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ABSTRACT

Multi-dimensional (2-D and 3-D) soil creep models 

creep model (Bjerrum, 1967), which is based 

expression for creep strain rate, and

are generalized from Bjerrum’s 1-D 

on field test data. This model is based 

later modified for transient loading conditions. 

This differential form of 1-D creep model is extended to multi-dimensional (2-D and 3- 

D) state of stress and strain by incorporating concepts of visco-plasticity.

on an

was

The devised 2-

D and 3-D creep models take into account both volumetric creep strain and deviatoric 

defined by several material parameters. 

A non-linear, time incrementing finite element program, along with iterative corrections

creep strain, and creep deformation of the soil is

within each time step, had been already developed for research purposes by Dr. U. G. A. 

Puswewala (Puswewala and Rajapakse, 1992). Certain modifications 

latter main program to incorporate the present model as an element subroutine for plane 

strain condition. The numerical model will enable to check the sensitivity of model 

parameters on predicted results as well as the time-dependent solution of complicated 

foundation-soil interaction problems involving creep of soil. Numerical analyses 

conducted on three different soil-structure interaction configurations using published 

experimental data and parametric studies are conducted to evaluate the sensitivity of 

different input parameters of the model. The verified program will be an important 

resource tool for estimating settlements in structures founded on soils exhibiting creep.
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