of text and splitting them into its 

individual words at the same time removing certain characters such as punctuations. 

Then the POS tagging is the expansion of the part of the speech, which assigns parts 

of speech to each word such as noun, verb, and adjective. There are two main 

approaches in POS tagging: rule-based POS tagging and stochastic POS tagging. The 

rule-based method uses contextual information to assign a label to unknown or 

ambiguous words. Disambiguation is done using the linguistic features of the word, its 

previous word, its next word, and other aspects [5]. NER classifies named entities from 

text segments into pre-defined categories such as places, cities, dates, person and 

organization. The major NER techniques are Dictionary Look-Up, Rule-Based (using 

lexical, contextual and morphological information), Maximum Entropy Theory-based, 

Hidden Markov Model, Conditional Random Fields (CRF), and Hybrid methods 

(Statistical+ Linguistics) [6]. Among those techniques, most of them have solutions 

with good accuracy. But the NER research field has been growing during recent days 

and it has got the attention from both academe and business, because of its ability to 

solve real-world problems. 

Structured data is the most preferred form of computational processing. But the social 

media messages are the most complex form of unstructured data. Sometimes, even 

humans may face difficulties in reading those social media messages, so it is much 

more complex for a computer system to understand those messages.  

In our research problem, we focused on IE from text messages. There are many 

methods to convert unstructured text data into a structured form such as text mining 

approaches, text preprocessing, text representation, vector space model, text 

classification, text clustering, NER, relation extraction, semantic web, linked data and 

knowledge base. In our product attribute matching problem, we are focusing on the 

methods that can apply to the extraction of product attributes. As a requirement, we 

plan to extract five product attributes such as product name, brand of the product, 

model of that product, which product group the product belongs to and the selling 

status of that message. So, we assume the following approaches may help us to fulfill 
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our requirements such as text preprocessing, text classification, NER, semantic web, 

and knowledgebase/linked data. 

2.1.1 Text Preprocessing 

In any text-based processing task, there must be a preprocessing step required. There 

are a lot of methods that can apply on the text before the actual process such as 

punctuation removal, numbers, lowercasing, stemming, stop word removal, n-gram 

inclusion, infrequently used terms, document Indexing and string similarities. 

Stemming is the process of getting the most basic form of a word. 

In any text-based processing task, there must be a preprocessing step required. There 

are a lot of methods that can apply on the text before the actual process such as 

punctuation removal, numbers, lowercasing, stemming, stop word removal, n-gram 

inclusion, infrequently used terms, document indexing, string similarities and removal 

of hyperlinks [3], [4]. If you look at the important steps, detailed stemming is a 

frequently used method in text preprocessing. Stemming can be defined as getting the 

base form of a word. The goal of stemming is to reduce inflectional forms and 

sometimes derivationally related forms of a word to a common base form. For 

example: 

am, are, is  be  

car, cars, car's, cars'  car 

According to the above transformation, a sentence and result after stemming can be 

given as: 

the boy's cars are different colors   

the boy car be differ color 

There are a lot of works done on stemming such as Lovins stemmer, Porter’s algorithm 

[7] and Paice/Husk stemmer [8]. The n-gram a has a wide range of applications in text 

preprocessing, such as improving the interpretation of the multi-word contiguous 

sequence of tokens of length n [9] and improving the interpretability of bag-of-terms 

[3]. Usually and n-gram is applied with a degree of 1, 2 and 3. However, the problem 

is the explosion of vocabulary size. String similarities can also be considered as a text 

preprocessing method. String comparing is the main application of string similarities. 
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There are many algorithms that can do this by measuring the edit distance between two 

words usually used in a string comparison, for example, Damerau-Levenstein distance 

[10]. The string distance is defined as the minimal edits necessary to get one from 

another [11]. The edit distance can be generalized using a weighted edit distance using 

a biosequence algorithm named Needleman–Wunsch algorithm [12]. The next 

common string comparison method in use is Jaccard Distance which works at a token 

level, checking two strings by first tokenizing them and then dividing the number of 

tokens shared by the strings by the total number of tokens [13]. The next string 

comparison algorithm defined by the U.S. Census Bureau for comparing single person 

names named Jaro-Winkler Distance [14]. The final string similarity algorithm to list 

is TF/IDF Distance which is based on vector similarity. The basic idea is that two 

strings are more similar if they contain many of the same tokens with the same relative 

number of occurrences of each [9]. 

2.1.2 Named Entity Recognition 

NER is a process where an algorithm takes a string of text (sentence or paragraph) as 

input and identifies relevant nouns (people, places, and organizations) that are 

mentioned in that string or categorized to a certain topic. NER is useful in various NLP 

applications such as information retrieval, question answering, and machine 

translation. When labeling the sequence of tokens two types of labeling methods that 

are followed widely are BIO and BILOU. Here B, I, and O represent Beginning or 

Inside or Outside accordingly. Two challenges we need to address in NER are 

recognition of named entity boundaries and recognition of named entity categories 

(classes) [15].  

There are two main types of approaches followed in the NER process rule-based NER, 

statistical NER, and NER using deep learning. If we take the rule-based approach it 

can be either a set of named entity extraction rules, gazetteers for different types of 

named entity classes, and the extraction engine which applies the rules and the lexicons 

to the text. Likewise, if we take the statistical approach the following two things are 

always essential labeled training data and a statistical model. In this case, NER 

becomes a supervised learning model, and it classifies the sequence of tokens.  
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The Hidden Markov Model (HMM) is one of the well-known approaches for the 

sequence labeling problem. Here the states are representing the category or class which 

can generate the tokens. Also, the classes depend on a few earlier tokens. The trained 

HMM model is generated by calculating the probability of the above two sets of 

parameters of different state of classes and generations of tokens in training data. So, 

the trained model selects the class where it most likely maximizes the product of the 

above two parameters. State of the art results on the MUC-6 and MUC-7 data using an 

HMM-based tagger have reported in [16]. Here they used a wide variety of features, 

which suggests that the relatively poor performance of the taggers used in CoNLL-

2002 was largely due to the feature sets used rather than the machine learning method. 

The limitation in HMM is considering tokens as being independent to each other [17]. 

A few other richer models exist that overcome the limitations of HMM such as 

Maximum Entropy [18], the Perceptron [19] and the CRF [20]. 

2.1.3 Conditional Random Fields 

Conditional Random Fields (CRF) is a discriminative model used for predicting 

sequences. They use contextual information from previous labels, thus increasing the 

amount of information the model must make for a good prediction. In CRFs the 

training and test data are sequential, and we must take the previous tag into 

consideration when labeling a token. CRFs have all the advantages of the Maximum-

Entropy Markov Models (MEMMs) but also solves the label bias problem. The main 

variation between CRFs and MEMMs is that MEMMs use per-state exponential 

models for the conditional probabilities of the next state given the current state, while 

a CRF has a single exponential model for the joint probability of the entire sequence 

of labels given the observation sequence. Therefore, the weights of different features 

at different states can be traded off against each other [20]. If we consider the 

difference between the CRF and the Hidden Markov approaches both are applied to 

label sequential data, even though both differ in many ways. For instance, the Hidden 

Markov Models are generative and produce the end result by using the joint probability 

distribution. Instead, the CRF is discriminative and also uses the conditional 

probability distribution. CRFs do not depend on the independence assumption and 

ignore label bias. 
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The CRF model defines dependencies among adjacent tags, based on the assumption 

that these dependencies are influential [8]. This assumption neglects a few more 

significant dependence facts, and it confirms that these facts can enhance the efficiency 

of the CRF approach. Some specialty ontology features are included in CRF, and their 

result proves that it can increase the performance [7]. In CRF, a result of the 

transformed Viterbi approach joint with some other rules are used to get the N-Best 

outcome [6]. Then, some rules are applied to separate the N-Best effects, which might 

still cause poor results. It proves that it can get a good outcome. 

The advantages of the CRF approach is more suitable for PRO NER than other 

approaches. But, the CRF approach needs some more substantial dependence 

information in some conditions. 

2.2 Social Media Data 

Social media messages exhibit the four Vs of big data. First, the velocity of a social 

media messages can be high as thousands of messages are generated by hundreds of 

millions of users [21]. Hence, the proposed solution should be able to process those 

messages with the throughput identical to the velocity of the incoming social media 

messages. In Section 2.3 we discuss how social media messages with high velocity 

can be handled.  

Second, due to the high velocity, social media messages also generate high volume of 

message with time. In a matter of hours to days social media messages could generate 

hundreds of terabytes of data. Such large volumes not only cause storage issues but 

also lead to several other challenges such as the need for fast disk writes and low 

latency searching/querying while maintaining core features of a storage system such 

as availability, consistency, and partition tolerance.  

Another characteristic of the social media message is the variety of content. Users of 

social media generate a variety of content that are mostly unstructured [22], dynamic, 

and unpredictable. Moreover, messages include different type of content such as text, 

emoticons, links, videos, and images. Therefore, processing social media messages is 

not that easy unlike processing a predefined stream with a single type of content. 

Veracity is the last challenging nature of social media. The content of social media 
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apart from unstructured shows some nature of uncertainty. Also, there is a chance that 

messages are interpreted with different meanings by different people. The content of 

social media is too small, so it contains a lack of information, which makes it hard to 

using only social media.  

2.3 Stream Processing 

From audio stream to Global Positioning System (GPS) Stream and sensor stream to 

social media stream, all these streams are not only just for consumption, visualization 

and filling the storage, but we can also utilize those streams to get more benefits in 

real-time as well as in the future. Stream processing is one of the trending technologies 

in the era of big data. You can see the usage of stream processing from stock exchange 

predictions to weather forecasting and disaster management. 

Since stream processing is a part of the big data ecosystem, it must be capable of 

handling the stream data flow in big data dimensions, especially high velocity (in real-

time stream processing) and a large volume of data (in batch processing) [4]. There 

are several other issues like guarantying the data consistency, availability (failover 

mechanism), and complexity.  

There are several use cases with different requirements in stream processing. In some 

scenarios, the stream should be processed at very high speed and the result should be 

produced in real-time. In some other cases, a little delay may be acceptable. In the 

worst-case delay, like one hour or one day, it is suited for some large data processing 

conditions. According to the time taken for the processing of the stream, we divide the 

stream processing into two; real-time stream processing and/or near real-time stream 

processing, and batch processing. Stream processing has several aspects such as real-

time processing, distributed stream processing, decentralized stream processing, 

guaranteed stream processing, publisher-subscriber mechanism, fault-tolerance, and 

scalable. If you take the real-time processing dimension in stream processing, this real-

time term is based on the time, latency and a few other factors such as data motion, 

and data access. We can divide the big data process into two types; batch processing 

and real-time processing. Table 2.1 compares the differences between batch processing 

and real-time processing. Even if we use the term real-time processing, it is near real-

time if any system can process a single element of the data in less than 1 millisecond 
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can consider as near real-time processing. Next, we cannot avoid the third option, 

which is a hybrid solution of real-time and batch processing. An example of such a 

processing model is the Lambda Architecture that we discuss in detail in the following 

section, Section 2.4 big data storage and processing. If we take the real-time 

processing, there are a few requirements to fulfill; conditions such as keep the data 

moving, having a stream-based SQL, handle the stream. 

Table 2.1 Difference between batch processing and real-time stream processing. 

Batch Processing Stream Processing 

Data is at rest Data is in motion 

Batch size is bounded Data is essentially coming in as a stream and is unbounded 

Access to entire data Access to data in the current transaction/sliding window 

Data processed in batches Processing is done at event, window, or at the most at micro batch 

level 

Efficient, easier administration Real-time insights, but systems are fragile as compared to batch 

Imperfections (Delayed, Missing and Out-of-Order Data), Generate Predictable 

Outcomes, Integrate Stored and Streaming Data, Guarantee Data Safety and 

Availability, Partition and Scale Applications Automatically and Process and Respond 

Instantaneously [23]. If we focus on a few important factors mentioned above. One of 

the important requirements is to make sure that each message is processed. In this 

aspect, the process has three types in the real-time process according to the 

requirements; at most once, at least once and exactly once. Table 2.2 lists the 

characteristics of each processing type. 

Table 2.2 Three types of guaranteed processing in real-time processing. 

At Most Once At Least Once Exactly Once 

Subscribes to data from the 

start of the next window 

Operator brought back to its 

latest checkpointed state and 

the upstream buffer server 

replays all subsequent windows 

Operator brought back to its 

latest checkpointed state and 

the upstream buffer server 

replays all subsequent windows 

Ignore the lost windows and 

continues to process incoming 

data normally 

Lost windows are recomputed 

& application catches up live 

incoming data 

Lost windows are recomputed 

in a logical way to have the 

effect as if the computation has 

been done exactly once 

No duplicates & no re-

computation 

Likely duplicates & re-

computation 

No duplicates & re-

computation 

Possible missing data No lost data No lost data 
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 Figure 2.1 shows that Spout A emits a tuple T(A), which is processed by bolt B, and 

bolt C, which emits the tuples T(AB) and T(AC), respectively. So, when all the tuples 

produced due to tuple T(A) – namely the tuple tree T(A), T(AB), and T(AC) – are 

processed, we say that the tuple has been processed completely. If the message reaches 

the destination task, it is considered as a completed message, otherwise, it is a failed 

message. To implement guaranteed message processing, one of the recognized ways 

is sending the acknowledgment to the root emitter. Figure 2.2 shows each task of 

sending an acknowledgment to the spout if the message is successfully processed. If 

the task is not sent the acknowledgment to the spout that message considered as a failed 

message. So according to the guaranteed messages processing optimization either at 

most one, at least one and exactly once, these failed messages may process again until 

it processed successfully.  

The next important feature in a real-time stream processing system is stream grouping. 

Currently available stream grouping types are Shuffle grouping - which randomly 

partitions the tuples, Fields grouping - which hashes on a subset of the tuple 

attributes/fields, all grouping - which replicates the entire stream to all the consumer 

tasks and Global grouping - which sends the entire stream to a single bolt [24]. Figure 

2.3 illustrates the distribution of messages among tasks in each stream grouping type.

Figure 2.1 Typical stream processing with multiple sequence of task. 
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2.4 Big data persistence and high frequent data manipulation 

In this section, we analyze a few main challenges in dealing with big data, specifically 

big data manipulation. The problem is that we are storing the big data in a NoSQL 

database, which contains hundreds of millions of data entries distributed among 

multiple nodes, but the requirement is to be able to query the data from NoSQL with 

low latency and high frequent queries. Here, we going to discuss four solutions for this 

problem, namely NoSQL native solution, Lambda architecture, Kappa architecture, 

and in-memory computing. 

Figure 2.2 Acknowledgement mechanism in Storm. 

Figure 2.3 Four types of stream grouping. 
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Several NoSQL database products currently in use, and among them Cassandra, it 

performs well compared to other products [25]. If we analyze the arrangements in the 

Cassandra NoSQL database for big data, when writing, initially the new data goes to 

the commit log, then the data is stored in the memory for a while. Memtable is a 

memory caching data structure where if the memtable reaches the upper bounty, the 

data is permanently flushed into the stable (Sorted Strings Table), which is in the disk.  

During the read operation or data manipulation, Cassandra consults a bloom filter that 

checks the probability of a table having the needed data. If the probability is good, 

Cassandra checks a memory cache that contains row keys and either finds the needed 

key in the cache and fetches the compressed data on disk or locates the needed key and 

data on disk and then returns the required result set. 

Next, we discuss the lambda architecture [26]. Here, rather than directly reading from 

the NoSQL table, a pre-computation process takes place and creates batch views. As 

illustrated in Figure 2.4 the data comes to the system and splits into two layers, the 

batch layer and the speed layer, for processing. Managing the master immutable 

dataset and pre-computing the data views are the two main functions of the batch layer. 

In the middle, the serving layer generates the indexes from the batch view to enable 

low-latency data manipulation. Any data query can be obtained by combining both 

results from real-time data and batch data. 

As illustrated in Figure 2.4, Kappa Architecture is derived from Lambda Architecture. 

There is no batch layer in Kappa architecture. Instead of the batch layer, it is cloned 

into two real-time streams. 
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2.5 Existing Solutions for C2C matching 

We are unable to find an existing solution that matches real-time C2C matching the 

research domain, but there is some part of our problem that has been previously tried 

by a few people. First, if we consider the product attribute extraction section, people 

have approached this matter in two different ways, Rule-Based methods NER PRO is 

mainly run using some manually created or automatically generated rules. Pierre [27] 

has developed an English NER system that allows product names to be found in 

product reviews. Like string template matching, a simple Boolean product name 

classifier was used. However, in this way, many new product names are not included 

in corpus training, and results may be worse in certain situations.  

Statistical model-based approaches usually apply statistical models integrated with 

Figure 2.4 Lambda architecture and Kappa architecture 

Source: Adapted from [25]. 
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some heuristics and external knowledge bases. For example, a bootstrap method using 

two consecutive learners (syntax-based decision list and hidden Markov model) is 

presented in English NER [25]. The main advantage of this method is that it avoids 

manual annotation of the practical training corpus, but it has two problems. The other 

is that it relies heavily on parser performance. In [26], another very similar approach 

was used. There, all O & M ontology XML tags have been mapped to the OWL 

concepts. Although the author describes access to annotated data on SPARQL queries, 

SPARQL queries generate large amounts of traffic at low sample rates, so for 

applications that need to access sensor data in real time, it is not effective. Therefore, 

there remains a need for solutions for real-time semantic annotation as well as for the 

efficient representation of sensor data knowledge in dynamic environments such as 

smart cities. 

 

2.6 Summary 

In this chapter, we discussed the abstract architecture nd mplementation, which 

includes our main components such as IE, Bigdata, and social media, stream 

processing, bigdata persistence, and high-frequency data manipulation from a NoSQL 

database. Furthermore, in IE, we discussed the main approaches we used, such as text 

preprocessing and social media message normalization. Then we moved into NER, 

here we presented the algorithms we used such as CRF and Logistic Regression. In 

Section 2.2, we analyze the nature of social media data, particularly the bigdata feature 

applied to social media messages. In the next section, we moved into the performance 

problem. First, we drill down the available technologies in stream processing, 

particularly the types of stream processing are batch processing and real-time 

processing. Then we discussed guaranteed stream processing and parallelism in 

distributed real-time stream processing. Finally, we discussed bigdata persistence and 

high-frequency data manipulation. Here, we discussed available technologies for 

managing huge data, especially a fully decentralized distributed NoSQL that has high 

availability and low latency. Then we finished with low latency data manipulation in 

a very high-frequency stream environment. We found the following technologies such 

as batch processing, micro-batch processing, material view, and Lambda Architecture. 
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CHAPTER  3  

 

RESEARCH METHODOLOGY 

 

The objective of the research is to find the matching social media messages related to 

the C2C business model. Figure 3.1 illustrates the three main aspects involved in this 

problem, namely Information extraction (IE) from row social media messages, 

matching the messages based on the semantics, and process above two in real-time.  

Table 3.1 lists the three main aspects and technologies. Section 3.1 presents the 

methodology of IE. The matching methodology is presented in Section 3.2. In the next 

section, we talked about the approach we applied in the implementation of real-time 

big data processing. Finally, in Section 3.4 we presented the high-level architecture of 

our research.  

Table 3.1 Three aspects and relevant technologies. 

Information Extraction Matching Real-time Big Data Processing 

Gazetteers  Complex event processing Stream processing 

Machine learning Business analytics Distributed computing 

Linked data  NoSQL database 

Conditional random fields  In-memory computing 

Logistic regression  Search & indexing 

Named entity recognition   

 

3.1 Information Extraction 

As the social media messages are in unstructured form, it is difficult to compare 

messages with each other and find the matching set of messages. There are several 

reasons for this difficulty. One of the differences between the C2C social media 

Information Extraction Matching 

Real-time large-scale big data processing 

Figure 3.1 Association between three aspects of our research problem. 
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messages and the product listing on general e-commerce sites like eBay or Ali Express 

is the organized nature of the content. While most e-commerce product content is in 

semi-structured form, social media messages are in unstructured plain text. Moreover, 

C2C-related social media messages not only contain the product details as the user can 

add irrelevant content to the message, e.g., but the messages may also contain greetings 

with product attributes such as the example given in  

Figure 3.2. Number 1 highlights the product attribute and the rest of the text is 

irrelevant to the product. At the same time, the message contains non-dictionary words 

as well (highlighted as number 2). The third reason is the inaccuracy in messages such 

as typos or confusion. For example, the correct wording of the product should be “Sony 

DSC -H400”. At the same time, the second message mostly contains the product 

attribute in its text. If we compare both the messages using Levenshtein distance [28], 

there is a large variation between the two messages. However, producing the semantics 

or structured form of a message from the plain unstructured message is not straight 

forward. IE needs to produce structured messages; in our case, as we use statistical IE. 

3.2 Matching 

As seen in Figure 3.3 to be able to match messages, we need to: 

1. Work with a stream-based data flow 

2. Detect matches between real-time messages 

3. Detect matches between messages in near real-time 

4. Match both real-time live messages and offline stored messages 

5. Fulfill the availability and horizontal scaling needs 

6. Match both complete matching and partial messages 

To fulfill all the above requirements, we came up with a combination of multiple 

emerging technologies. For example, complex event processing is used to process a 

structured stream input data flow to find matches among real-time data and near real-

time data stream using time windows. To perform a high-frequency search with low 

latency over a large database, we implemented a combination of big data technologies 

like NoSQL database, data indexing, in-memory computing, and map-reducing. In the 

upcoming sections, we discussed those methodologies in detail. 
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Figure 3.2 Two sample tweets with a mix of product attributes and greeting. 

3.3 Real-time big data processing 

IE and matching phases can handle a single message at a time and have relatively high 

latency. Therefore, under the high input rate experienced in social media, messages 

will get queued increasing the overall response time. The process-level distribution 

could be used to solve this issue. To make it work in an optimized environment, we 

split the above two main processing units such as IE and matching into several small 

building blocks. Then, according to the workload/complexity and the latency of each 

component will be assigned with a parallelism index in our distributed stream 

processing environment. 

3.4 High-level architecture 

Figure 3.3 illustrates the data flow between each building block of our system. As 

illustrated in Figure 3.4, the IE phase is used to convert the unstructured social media 

messages into a structured form which is taking place in the Storm cluster. The 
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matching component is responsible for finding the matching messages among the 

structured message stream produced by information extraction part. Matching process 

happening inside the WSO2 DAS. To process this social media messages in real-time, 

both IE of the messages and matching the messages must work with low latency in any 

complex use cases. With a standalone application we cannot achieve this. 

 

 

The real-time implementation facilitates three internal requirements, namely 

processing social media message stream in near real-time, storing the huge volume of 

semantics generated by stream processing, and real-time query processing. Mostly the 

IE and some other supportive process were executing on top of the distributed parallel 

stream processing. 

So, with the help of distributed stream processing, each subtask executes multiple 

instances parallelly. The list of sub-tasks and the purpose is given in Table 3.2. 

According to the requirement, the parallelism of a task can be adjustable, e.g., five 

message receiver instances, ten NER instances, and two persisting instances. Because 

of this parallel execution feature provided by the distributed stream processing 

implementation, the incoming social media messages can be processed in near real-

time with low latency. 

Figure 3.3 High level architecture of our framework. 
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The raw/plain text of social media messages is collected by a message receiver. Then, 

the messages will reach the IE task, named as Named Entity Recognition (NER). The 

IE part is split into several subtasks to extract various product attributes such as product 

name, model name, product group, brand name, and commercial intention of that 

message. Next, the semantics stream of the messages is replicated into three streams 

and NoSQL database, in-memory computing, and complex event processor. The 

NoSQL database receive and store messages for future use. In-memory computing 

system converting the real-time message stream into a query which manipulate the 

related messages from messages stored in the NoSQL database. The Complex Event 

Processor (CEP) takes the real-time message stream as one input stream and related 

stream produced by the in-memory system as the second input and match the messages 

through based on a predefined set of rules. To connect to each of the above units, we 

implemented another three-stream data transferring connector, namely persisting bolt, 

real-time data manipulation bolt and publishing bolt to connect with the CEP. 

Figure 3.4 The data flow between IE, In-memory, NoSQL and CEP. 
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Table 3.2 Components implemented using distributed stream processing. 

Task Purpose 

Message receiver Retrieving social media messages 

NER Converting the unstructured social media messages into structured form/ 

semantics through named entity recognition.  

Persisting Persisting the extracted semantics to the NoSQL database 

Real-time data 

manipulation 

Search and retrieve the resulting from the NoSQL database according to the 

query parameters taken from incoming semantics by connecting to the in-

memory computing component 

CEP publisher Publishing the semantics stream to the complex event processor 

CEP receiver Receiving the matched messages from complex even processor and sending 

those matchings to the C2C publisher 

C2C publisher This the final task connecting the consumers through notifying social media 

users about the messages relevant to the message published.  

 So, the same data stream is used for different purposes by different units to find out 

whether the extracted semantics from real-time match the other messages in the real-

time stream and offline data. Matching between real-time and offline data is more 

challenge than matching among real-time data. Such matching is challenging because 

of high velocity and volume of social media stream. while storing all the messages in 

NoSQL database, we simultaneity convert each real-time message to act as a query on 

already stored buy/sell messages on NoSQL database. Therefore, the velocity of the 

live social media stream determines the frequency of the queries. However, such high 

frequency queries are difficult to handle with most databases. Moreover, all these 

queries may need to scan all the data stored in the database linearly increasing the 

query time with respected to the number of messages already stored in the database. 

In our solution, we use a NoSQL database to handle four Vs of big data [29] while 

distributing both the storage and workload across the multi-node distributed cluster. 

Through the persisting bolt first replicated stream will reach the NoSQL database. 

Each message in the real-time stream will make a query on the NoSQL database to 

find potentially matching more complicated entries. To handle these high-velocity 

queries, we use in-memory computing, materialized views and indexing. This 

increases the throughput of query processing while reducing the latency. The real-time 

data manipulation bolt is responsible for converting the semantics into the CEP 

publisher bolt.  
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Finally, the third replication of real-time semantics occurs and the results from the 

query processing are sent to the CEP through the CEP publisher. The CEP receives 

both the real-time semantics and the results of the queries collected from the NoSQL 

database. The CEP has several execution plans to process those messages and will 

finally produce the matches from both streams. In the end, the matching details will 

reach the right users through the CEP receiver and the C2C publisher [30]. 
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CHAPTER  4  

 

IMPLEMENTATION 

 

 In this chapter, we explain the detailed? implementation of our solution. Our solution 

contains four main technical aspects IE, real-time stream processing, big data 

processing and matching the semantics of the social media messages. First, we start 

with IE on Section 4.1 and later in Section 4.2 we explain the real-time and big data 

processing mechanisms. Also, in Table 4.1 listing the major aspects applied in our 

implementation, relevant tools, and their applications. 

Table 4.1 Applied tools and their functionality 

Tools Aspect Application 

Nltk Information Extraction Python Natural Language Toolkit 

LingPipe Information Extraction Tool kit for processing text using computational 

linguistics 

Fuseki Information Extraction SPARQL server for manipulating Linked data in 

triple RDF format 

Gate Information Extraction A general architecture for text engineering 

Spark Information 

Extraction/real-time 

big data processing 

Fast and general engine for big data processing, with 

built-in modules for streaming, SQL, machine 

learning and graph processing 

WSO2 Data 

analytical server 

Matching An analytics platform that analyzes data streams in 

real time 

WSO2 Complex 

event processor 

Matching Helps identify the most meaningful events and 

patterns from multiple data sources, analyze their 

impacts, and act on them in real time 

Apache Storm Real-time big data 

processing 

Distributed real-time computation system 

Apache 

Zookeeper 

Real-time big data 

processing 

Distributed, open-source coordination service for 

distributed applications 

Apache Kafka Real-time big data 

processing 

Real-time data pipelines and streaming apps 

Apache Cassandra Real-time big data 

processing 

Distributed NoSQL database management system 

designed to handle large amounts of data across 

many commodity servers, providing high availability 

with no single point of failure 
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4.1 Information extraction 

In our case, we have two main requirements related to IE the NER of product attributes 

and classification of the messages. Both requirements needed training dataset. The 

detailed set of the process is illustrated in Figure 4.1. The accuracy of a supervised 

machine learning model increases with the size of the training dataset. So, a very large 

training data set is necessary to get good accuracy. 

 

Figure 4.1 Information extraction process 
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As we were unable to find any proper training dataset with product attribute labeling, 

we generated a large size of the training dataset. Manually labeling each message will 

take a long time. Therefore, we came up with an automated training idea. In our case, 

we needed to recognize product attributes such as product name, brand of the product, 

model of the product and several other functional/performance attributes. As shown in 

Figure 4.2, to create a label for each attribute we needed the global list of the whole 

values of that attribute e.g., only if we have the whole list of brands, are we able to 

label the brand in our training set. So, we needed to collect a large list of terms for 

each product attribute.  

4.1.1 Gazetteer list Generation from Linked Data 

 

Figure 4.2 Data sources of gazetteer lists belong to product attributes. 

Basically, the gazetteer list is a list of text phrases, which is one approach in NER to 

identify a named entity. But there is no gazetteer list publicly available for identifying 

product attributes. So, we planned to prepare a set of gazetteer lists for product 

attributes such as brand, product, and model. So, we identify certain datasets relevant 

to the product details that are in a semi-structured format such as product details on 

Wikipedia, Product listings on e-commerce sites, review records of product listings. 

Our first data source is Wikipedia data, which is available in different forms such as 

ontologies, Linked Data, RDF, semi-structured data, XML, n-quads, and n-triples. 
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Table 4.2 Sources of Product Linked data and statistics. 

 

 Here, we focus on product linked data. This linked data is a graph net between product 

related entities. These datasets are also called triple data, which are subject, object and 

predicate. As illustrated in Figure 4.3, each attribute of the product contains three parts 

such as subject, object, and predicate. Product data is a collection of multiple sources 

which are listed in Table 4.2. 
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Here the statistics of crawled data, such as number of pages, number of pages with a 

triple, and triple were given. This data set contains 6 million pages from the multiple 

sources mentioned, and in size will be over 350 GB of compressed data in WARC 

format. Here in this dataset, we identified 250 different product-related semantic 

attributes. Few semantic entries are listed in Table 4.3. But in our research, we only 

focused on a few semantic fields of products, such as product name, product group, 

product brand, product model and some others. 

Table 4.3 Few semantic entries from our product linked dataset. 

 

So, to store the data we used an RDF (Resource Description Framework) [31] based 

server called Apache Jena Fuseki [32]. Apache Jena Fuseki is also a platform to run 

Figure 4.3 Single product entry in triple format. 
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the manipulation queries on top of linked data. This query language is commonly 

known as SPARQL i.e., a semantic query language for databases [33]. In our case also 

we need to manipulate multiple product attributes separately from this linked data 

server. Table 4.4 shows the list of semantic URI references belonging to product 

attributes, which is the result of the following SPARQL query. 

So, the following queries were used to generate the pre-normalized version of the 

gazetteer list.  

 

Product name manipulation query  

 1 SELECT DISTINCT ?productName 

 2 WHERE 

 3  { GRAPH ?g { 

 4     ?s <http://schema.org/Product/name> productName  

 5             } 

 6   } 

 

Product model manipulation query  

 1 SELECT DISTINCT ?productmodel 

 2 WHERE 

 3  { GRAPH ?g { 

 4     ?s <http://schema.org/Product/model> ?productmodel 

 5        } 

 6  } 

Product brand manipulation query  

 1 SELECT DISTINCT ?productBrand 

 2 WHERE 

 3  { GRAPH ?g{ 

 4     ?s <http://schema.org/Brand/name> ?productBrand  

 5         } 

 6  } 

 

From the RDF data store, we are able to generate a certain large size of the gazetteer 

list of the various product attribute. 
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Also, we found semi-structured product data set from some other resources which are 

in json form. Here mainly we collected from two sources metadata of Amazon product 

listings [34] and gold standard Product Feature Extraction from webdatacommon [35]. 

Table 4.4 Semantic references belonging to product attributes. 

http://schema.org/Product/offers 

http://schema.org/Product/name  

http://schema.org/Product/url 

http://schema.org/Product/gtin13  

http://schema.org/Product/review  

http://schema.org/Product/mpn 

http://schema.org/Product/aggregateRating  

http://schema.org/Product/brand 

http://schema.org/Product/color  

http://schema.org/Product/model 

http://schema.org/Product/description 

 

Table 4.5 Dataset summery for gazetteer generation 

Dataset no Source Type Obtained Product Attributes 

Dataset1 Linked data N-Quarts(RDF) Product_name,model and brand 

Dataset2 Amazon json Product_name, category, brand 

Dataset3 Web data 

common 

json  Product_name, brand, product_type, 

manufacturer and phone_type  

 

This dataset includes product reviews, rating, and metadata from Amazon, including 

142.8 million reviews spanning May 1996 - July 2014 [36]. This dataset includes 

reviews (ratings, text, helpfulness votes), product metadata (descriptions, category 

information, price, brand, and image features), and links (also viewed/also bought 

graphs). In this dataset the brand and product category ware very useful to our 

experiment. 

Here in this dataset, the records ware included from various e-commerce sites. The 

labeled set contains out of 500 product entities, while the distinct labeled properties 

are 338 in total. The product entities were labeled as JSON objects [37]. Here the 

dataset includes many product attributes for each product. It may vary from product to 
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product. The headphones contain 36 attributes, phones contain 32 attributes and tv 

contains 76 attributes.  

So, from these three datasets, listed in Table 4.5 we were able to collect noisy product 

attributes of product name, product model and product brand. From the above process, 

we generated a gazetteer list for the above product attributes, which helped us in 

labeling the training dataset to produce the machine learning model to NER. At the 

same time, product category and sale status ware two classification problems. We 

needed to classify each message to a suitable product group, as well as classify the 

message to the right sale status among buy, sell, and neither. Our second dataset was 

used to generate the classification of the product category. But all this data is very 

noisy, so we implemented certain normalization techniques, which are described in the 

following section. 

4.1.2 Product domain Named Entity recognition 

For NER we needed a labeled dataset but, in this case, the domain is very large. So 

manually labeling a small number of messages will not give an accurate result. Using 

gazetteers, we managed to label a significant number of messages. In the above step, 

we directly produced three gazetteer lists belonging to the product name, product 

model, and product brand. Even though those gazetteer lists were very noisy, we came 

up with a normalized version of the gazetteer list through several steps, which are 

mentioned below.  

Normalizing the gazetteer list 

For each product attribute, we got a very large number of noisy lists. Those lists had a 

lot of problems, such as duplicated entries, case sensitive, containing prefixes, 

containing suffixes, containing symbols, containing numbers, very long words and a 

large number of words [38]. First, we filtered the entries that were less than four words. 

Then, we removed the entries containing stop words, using the python NLTK library. 

Also, if any entry had very long individual words, they were removed from the list. To 

reduce the noise, we filtered the entries with numbers and symbols. Later, we 

generated separate files according to the number of words, so we had 4 files for single 

word entries e.g., maco, mage, malo, maps, tomato, maxx, and meco, two-word 
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entries, e.g., mosey life, mount pros, music hall, then tri word entries e.g., sp studio 

lighting, sport supply group, stone case company.  

For the single word list of brands names, we checked whether the word is a dictionary 

word or not. If it is a dictionary word, we remove that word from the list. However, 

we added popular brands that are even dictionary words, such as apple and orange. 

When checking the dictionary, we used Wordnet [39] because helps to identify all the 

forms of dictionary words. Also, we allowed single words that were the concatenation 

of two dictionary words e.g., microelectronics. For the entries that had more than one-

word dictionary words, it was not an issue. Later, we sorted each list according to the 

length (number of characters). In the end, we made a single list by merging all 3 lists 

together according to the word size, and secondly length. Finally, we were able to 

generate a brand gazetteer list with nearly 15000 entries. Most of the entries are 

relevant to the C2C business model. 

4.1.3 Training dataset Generation using the gazetteer 

We had 5 datasets for different named entities brand, model, product name, product 

group, and sale state. But these gazetteers generated above are used only for the brand, 

model, and product name. We only selected the above five attributes due to the 

research constraints and we are looking to expand the number of attributes in future 

research. The datasets are a collection of social media messages from different sources 

such as Twitter feeds, and product listings from different C2C and B2C websites such 

as eBay and Amazon. The challenges in this training process are the labeling segment 

not having a static length, i.e., the number of words in each labeling element is 

different. Other than that, when thinking about automated training /labeling task we 

cannot expect that the words will exactly match an element in the gazetteer list, e.g., 

GW Security Inc vs. gwsecurity in this case has very few differences such as the space 

between GW and security, missing of Inc in training set, difference in case. The next 

challenge was the overlapping between two elements e.g., smartworks consumer 

products and smartworks. If both are in our gazetteer list, and if both represent two 

different brand names, then there is a conflict as one of the brand name is a part of 

another brand. The next challenge here is the occurrence of multiple entities of the 

same type, i.e., multiple occurrences of product entity in a single message. So even 
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after detecting an entity, we cannot stop the process for the rest of the text as we have 

to check against the gazetteer from the beginning.  

4.1.4 String comparison in automated training  

In our case, when we automatically trained the dataset it was a complicated task to 

recognize the multi-token named entities. In our gazetteer list, we have elements up to 

3 words after normalizing. As the gazetteer generation list is sorted according to a 

number of words primarily, and the character length, the lengthy element will be 

labeled, and the others ignored if that matched multiple elements. This was 

implemented using n-gram [40]. First, the social media messages will go through an 

n-gram with the size from 3 to 1. Then, there will be a segment with n number of words 

next, that must compare with the gazetteer list. As we said earlier, a single instance 

may be located with little difference in both places. So, to overcome this, we 

implemented a few string similarity techniques. We only applied the string comparison 

to the entities with a length of more than 5. For smaller words, it may not work well. 

So we used the Jaccard Distance [13] based character distance edit method of 0.2 edit 

distance, as well as a token-based Jaccard Distance of 0.2. 

4.1.5 NER using Conditional Random Fields  

Conditional Random Fields (CRF) is a conditionally trained unidirectional graphical 

model. It can apply to standard linear-chain structure. So we selected the CRF [20] 

approach over the maximum entropy classifier, hidden Markov model [20] approach 

over maximum entropy classifier, hidden Markov model and maximum-entropy 

Markov model. The above four methods are relevant to sequential labeling. The 

Maximum-entropy Markov model makes decisions at each element independently 

However, the hidden Markov model overcomes the drawback of not showing good 

performance on the unknown label sequences. The Maximum-entropy Markov model 

overcomes the shortages and combines the advantages of maximum entropy and the 

hidden Markov model. So, we selected CRF it overcomes the problem with the 

Maximum-entropy Markov model such as label biased problem and the CRF avoid 

bias problem. The maximum-entropy Markov model is locally normalized but the CRF 

is globally normalized. The CRF is now widely used in many domains because of its 

state-of-the-art results. 
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Let X1: N denote the subset of a message and Z1: N the label of the named entity. Here, 

the Z is the normalization factor. Feature Functions are a key component in CRF. In 

our case, the feature function deals with many features e.g., the feature function will 

generate binary values. It is 0 if the current word is “sony”, and if the current state Zn 

is “BRAND”. If this feature condition is satisfied,  

 𝑓1(𝑧𝑛−1,𝑧𝑛, 𝑥1: 𝑁, 𝑛) = {
1 𝑖𝑓 𝑧𝑛 = 𝑏𝑎𝑟𝑛𝑑 𝑎𝑛𝑑 𝑥𝑛 = 𝑠𝑜𝑛𝑦

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          
 

(4-1) 

Unlike other algorithms, CRF depends on other positions as well. So, the feature 

function will calculate the previous and next label as well e.g., if the current label is 

brand and the next label is a product, the feature function for Xn+1 will activate. The 

following Figure 4.4 is a graphical model presenting the CRF. XI represents the word 

elements and yi represents the labels. 

 

 

In NER there are serval machine learning based approaches. The whole NER process 

was done using a Java NLP framework called LingPipe [41]. First, we implemented a 

training corpus compatible with Lingpipe.  

Also, the ratio between the training dataset and the test dataset was 8:2. After the 

creation of the corpus, we must tokenize the corpus. In tokenizing the corpus, we 

implemented the BIO based tagging standard. This means that for each label, it may 

contain one or more words. So for the labeling, we placed each word in separate lines, 

then if the word was not in the label, it was labeled as –O, if the word was at the 

beginning of the label, it was labeled -B, if the word was part of the label but not at the 

start, then it was labeled as -I. In the model generated, feature extraction is a major 

Figure 4.4 Graph view of CRF model. 
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component. We implemented the following feature extraction techniques.   

4.1.6 Product group and commercial intention classification  

The next information we extracted from the C2C related social media messages were 

product group and commercial intention. Both of these attributes were not directly 

extracted from messages. Rather, each message classifies into predefined categories. 

In product classification, we have 3 categories that are available in our collected 

dataset, namely, electronics, musical instruments, and cellphones. Likewise,  

Table 4.6 List of features used to classify the messages. 

Selling Feature Buying features 

containing URL No URL 

many product specifications No product /fewer product specifications 

certain terms such as 

• I'm selling 

• buy cheap 

• cheap 

• for sale 

• check out 

• low price 

• deal 

• shop 

• reasonable 

• sell 

• buy 

• purchase 

• retail 

Usage of certain terms such as 

• have to buy a 

• I want a 

• looking for a 

• how much the 

• planning to buy  

• urgent need 

• need a 

• ready to buy  

• can pay to 

• wanted 

• for buy 

• to buy 

Less abbreviations / non-dictionary words  Usage of abbreviations  

in commercial intention classification, we have another three buckets, namely, selling, 

buying, and nether. Here, we used the Logistic Regression Classifier. In our total 

corpus, nearly 1 million messages were included. The corpus was divided into a 

training set and test set in an 8:2 ratio. 

4.1.7 Feature extraction on the classification  

Feature extraction is an important aspect of any supervised machine learning method. 

In this logistic regression-based classification problem, we included several features 
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to classify both product group and commercial intention [42]. The features are listed 

in Table 4.6. 

POS sequence features are also very important in commercial intent classification. In 

Table 4.7, we listed those POS sequences with example messages and the syntax tree 

for each POS sequence. The list of POS sequences mostly occurred among C2C e-

commerce social media messages. Also, the selected sequences are specific to certain 

commercial intent, either buying or selling. 

Table 4.7 POS based features 

POS Sequence attributes Status 

VB JJ NN CD sell 

NN CD CD sell 

NN JJ CD sell 

NN CD CD NN sell 

NN IN DT JJS sell 

VB DT JJ NN buy 

VB JJ NN CD NN sell 

NN JJ CD sell 

JJ NN FW buy 

FW MD buy 

VB JJ NN buy 

 

4.2 Real-time stream processing 

At the end of the IE, we will have the semantics of the messages. The next thing is 

matching relevant C2C messages based on the semantics. But the C2C social media 

matching use case is a big data problem, so we must solve this from different aspects. 

Both the IE and C2C message matching have two different big data challenges. To the 

IE we to make sure that the C2C messages are processed in real-time. So, we 

implemented a real-time IE solution for a high-velocity C2C social media stream using 

distributed real-time stream processing. So, the next problem is real-time C2C 

matching based on C2C. We had two challenges: real-time query processing from the 
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NoSQL database and real-time and batch-based matching within complex event 

processing. We explained the detailed implementation in the following sections. 

4.2.1 Real-time information extraction 

In big data processing, we had mainly two processing types of first real-time 

processing and batch processing. To implement the real-time IE we used distributed 

stream processing. We implemented the distributed stream processing using Apache 

storm. We can divide the implementation into two sections: physically distributed 

cluster and programmable logical topology. In the following topic, we explained about 

creating the cluster and the tools used in disturbed stream processing and the 

supportive services needed to achieve this, such as message passing, data bus, 

publisher-subscriber agent, distributed coordinator, and master-slave architecture.  

Real-time distributed stream processing cluster implementation 

As we explained earlier, to achieve real-time IE using distributed stream processing a 

distributed solution was implemented on top of the multi-node cluster. We used 

Apache Storm [43]as the software framework. It is a master-slave architecture given 

in Figure 4.5 to connect all the nodes in the Storm cluster Apache Zookeeper 

coordination service was used. This distributed infrastructure providing us the 

parallelism to achieve real-time processing. 

  

Figure 4.5 Apache Storm physical architecture.  
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Distributed coordination service 

Coordination service is a core of the storm architecture. In Storm, Zookeeper is 

used as the coordination service. So, we first implemented a single-node 

Zookeeper cluster. In the Storm-distributed cluster, Zookeeper provided many services 

such as sharing configuration information among every node in that cluster and 

coordinating the various processes. Zookeeper acts as the storage space in the Storm 

cluster to store all the data and task records. Finally, it provided the ability to ensure 

availability through a multi-node cluster. As discussed earlier, using a distributed 

election approach, Zookeeper elects a leader and rest of the nodes act as followers.  

To keep the cluster working continuously, the live/running nodes should be greater 

than n > 2. Also, as recommended, we assigned an odd number of nodes for our 

experiment. If we use 4 nodes, the minimum number of live nodes should 3 (3 > 4 / 

2). So here, only one node can die. If we use 5 nodes while keeping the system 

available, two nodes can die.  

The Zookeeper ensemble configuration is given below. Here the tickTime is the basic 

unit of time in milliseconds used by ZooKeeper. It is used to send heartbeats, and the 

minimum session timeout is twice the tickTime value. The four nodes of the Zookeeper 

cluster are mentioned in each ensemble configuration, such as a server.1,  

After implementing the coordination cluster using Zookeeper with four server nodes, 

the second node was elected as the leader and all other three nodes were assigned as 

followers.  

Real-time distributed parallel stream processing cluster 

We used Apache Storm as the real-time distributed stream processing engine. As the 

main requirement for the Storm cluster implementation, the Zookeeper-based 

coordination service cluster was implemented above. In the next step, we implemented 

the physical distributed environment/infrastructure with both software and hardware 

resources to fulfill the real-time IE requirements. So, we implemented a six-node 

Storm cluster with 2 nimbus nodes and 4 supervisor nodes.  

The nimbus nodes were configured by providing the IP address of the Zookeeper 
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clusters in the first place. In our Storm cluster, we assigned three Zookeeper node 

clusters, so we mentioned those addresses in the configuration. At the same time, in 

our Storm cluster, we assigned two nimbus nodes to overcome the failover. At the end, 

the Storm cluster was implemented and up and running, and we could monitor the total 

cluster using the Storm UI. Our distributed real-time IE infrastructure was completed 

at this point. In the next section, we explain the software implementation of our 

distributed processing of IE on top of this infrastructure.  

 

  

Distributed real-time information extraction 

We already did the core of the IE for regular application through sequence labeling / 

NER models and classification models. Also, we implemented the multi-node 

distributed cluster environment using Apache Storm and Zookeeper. In this section, 

we are going to explain the implementation of real-time IE for the high-velocity social 

media stream. Our solution has a clear architecture and implementation to solve this 

issue. In the storm cluster framework, they use the term Storm topology for this 

distributed parallel processing model. So, our storm topology contains two types of 

processing modules, spouts and bolts. The spouts response for receiving the stream 

and bolts for processing the stream. So, in our core Storm topology, we have a single 

bolt to receive the Twitter stream. At some time, we have 7 bolts in our core IE 

topology, as shown in Figure 4.6. In the upcoming sections, we will discuss additional 

bolts for the additional feature implementations. In Table 4.8, we listed the spouts and 

Table 4.8 NER modules in stream processing topologies 

Name of the unit Type Functionality 

TwitterSpout Spout Receiving the tweets  

brandNERBolt Bolt Brand Named Entity recognition  

productNERBolt Bolt Brand Named Entity recognition 

nerjoiner Bolt Merging both NER output streams into a single stream 

StateClassificationBolt Bolt Classifying the message either product selling or product 

buying or neither  

GroupClassificationBolt Bolt Classifying the messages among several product groups  

classifierJoiner Bolt Merging both classifiers outputs streams into a single stream. 

ModelRecognizerBolt Bolt Recognizing the model names from messages 
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bolts. Rather than working as a pipeline of sequence processing one after the other, we 

implemented a total parallel solution where each module mentioned above works 

independently. The graphical structure of our topology is shown in Figure 4.6. 

The NER bolts can extract multiple NER entities such as a message containing 

multiple brands in a single message. So, we are producing the output of each NER 

bolts as a set, as shown in Figure 4.7. 

4.2.2 Parallelism in Information Extraction 

In our real-time distributed IE cluster implemented using Apache Storm, we have a 

multi-node cluster including a nimbus, Zookeeper and supervisor nodes. But the 

supervisor nodes are the execution part of the cluster. Each supervisor node is capable 

of running multiple JVMs. Each JVM is called a worker process in Storm terminology. 

The number of worker processes/JVMs in a single node can be configured with the 

topology definition. In our cluster, we only use 3 supervisor nodes and, in each node, 

we configured four workers processes/JVMs. 

Now we have 16 JVM/worker processes going to process out IE modules. The next 

important aspect in parallelism in Apache Storm is the executors in the word threads. 

We can assign the number of threads/executors for each module in our topology, as 

listed in Table 4.9. 
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So accordingly, we need 30 executers for each node, and 10 executors will be assigned. 

In each node, we have four worker processes so for distributed 10 executors among 

four worker processes like three executers for first two worker process and two 

executors for rest of the two workers process the clear picture illustrated in  

 

Table 4.9 Each module in the Topology and their parallelism. 

No Module No of Executers No of Tasks 

Per Executer 

Parallelism 

of Module 

1 Twitter Spout 1 1 1 

2 Brand NER Bolt 6 2 12 

3 Product NER Bolt 5 2 10 

4 Model NER Bolt 5 2 10 

5 NER joiner 1 1 1 

6 Group Classification Bolt 5 2 10 

7 State Classification Bolt 5 2 10 

8 Classifier Joiner 1 1 1 

9 Final Joiner  1 1 1 

 Total  30 14 56 

Figure 4.7 Sample input and output from each NER module. 
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The next parallelism concept in Apache Storm is Task, which means the instances of 

each module in each executor. The numbers of instances mentioned in Figure 4.8 

illustrates the distribution of the task. 

Total parallelism  

As mentioned in Table 4.9 BrandNER, we assigned 6 threads, and in each thread, 2 

instances likewise, other 4 modules assigned 5 threads each running 2 instances and 

rest of 4 modules assigned single threads and each running single instances so finally, 

in our distributed stream processing cluster, we are running 56 instances parallelly. 

Matching the C2C messages  

In this matching requirement, we have considered a few things. First, matching 

between real-time streams, then matching between real-time and recent data/recently 

persisted data. If we need non-real-time matching, it is necessary to store the recent 

messages in data storage to retrieve later. In our use case, the data source is social 

media, and social media is a well-known example of big data. So, we needed big data 

storage to persist in our recent data. The next requirement is manipulating the relevant 

recent messages from big data storage according to the real-time messages. This real-

time message stream has a very high velocity. Each message from the real-time stream 

Figure 4.8 Task distribution in a single server node  
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is considered as a query to manipulate the relevant messages from big data (recent 

messages persisted in NoSQL database). But the challenge is manipulating the data 

from the NoSQL database with high-frequency reading speed (High frequent data 

manipulation with low latency). To overcome this problem, we applied the in-memory 

indexing approach. Finally, matching stream-based data using conditional stream 

joining stream routing and real-time matching detection. But implementing these 

functionalities for a huge data stream with very high velocity is not easy. So, to 

overcome this issue, we applied a complex even processor with low latency, high 

throughput, and rich platform with many rich stream-based functionalities. 

4.3 Bigdata Storage and in-memory computing  

In the abstract, we applied three main technologies to solve the real-time big data 

matching: 

1. NoSQL database 

2. In-memory indexing  

3. Complex Event processing  

We applied in-memory indexing of the NoSQL storage to achieve this. In this section, 

we will see how to implement the NoSQL database. In our solution, we used Apache 

Cassandra as our NoSQL database [44]. It can manage a huge volume of data through 

distributed storage, a horizontally scalable nature, and flexible consistency options.  

Our Apache Cassandra database will be receiving hundreds of thousand records in a 

short time. Our purpose of storing this huge amount of data in the NoSQL database 

was only because of making the matching between the real-time stream and offline 

data stored in NoSQL database. So, we should run a query on top of the NoSQL 

database based on the semantics of the real-time stream. Apache Cassandra shows a 

better sequence read performance record. 

We have many reasons to select the Cassandra NoSQL [45] database. In our use case, 

we have a huge data storage, high writing rate, zero updates, and very low delete rate. 

Cassandra was implemented and optimized with the above features. Also, as a 

requirement, we must query the data in a very high frequency and low latency. But it 

is not straight forward, and the reading performance of the Cassandra is not that good. 
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Even though it supports secondary indexing, which is a helpful feature. Due to this 

reading problem, we did not apply multi-field queries while reading. Rather we only 

used a single parameter (brand name) queries. But our matching needed comparison 

between multiple fields. However, Cassandra does not support that kind of read 

requirements.  

To overcome this reading issue, we used an in-memory data storing technology on top 

of the Cassandra NoSQL database, as shown in Figure 4.10. The in-memory storage 

makes 10-100 X faster than read from Cassandra directly. We used Apache Spark to 

achieve this. It is using an immutable in-memory storage facility called “Resilient 

Distributed Datasets (RDDs). We can create immutable distributed memory RDDs for 

our Cassandra tables, which is explained in detail in the following pages. Therefore, 

the client will access spark RDDs rather than Cassandra directly. We implemented a 

multi-node cluster with each node containing Apache Cassandra and Apache Spark. 

After that, we created the schema according to our persisting stream. Cassandra is 

different from RDBMS in many ways. Instead of a database, Cassandra uses a key 

space. So, in Cassandra, we created a data model/schema considering our stream 

nature, indexing and a lot of other optimizations. Unlike RDBMS, in Cassandra, data 

is stored in different nodes and it does not support all types of queries that RDBMS 

support. Moreover, data modeling must be based on the query we need rather than 

being data-centric. To optimize the reading capability, we considered a few things: 

partitioning the data and secondary index. 

In Cassandra, according to the partition key, the rows persisted to different nodes 

according to the hash values. So, it is easy to retrieve the data of a partial key from 

particular nodes. Also, if we want to use a column as a query parameter, it must be a 

part of the composite partition key and must be a secondary index.  

Figure 4.9 illustrates our Cassandra data model and the data partition and row 

distribution. In our model, product type and selling status were assigned as the 

composite partition key. So, the row distribution among the nodes takes place 

according to the partition key. At the same time, the clustering column helps us to 

maintain the order. As illustrated in the above diagram, all the rows belonging to the 
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camera and with the status set as selling were stored in the first node and the rest of 

the rows stored in different nodes according to the partition key. Also, we added a 

secondary index to our data model. In Cassandra, if we want to create a secondary 

index, that column must be included in the partition key. In our case, the product type 

is already included in the partition key. At the same time, it is not good to select high 

cardinality or low cardinality columns as a secondary index. In our data model, the 

product type suits the secondary index. Also, it enables as to query the data based on 

a secondary index. 

 

 

 

Boosting read performance using in-memory computing 

The Cassandra-based solution was optimized for our use case. To improve the read 

performance, we applied the in-memory storage and in-memory computing component 

on top of the Cassandra NoSQL database. So here, we are using Apache Spark, which 

Figure 4.9 Read optimized Cassandra data model. 
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creates immutable storage units called Resilient Distributed Dataset (RDD). RDD is 

the fundamental data structure of Spark, which makes data reading multiple times 

faster compared to direct reading from the disk. So here, we are loading our table in 

Cassandra to spark RDD and then manipulating the queries with very low latency.  

4.3.1 Matching between real-time and persisted data 

So, from the above Cassandra-Spark combination, we are able to query big data in near 

real-time. This query results are considered as non-real-time data/ persisted relevant 

data to the upcoming real-time messages. As illustrated in Figure 4.10 this step we are 

going to take the real-time stream and the relevant messages persisted in the NoSQL 

database, into our matching module as two different streams. The matching module 

was implemented using a complex event processing technology.  

 

In CEP, we implemented many executions plans. Some of the execution plan 

visualizations are given in Figure 4.11. Each execution plan does different tasks. First, 

we collect the real-time stream, then we split the stream into 5 different streams based 

on the available semantics such as brand name, the product name, model name, product 

group, and commercial intention. Also, another split stream from real-time stream goes 

to a persisting execution plan where each message will remain for one second before 

being stored in the NoSQL database. The other four splitters end with separate 

execution plans. The execution plans are designed to find the matching semantics 

among the messages, particularly the complete stream containing all the product 

semantics, which will be compared with all the partial and complete streams, and all 

Figure 4.10 Matching component implemented using CEP. 
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other partial streams compared with the streams accordingly. When a new message 

reaches the CEP apart from real-time to real-time matching, the system runs a query 

on in-memory storage containing the data loaded from the NoSQL database. 

To fulfill our matching requirement, we are using WSO2 CEP, an efficient open-

source complex event processing engine. Here, we receive two streams into the 

complex event processing i.e., real-time stream and relevant persisted stream. The 

following execution plans were part of our matching module. 

 

Figure 4.11 Stream and execution plans in CEP. 
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Window-based operations on matching using complex event processing are illustrated 

in Figure 4.12 We used two types of windows operations in our stream-based matching 

process Time based windows and length-based window. Here, we store the incoming 

messages into a queue i.e., time window. It means we are storing all the messages in 

the queue for a certain time e.g., 5 minutes. Comparing each real-time message i.e., 

length window with size 1 with messages stored in the queue. If we found the match 

between messages stored in those two windows, then we will concatenate both 

matchable messages into a single stream element and return as a matched message. In 

Figure 4.12 the basic abstract of our window implementation is shown. 

 

4.4 Non-functional aspects 

As a research project, it is not an end-to-end solution to use by the public. But I can 

direct some suggestions to make this research as a real working solution. If we start 

from the beginning of the chain of process, the very first thing is receiving social media 

messages. For our experiment using a large number of messages are offline because 

of testing the performance. In a real-world application, there are many concerns about 

retrieving social media messages and privacy policy issues. We can introduce a 

Figure 4.12 Time and size window based matching operation. 
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hashtag through some marketing approach to the people who are interested in our 

service. Then, if any message includes our hashtag, it is captured by our system. 

Next, as a real-world application, prospective performance is a major concern. Now 

our solution is implemented to work in a distributed environment and gives a good 

performance result. But when we handle the performance aspect these days few things 

must be considered, such as load balancing, modular based development, component 

level scalability and microservice architecture. 

The next aspect of wide range applicable nature is that the solution can be used better 

for some other domains that have a similar requirement and pattern. With the current 

implementation, it is particularly designed to work with the product domain. If we 

wanted to adopt this solution to some other domain first, we must make changes to the 

machine learning model. Our current solution has a product attribute extraction model. 

So, if we are using for a different domain, we must create a separate domain model 

and from the knowledge base, we are able to generate the training data set for various 

domains. We must make some changes in the logic of matching.  

 

4.5 Summary 

In this chapter, we described the detailed implementation. Mainly this chapter was 

divided into three sections such as IE in Section 4.1, real-time stream processing in 

Section 4.2 and big data storage and in-memory computing in Section 4.3. In IE, we 

discussed the training dataset preparation, NER using Conditional Random Fields and 

extracting commercial intend using logistic regression. In the next section, we 

concentrated on distributed real-time stream processing. Here, we apply the distributed 

stream processing techniques on IE to achieve a near real-time IE with very low 

latency for a very high-velocity social media stream. 

Finally, the matching part of the C2C social media messages was explained in Section 

4.3, which includes persisting data in a NoSQL database, high-frequency data 

manipulation from a NoSQL database using in-memory computing and matching the 

messages among real-time stream and non-real-time data using complex event 

processing.  
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CHAPTER  5   

 

RESULTS AND ANALYSIS 

 

In results and analysis, we present the full nature of our system. As a multi-component 

system, we have results for each component in our solution, as well as the results and 

performance of the total system. Mainly, we present two types of measure results; 

accuracy measures and performance measures. Some components only have accuracy 

results, some have both accuracy and performance, and the rest of the components only 

have performance measures. As a multi-component system, that includes information 

extraction, big data manipulation, and matching using complex event processing. 

Section 5.1 presents performance metrics. The experimental setup explained is 

presented in Section 5.2. Section5.3 presents the results of classification-based 

information extraction at the same time 5.4 presents CRF-based NER results. The 

following Sections 5.5 and 5.6 present the performance results of our distributed 

stream processing implementation, Big Data read-write performance and the Complex 

Event Processor. 

5.1 Experimental setup  

Our experimental setup is heterogeneous, which means many different computers with 

different configurations can be used based on availability. For the IE model creation, 

we used a computer with the following configuration: i7 core processor with A clock 

speed of 2.70 GHz, no of cores: 2, no of threads:4 cache sizes: 4 MB and CPU model: 

Intel® Core™ i7-7500U. The memory of the computer is 16 GB. As a software tool, 

we used the Lingpipe library with a heap size of 12 GB. As a dataset, we used messages 

collected from Twitter. The ratio between the training data and test data was 8:2. 

5.2 Performance Metrics 

Our IE design was to extract five named entities i.e., product type, brand, model, 

selling status and product group. To extract these five named entities, we applied three 

different techniques, such as sequence statistical model using CRF, classification using 

logistic regression, and rule-based IE using regular expressions. Among the five 
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entities to extract product type and brand, we used a CRF and to extract product group 

and selling status we used the logistic regression classification approach, and finally, 

to extract the product model, we used regular expressions. 

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦

=
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

(5.1) 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (5.2 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (5.3) 

 

𝐹1 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
 (5.4) 

 

5.3 Results of product classification using logistic regression 

Here, we extract two product attributes by classifying the messages using logistic 

regression. First, we classify the messages into product groups such as electronics, 

cellphones, and music. The second classification is classifying the messages between 

selling, buying, and neither. We followed the k-fold cross validation for the evaluation 

to ensure the results represent the whole dataset. 

Table 5.1 Accuracy of our both classification models 

Classifying Accuracy Recall Precision F-measures 

Product group 0.949 0.949 0.941 0.945 

Selling status 0.99 0.991 0.991 0.991 

 

The chart given in Figure 5.1 shows the distribution of three different product groups, 

such as cellphones, electronics, and music related products. In Figure 5.2, you can 

observe that the gradual improvement in the accuracy depends on the size of the 

dataset. We got a high accuracy in both classifications. For the product group 



54 

 

classification, our evaluation shows 0.949 accuracies and for the selling status, 

classification shows even more accuracy, 0.99. Table 5.1 lists the associated accuracy 

measures, such as accuracy, precision, recall, and F1. We cannot determine a model 

considering only the accuracy if one category represents most of the data points where 

accuracy is not a good measure for assessing model performance. While recall 

expresses the ability to find all relevant instances in a dataset, precision expresses the 

proportion of the data points in our model says was relevant actually were relevant 

[46]. We want to maximize either recall or precision at the expense of the other metric. 

We want to find an optimal blend of precision and recall where we can combine the 

two metrics using what is called the F1 score. The F1 score is the harmonic mean of 

precision and recall taking both metrics into account. The following plots show the 

gradient of the accuracy with the training size.  

 

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (5.6) 

 

 

Figure 5.1 Product distribution in our training dataset  
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Next, an indicator of a perfect model is the Receiver Operating Characteristic (ROC) 

curve shown in Table 5.2 and Table 5.4. The ROC curve shows how the recall vs 

precision relationship changes as we vary the threshold for identifying a positive in 

our model. A ROC curve plots the true positive rate on the y-axis versus the false 

positive rate on the x-axis. Finally, we can quantify a model’s ROC curve by 

calculating the total Area Under the Curve (AUC), a metric which falls between 0 and 

1 with a higher number indicating better classification performance. An alternative to 

the ROC curve is the Precise Return Curve (PRC). Although used less often as ROC 

curves, PRC is suitable for unbalanced data sets. 

Table 5.2 Area measures of PR and ROC Under curve 

Classification 

Name 

Area Under PR Curve Area Under ROC Curve 

Interpolated Uninterpolated Interpolated Uninterpolated 

Product group 

classification 

0.9764 0.9747 0.9863 0.9863 

Selling status 

classification 

0.9986 0.9981 0.9984 0.9982 

 

Precision recall curves are often zig-zag curves, which often go up and down. Thus, 

the precision recall curve intersects much more often than the ROC curve. This makes 

comparisons between curves difficult. However, for perfect testing, curves near the 

PRC (described later) are better than curves near the baseline. In other words, curves 

over other curves have higher power levels. In Table 5.3, the measured values of the 

area measurement sub-curves for PR and ROC are very close to 1, which is a good 

indication of the best model.  

𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =
𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (5.7) 

Table 5.3 Accuracy measures of CRF models. 

Classifying Accuracy Recall Precision F-measures 

Product name 0.8397 0.9036 0.9223 0.9128 

Brand Name 0.8207 0.8733 0.9316 0.9015 
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5.4 Results of CRF-based product attribute extraction 

 For the rest of the product attributes we used the CRF to recognize the named entities.  

If we take the accuracy of the CRF models, which are listed in Table 5.3 it shows that 

the accuracy of the product name recognition model is 0.84 and the accuracy for the 

brand name is 0.82. This is a good result and you can observe the improvement in the 

accuracy according to the training dataset size in Figure 5.3. 

 

Table 5.4 Area measures of PR and ROC Under the curve 

NER model 

name 

Area Under PR Curve Area Under ROC Curve 

Interpolated Uninterpolated Interpolated Uninterpolated 

Product Name  0.9328 0.9219 0.9980 0.9980 

Brand Name 0.9517 0.9515 0.9983 0.9983 

 

 Figure 5.2 Selling status model accuracy Vs training set size. 
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5.5 Distributed information extraction performance 

If we take the performance of the IE, as mentioned in the implementation details in 

Section 4.2, this part is totally distributed altogether. We implemented nine 

components in this distributed system. If we move to the latencies of each component, 

it varies depending on the workload of the component. You can see the latency details 

in Figure 5.4. where apart from joining components, others take around 0.5 

milliseconds.  

Figure 5.3 Product group model accuracy Vs training set size  
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5.6 Results of high-frequency data manipulation from NoSQL 

Big data manipulation is a major part of our solution. With the combination of the 

Apache Cassandra NoSQL database and Apache Spark in-memory computing, enable 

us a high-speed data manipulation. The following results show the write and read 

performance. In Figure 5.5 it illustrates the writing operations per second and Figure 

5.6 shows the average latency of the writing operation. We achieved around 350 

messages written per second as throughput. So, our writing performance shows an 

average latency of 4 ms. At the same time, the data manipulation performance is shown 

in Figure 5.7 where the throughput of the data manipulation from the NoSQL database 

reached around 9500 readings per seconds. In Figure 5.8, it presents the throughput of 

matching between the real-time stream and manipulated data from the NoSQL 

database where we achieved more than 82500 matches per second. At the same time, 

the throughput of the matching among real-time stream is presented in Figure 5.9. This 

Figure 5.4 Average latency of each information extraction modules 
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time we achieved more than 165000 matchings per second. Finally, the overall 

performance is presented in Figure 5.10 and Figure 5.11. In Figure 5.10 we show the 

overall throughput and reached around 4700 messages per second and as a latency, we 

reached 0.76 milliseconds as presented in Figure 5.11. 

 

 

 

 

 

  

10000

10000

100000

1000000
10000000

0

1

2

3

4

5

6

7

100
1000

1000
1000

1000

N
o

 o
f 

re
co

rd
s

La
te

n
cy

  (
m

s)

Throughput  per second

Latency of data persistence

10000 10000 100000 1000000 10000000

Figure 5.5 Data persistence latency Vs size of the database and throughput. 



60 

 

 

Figure 5.6 Persisting throughput  

 

Figure 5.7 Data manipulation throughput 

  

 

Figure 5.8 Matching RT vs NoSQL. 

throughput  

 

Figure 5.9 Matching RT vs RT. 

throughput  

  

 

Figure 5.10 Overall throughput  

 

Figure 5.11 Overall latency. 
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CHAPTER  6  

 

CONCLUSIONS AND FUTURE WORK 

 

6.1 Conclusions 

Many industries started to adapt to big data technologies. Even ordinary people 

adapted to depend on social media for many of their requirements, particularly in the 

e-commerce industry where the influence of social media is very high. But there are 

many challenges and problems in the social media-based e-commerce industry. One 

of the problems we discovered in social media-based Consumer to Consumer (C2C) 

is that product offers do not reach the right consumer. 

As an outcome, we can pull real-time microblogging messages as social messages and 

in near real-time, we were able to notify the C2C end users with the matching of their 

message. Due to our solution, many C2C uses will benefit from real-time. To make 

that possible most part of our solution is distributed among the multi-node cluster.  

Initially, our system extracts product attributes from raw messages using machine 

learning based IE. It is the part that controls the accuracy of the whole system. As our 

trained product extraction model, the end results give good accuracy. Next, the output 

is delivered in real-time or near real-time. In this aspect as well, we were able to 

achieve good performance with very low latency. We applied three technologies to 

achieve near real-time, such as distributed stream processing, in-memory computing, 

and complex event processing. Third, according to the requirement, our system is 

scalable in runtime. Finally, our system was implemented to overcome failover 

occasions, in other words, our implementation ensures the availability of the system. 

The internal modules and algorithms enable high accuracy and real-time performance. 

For example, Conditional Random Fields (CRF) in NER in-memory computing in big 

data manipulation and Complex Event Processing in matching the semantics. Apart 

from the core components, we used a few tools in our solution, such as Lingpipe, 

Apache Storm, Apache Spark, WSO2 CEP, and WSO2 DAS. 
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When we consider the performance of our implementation, we can divide the 

performance records into each main component in our system. In the abstract for the 

IE, the average latency is 0.5 ms. The latency of the persisting data on NoSQL is 

around 6 ms. Even though it takes a little more time, it will not affect our overall 

performance because we always retrieve the data that persisted 1000ms before at the 

same time the persistence reached 350 writes per second as throughput. The high-

frequency data manipulation shows a high throughput as 9500 events per second, 

which the matching between the real-time stream and non-real-time showed 82500 

events per second as throughput and matching among real-time messages showed 

165000 events per second. Overall, it takes 0.7 ms latency on average and shows 4700 

events per second as maximum throughput. 

6.2 Research Limitations 

We can list a few things as our research limitations. First, in creating the NER model 

we were able to create a single model for all our product attributes classes. Due to the 

limited resources, rather than a single NER model, we created separate models for each 

product attribute. Secondly, in the real-time distributed stream processing system for 

each task, we created separate bolt components with different numbers of multiple 

instances. For each instance of a task, the Apache Storm facilitates to maintain a state. 

But as a single task, we do not have a common state among all its instances.  

Even more, if you take the variety of products, it is a huge variety of products that are 

available in the market. But in our research, we only implemented the solution for very 

few products. Again, if you take the number of attributes of different products, it varies 

from product to product. But our solution was only designed for very few attributes 

such as product names, brand names, product group, and some more. The next 

limitation is that with the new products in the market and a new set of attributes, our 

system can recognize named entities that are not given in the training dataset. But 

always in machine learning, if we increase the size of the training dataset, we can 

produce the result with more accuracy. Now, we are using CRF and logistic regression 

algorithms in our systems but if we move to the deep learning algorithms such as 

LSTM and word embedding, we can produce more accurate and good performance 

results. 
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6.3 Future Work 

For our research, we only considered a few products attributes that we extract from the 

raw messages, but each product has a different number of attributes. Some product 

even contains hierarchical attributes. But in our current solution, we have only 5 

attributes, such as product name, product brand, product model, product group and 

product selling status. So, we have more scope to work on this product attribute NER. 

Related to this product attribute extraction, we can focus on more things such as feature 

engineering and the deep learning approach, which will increase the accuracy of the 

system. As mentioned in the research limitations, if we have enough hardware 

resources, particularly GPU, we can try for a single NER model for all the product 

attributes.  

Also, as mentioned in the research limitation, we can improve the distributed real-time 

stream processing in many ways, such as enabling a synchronized approach to share 

the same state between a different instance of the same task and enabling the runtime 

auto resource scalability and load balance. Also, as a successful methodology, we can 

follow deep learning approaches in NER. 

In C2C matching we implemented the message matching based on 5 product attributes. 

But there are a lot of opportunities that are not discovered that can help to match C2C 

uses such as user behaviors in social media, profile details, friends and their 

similarities. Using that information, we can predict the user needs and be able to 

connect the consumers directly  

In this era, almost all the products and services somehow reach social media, in 

different ways. So, through collecting and storing that product information as a global 

open source product database, it opens a new opportunity for C2C community.  

The next opportunity that we can move forward in is that most social media messages 

not only contain the text details, it also contains an image of the product. In this 

scenario, we already worked on extracting the product attributes from the text 

messages. We can convert this structured product attribute and the image of the 

product will lead us to product recognition from the image and related opportunities, 

including product matching based on social media product images. 
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Different types of databases are available in use such as relational database, NoSQL 

database, graph database, document database, even more, have databases to store 

specific information such as DNA database and a Drug database. Each database has 

its pros and cons. Each type of database has been optimized for different use cases. 

But here, the product information structure shows a huge amount of records and 

replicating attribute terms. Also, sometimes, a product is a composition of multiple 

products or may be part of another product. So, finding an optimized way to arrange 

the product data itself is a challenge.  
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