
29

NUMERICAL IMPLEMENTATION OF A CONSTITUTIVE MODEL FOR SOIL CREEP

This thesis was submitted to the Department of Civil Engineering of the University of Moratuwa in partial fulfillment of the requirements for the Degree of Master of Science

MADURAPPERUMA ARACHCHIGE KAVINDA MANOJ MADURAPPERUMA

624 (043)

Department of Civil Engineering University of Moratuwa Sri Lanka

University of Moratuwa

85966

September 2005

DECLARATION

Signature of the Supervisor

The work included in this thesis in part or whole has not been submitted for any othe academic qualification at any institute.	r
Signature of the Candidate	
Certified.	
UOM Verified Signature	

ABSTRACT

Multi-dimensional (2-D and 3-D) soil creep models are generalized from Bjerrum's 1-D creep model (Bjerrum, 1967), which is based on field test data. This model is based on an expression for creep strain rate, and was later modified for transient loading conditions. This differential form of 1-D creep model is extended to multi-dimensional (2-D and 3-D) state of stress and strain by incorporating concepts of visco-plasticity. The devised 2-D and 3-D creep models take into account both volumetric creep strain and deviatoric creep strain, and creep deformation of the soil is defined by several material parameters. A non-linear, time incrementing finite element program, along with iterative corrections within each time step, had been already developed for research purposes by Dr. U. G. A. Puswewala (Puswewala and Rajapakse, 1992). Certain modifications were done in the latter main program to incorporate the present model as an element subroutine for plane strain condition. The numerical model will enable to check the sensitivity of model parameters on predicted results as well as the time-dependent solution of complicated foundation-soil interaction problems involving creep of soil. Numerical analyses are conducted on three different soil-structure interaction configurations using published experimental data and parametric studies are conducted to evaluate the sensitivity of different input parameters of the model. The verified program will be an important resource tool for estimating settlements in structures founded on soils exhibiting creep.

ACKNOWLEDGEMENT

I would like to offer my profound gratitude to Dr. U.G.A. Puswewala, for his excellent guidance and assistance extended throughout the research programme. Dr. Puswewala has been supportive as a supervisor and has given me encouragement and inspiration during the research programme at the same time performing the duties as the head of the Department of Earth Resources Engineering of the University of Moratuwa. His commitment to develop the constitutive model is also gratefully acknowledged.

My sincere thanks are extended to Prof. Vermeer in the University of Stuttgart, Germany who sent me research papers with valuable suggestions to develop the model. My gratitude is also extended to Dr. S.A.S. Kulathilaka for his valuable insights received during progress reviews and supporting materials received in some specific areas.

My special thanks go to the Asian Development Bank and Science and Technology Personnel Development Project of the Ministry of Science and Technology, for funding the research and the scholarship granted.

And my sincere thanks are extended to my colleagues Miss. B.G.N. Tharanganie, Mr. Mr. R. Thivakar, H.M.I. Thilakarathna, Mr. S.M.S.R. Ravihansa, Miss. D.K.N.S. Sagarika and Mr. B.H.D.Y. Madunoraj for the assistance given to me throughout the research programme.

M.A.K.M. Madurapperuma September 2005

CONTENTS

		PAGE
ABSTR	ACT	Í
ACKNO	WLEDGEMENT	ii
CONTE	NTS	iii-iv
List of Fig	ures	v-vii
List of Tab	oles	viii
List of App	pendices	ix
1.0 INTE	RODUCTION	
1.1	Deformation of Soils	1-4
1.2	Numerical Implementation of Soil Deformation Models	4-7
1.3	Objective and Scope of the Research	7-8
1.4	Arrangement of the Thesis	8
2.0 SOIL 1	DEFORMATION MODELS	
2.1	General	9-11
2.2	The Bjerrum Model	12-15
2.3	Critical State Models	15-17
2.4	Development of 1-D Model by Bjerrum and Vermeer	17-23
3.0 THR	EE DIMENSIONAL MODEL	
3.1	Generalization of 1-D Model into 3-D	24-29
3.2	Review of Model Parameters	29-33
4.0 FINIT	TE ELEMENT ALGORITHM FOR 3-D CREEP MO	DEL
4.1	Numerical Algorithm for Finite Element Analysis	34-38
4.2	General Method of Iteration and Solution	38-42
4.3	2-D Creep Analysis with Plane Strain Condition	42-45
4.4	On the Development of Finite Element Code	45-48

5.0 NUMERICAL ANALYSIS AND DISCUSSION	
5.1 Soil-Structure Interaction Problem Configuration-1	49-52
5.2 Soil-Structure Interaction Problem Configuration-2	52-57
5.3 Soil-Structure Interaction Problem Configuration-3	57-67
5.4 Discussion	67-69
5.5 Comparison with Observed Behavior	69-71
6.0 SUMMARY AND CONCLUSIONS	
6.1 Summary	72
6.2 Conclusions	72
REFERENCES	73-76
APPENDICES	77-103

LIST OF FIGURES

Figure 1.1	rni -	PAGE
Figure 1.1	Three components of settlements	1
Figure 1.2	Effect of load increment ratio on e vs. log σ'	4
Figure 2.1	Definition of 'instant' and 'delayed' compression compared with	
	'primary' and 'secondary' compression (after Bjerrum (1967))	13
Figure 2.2	Compressibility and shear strength of a clay exhibiting delayed	
	consolidation (after Bjerrum (1967))	14
Figure 2.3	Principle of settlement computation (after Bjerrum (1967))	18
Figure 2.4	Consolidation and creep behaviour in standard oedometer test	
	(after Janbu (1969))	20
Figure 2.5	Idealized stress-strain curve from oedometer test.	
	For $t' + t_c = 1$ day, one arrives precisely on the NC-line	
	(after Neher and Vermeer (1998)).	21
Figure 3.1	Typical e vs log p curve from standard oedometer tests	
	(conducted for 1-day periods)	31
Figure 3.2	Typical time lines defined by Bjerrum (1967)	31
Figure 4.1	Schematic diagram for computer code	47
Figure 4.2	Modular diagram for computer code	48
Figure 5.1	Finite element mesh and loading arrangement for problem	
	configuration -1	50
Figure 5.2	Total settlement behavior of the top surface with time for problem	
	configuration –1	50
Figure 5.3	Total settlement versus time at selected points on the loaded	
	surface L= (distance from center point)/8m	51
Figure 5.4	Settlement behavior for $L = 0.375$ with loads	51
Figure 5.5	Settlement behavior for $L = 0.375$ with Poisson's ratio	52
Figure 5.6	Finite element mesh and loading arrangement for problem	
	configuration –2	53
Figure 5.7	Total settlement behavior of the surface under the foundation	
	with time	54

Figure 5.8	Total settlement versus time	
	L = (distance from center point) / 8m	54
Figure 5.9	Settlement behavior of the center point with Young's Modulus E	55
Figure 5.10	Settlement behavior of the center point with loads	55
Figure 5.11	Settlement behavior of the center point with modified secondary	
	compression index	56
Figure 5.12	Settlement behavior of the center point with preconsolidation	
	pressure	56
Figure 5.13	Settlement behavior of the center point with Poisson's ratio	57
Figure 5.14	Finite element mesh and loading arrangement for problem	
	configuration –3	58
Figure 5.15	Settlement behavior of three selected points at the foundation	
	level with time. L = (distance from center point) / 1.2m	59
Figure 5.16	Settlement behavior of three selected points at the foundation	
	level with time for the first year.	
	L = (distance from center point) / 1.2m	60
Figure 5.17	Total settlement behavior at the foundation level with time	60
Figure 5.18	Total settlement behavior at 1.1m below the foundation	
	level with time	61
Figure 5.19	Total settlement behavior at 4.5m below the foundation	
	level with time	61
Figure 5.20	Total settlement behavior at 7.9m below the foundation	
	level with time	62
Figure 5.21	Total settlement behavior at 9.9m below the foundation	
	level with time	62
Figure 5.22	Average normal stress distribution at a distance of 0.1m away	
	from the centerline (under the foundation) with time	63
Figure 5.23	Average normal stress distribution 0.5m away	
	from the centerline (under the foundation) with time	64
Figure 5.24	Average normal stress distribution 1.1m away	
	from the centerline (under the foundation) with time	64

Figure 5.25	Average normal stress distribution 2.1m away	
	from the centerline (outside the foundation) with time	65
Figure 5.26	Average shear stress distribution 0.1m away	
	from the centerline (under the foundation) with time	65
Figure 5.27	Average shear stress distribution 0.5m away	
	from the centerline (under the foundation) with time	66
Figure 5.28	Average shear stress distribution 1.1m away	
	from the centerline (under the foundation) with time	66
Figure 5.29	Average shear stress distribution 2.1m away	
	from the centerline (outside the foundation) with time	67
Figure 5.30	Data published by Bjerrum (1967) for Skoger Sparebank Building,	
	Drammen, Norway	70
Figure 5.31	Data published by Bjerrum (1967) for Konnerud Gate 16 Building,	
	Drammen, Norway	71
Figure 5.32	Settlement predicted for the mid-point of foundation depicted in	
	Figure 5.14 by the finite element analysis	71

LIST OF TABLES

		PAGE
Table 2.1	Components of a settlement analysis (Lambe, 1964)	10
Table 5.1	Soil properties for problem configuration - 1	52
Table 5.2	Foundation material properties	56
Table 5.3	Soil properties for problem configuration – 2 and 3	56

LIST OF APPENDICES

		PAGE
Appendix-A	Expressions and derivatives used in development of the model	77-81
Appendix-B	List of symbols	82-84
Appendix-C	Sample of a data input file and a data output file of soil-structure	
	interaction problem configuratio-2	85-103