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ABTRACT 

 

Industrial robot manipulators are highly involved in modern manufacturing industries. Robot 

programming is the procedure to carry out generating a sequence of robot instruction. 

Teaching method is highly applied where a teach pendent is used to generate the robot 

programme by teaching one point at a time. This process tends to consume more time and the 

accuracy can be varied depends on the application. Several other methods are used to program 

robot movement nevertheless industrial applications of these systems are still developing. 

Programming tends to be difficult and restricts the productivity and industrial application. 

Hence, requirement of flexible programming methods is still challenging for  inexpert robot 

operators. Trajectory planning for a robot system is still a developing area where the accuracy, 

productivity and high quality on various operations are highly concerned. To address these 

limitations, off-line programming systems can be used where computer systems with realistic 

graphics, interfaces and features can be used to plan and program robot motions without using 

robot hardware. The research is aimed to present methods for finding a better mathematical 

way of optimized trajectory planning of 6-DOF industrial robot manipulator. Computer Aided 

Design software systems are used to implement off-line programming technique by 

developing human robot interface in order to create robot moving sequence and achieve 

required data for further calculations. Welding process of machine head cover using a 6 DOF 

robot manipulator is used to demonstrate and evaluate the proposed method. Methods for Point 

allocation along the robot moving path and data extraction are presented. Inverse kinematic 

model for the 6 DOF manipulator is developed and implemented in order to get joint space 

data represented by joint angles. Derived data is studied to analyze the manipulator motion 

behavior while moving along predefined path via points allocated. Robot path planning and 

trajectory planning with CAD system involvement as off-line programming technique is 

analyzed by comparing results in order to evaluate the performance of the proposed method. 

Keywords: Offline robot programming, Computer Aided Design, 6 DOF robot manipulator, 

inverse kinematics, Human robot interface 
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CHAPTER 1 

INTRODUCTION 
 

Chapter 1 explains about background and motivation of the research. It outlines the 

foundation of the research initialization as a master thesis. The research is aimed for 

finding optimized solutions for trajectory planning for 6 DOF robot manipulator based 

on offline programming approach. Section 1.1 discusses the thesis background and 

motivation. Problem definition and the objectives of the thesis are defined in section 

1.2. Section 1.3 describes research limitations. Research influences over the industry 

is discussed in section 1.4. Finally, Section 1.5 summarizes the remaining chapters of 

the report.  

 

 

1.1 Background and Motivation 

 

Industrial robots are highly involved and utilized in modern manufacturing industries 

due to its efficiency, productivity and programmability. The demand for the usage of 

robots in automated manufacturing systems is increasing especially in automotive 

systems. Performing high precision tasks with higher repeatability and quality makes 

them more utilized in the industries. Industrial robots can be operated continuously 

without taking a break. This supports manufacturers to increase the productivity and 

efficiency. 

There are several types of industrial robots and can be simplified to five major types.  

1. Cartesian 

2. cylindrical 

3. Delta 

4. SCARA 

5. Articulated robots 
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Each robot type has different features and specific elements which utilize them more 

appropriate for different applications. Main differentiators among them are speed, size 

and workspace. 

Articulated robots which resemble a human arm in its mechanical configuration are 

the most commonly utilized industrial robots since the design and the configuration 

offer most flexibility. Articulated robot has connecting links which are connected to 

the base with rotary joints. Figure 1.1 shows an illustration of six degree of freedom 

industrial robot manipulator manufactured by Denso robotics. 

 

 

Figure 1.1: Denso robotics six degree of freedom robot manipulator model: VP 6242 

 

6 DOF robot manipulator has many advantages such as high speed operation, large 

work area for minimum floor space and ability to align to multiple planes. Even though 

it has significant advantages, challenges are being confronted since it is complicated 

in programming and kinematics. 

Robot programming is the procedure to carry out creating a sequence of robot working 

instruction and work location/points that achieves the required task. Various methods 

and techniques are used to plan and program robot operations. Teaching method is 

highly applied where a teach pendent is used to generate the robot programme by 

teaching one point at a time. This process tends to consume more time and the accuracy 
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can be varied depends on the application. In some applications, technical expertise 

may be required to perform the task like welding, spraying etc.  

Several other methods are used to program robot movement such as, 

• software dedicated to a particular industrial process.  

• human body attached sensors to capture arm movements  

• CAD based solutions.  

• vision-based interfaces.  

Due to several reasons including reliability issues, applications of these systems are 

still developing. Thus, the teach pendant is considered as a common robot input device 

which grant access to robotic functionalities. The difficulty of this robot programming 

process limits the productivity of the robot and more widespread use of robot 

technology. Hence, requirement of flexible programming methods is still challenging 

for inexpert robot operators. 

Currently CAD systems can provide more design and modelling capabilities having 

high precision and standard, simulation can be also done with great accuracy. 

Therefore, CAD systems can be utilized to give effective engineering solutions for 

preparing robot path and trajectories in robot programming.  

Off-line programming (OLP) is introduced as a revolutionary robot programming 

method where the robot program can be created without considering the actual robot 

cell which represent the robot system and the application. The created robot program 

can be imported or uploaded to the robot controller for the robot manipulator 

execution. Simulator can be used to create the robot cell by creating comprehensive 

graphical three-dimension(3D) model. Currently, robot integrators use robotic 

simulators and off-line programming techniques to create efficient program paths for 

a particular robot manipulation to perform a specific task. Simulators are beneficial 

where robot movement and reachability analysis, collision detection and cycle time 

calculation can be done when robot programs are simulated. 
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Off-line robot programming is used to develop the robot program on an external 

computer system without interfering the production or the robot operation. This 

method improves the on-line programming abilities where programmers use teach 

pendants to program the robot manually. Robot programming change over time can be 

minimized by applying off-line robot programming techniques. 

The capability to perform different operations and task is more important when 

considering the flexibility of industrial robot manipulators. Robot system is subjected 

to deal with higher degree of problems to resolve with respect to human flexibility. 

When considering an object to move between two space points, several factors are 

needed to be concerned.  

1. Finding Optimum path or route.  

2. Avoidance of obstacles and collisions. 

3. Improving task productivity.  

4. Maintaining higher efficiency. 

Path planning is more important where planning of entire path from one point to 

another point in work space including stopping in predefined path points is executed. 

Path planning is a geometrical description of robot motion. Obstacles and path 

constraints can restrict the motion of a robot. 

Considering obstacle constraints, Path planning can be done assuming that robot has 

to be moved by planning not moving through that obstacle takes place. Path constraints 

are needed to be concerned where there can be reference points that the robot must 

move through that points. 

In the case of 6 DOF robot manipulator, physical limit of motion and mechanics 

constraints are appeared in most cases. Trajectory planning is planning of desired 

motion of a robot manipulator and depicts how well the robot manipulator operates. 

For optimal solution, actuator positions, velocity, acceleration, jerk and the limit of 

joints are needed to be considered. Energy expenditure while running the robot is more 

concerned. In every movement, robot has to accelerate, hold and brake hence energy 

is consumed. Therefore, unnecessary energy dissipation should be reduced in order to 

increase the energy efficiency of the manipulator. Speed is more concerned where 
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productivity of the robot manipulator is highly focused. Cycle time for the task is 

important in a high production rate hence integrator try to minimize as much as 

possible. Therefore, time taken for a path is more important to be considered. Path 

planning and trajectory planning should be highly concerned in order to get higher 

productivity while maintaining better robot performance. 

 

1.2. Problem Definition 

 

Robot manipulators are highly involved in current manufacturing industries and for 

planning and programming of the robot manipulator, teaching method is highly used. 

It is more suitable for simple operations where programmers need less time for take 

necessary point locations in robot moving path. In some critical operations such as 

welding, painting etc. time taken for teaching is much higher than usual since there 

can be higher number of task points hence programmer need significant time to teach 

and the experience and expertise is more important. If any modification has to be done, 

programmers face numerus problem where in some cases, the teaching of the robot 

path has to be done from the beginning. Offline robot programming is applied to 

overcome this kind of issue. Dedicated software solutions are available but can be 

expensive and limited to particular operations.  

Computer Aided Design software is highly used in manufacturing industries since 

higher accuracy level can be achieved. User friendliness is the other factor that users 

involve CAD systems in their operations. CAD systems can be involved to develop 

human robot interface hence programmer can define robot path while analyzing the 

system graphically. Path planning can be done effectively and relevant data extraction 

from CAD system can be used. 

Inverse kinematics of 6 DOF robot manipulator is needed to find joint space values for 

particular robot position in work space. Inverse kinematics is studied for many decades 

and solving of inverse kinematic for a particular robot system is difficult 

computationally and time to solve is higher. Effective inverse kinematic solution is 

more important to find joint angles since the actuator works in joint space. Trajectory 
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planning is important to improve the productivity of the robot manipulator operation. 

Optimization of the trajectory planning enhance the production while maintain the 

robot work cycle smoothly. 

 

1.2.1 Thesis Objectives 

 

Thesis main objective is to research and develop methods to involve CAD systems as 

offline robot programming technique to improve and optimize the trajectory planning 

of 6 DOF robot manipulator by implementing enhanced inverse kinematic model for 

the manipulator. In this research, methods for path planning and relevant data 

extraction in CAD systems, inverse kinematic model for the robot manipulator and 

trajectory planning optimization with CAD systems are investigated. Proposed method 

is validated by implementing for a practical robot application and comparing the 

results and its performance. 

 

1.2.2 Goals 

 

In this research, it is intended to present methods for optimizing trajectory planning 

using offline robot programming techniques in order to increase the productivity and 

accuracy. This research intends to find a better mathematical way of optimized 

trajectory planning of 6-DOF industrial robot manipulator. 

 

1.3 Limitations 

 

Proposed method is based on the controlling and operation of 6 DOF robot 

manipulator. Therefore, the development of the inverse kinematics model is limited to 

the type of 6 DOF manipulator which is intended to research on. Welding operation of 

a machine head cover using Denso VP 6242 robot manipulator is evaluated in order to 

apply the proposed method and analysis the result and performance. Inverse kinematic 
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model is subjected to change with types of robot manipulator and the work space where 

the robot end effector operates. 

 

1.4 Influences to the industry 

 

This research work demonstrates an approach to develop methods to optimize 

trajectory planning in order to increase the efficiency and productivity with offline 

programming techniques. The proposed method can be implemented for most common 

available 6 DOF manipulators in the industry and can be applied for other types of 

robot manipulators. The method uses for path planning including path creation, task 

point allocation and data extraction in CAD systems can be used for any kind of 

industrial operation for further development. Trajectory planning can be analyzed and 

path planning methods can be optimized according to trajectory planning requirements 

in order to reduce task cycle time while maintaining robot smooth movement.  

Integrators can develop other methods based on this proposed method for further 

development. 

 

1.5. Report summary 

 

The remaining sections is arranged as follows. 

In Chapter 2,some literature is reviewed about existing methods for solving kinematics 

of robot manipulators, optimizing of trajectory planning for different applications and 

influence of current offline programming methods for best robot operation. Chapter 3 

illustrates the behavior of the robot and the application which is evaluated. It also 

extends the background of the system that will support to develop methods for 

optimum solutions. In Chapter 4, an approach for developing appropriate methods for 

optimizing trajectory planning of 6 DOF robot manipulator is proposed. Path planning 

with CAD system support, mathematical model for inverse kinematic solution of 6 

DOF robot manipulator and analysis of trajectory planning from derived joint space 

data in order to optimize of the robot programmability and operability are proposed. 
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Simulation model is developed in a separate robot programming software tool in order 

to verify the developed mathematical model results and debug for further development 

in chapter 5. The final results of the research are described in chapter 6 and it validates 

the results over the results of the simulation. It also suggests improvements as 

forthcoming developments. The development procedure of the mathematical model 

and algorithms for inverse kinematic solution of 6 DOF robot manipulator and 

trajectory planning are illustrated in appendix ‘A’. Appendix ‘B’ shows the dimensions 

and the configuration of the Denso VP 6242. It also presents the dimensions of the 

work piece and the robotic cell layout. Appendix ‘C’, ‘D’ and ‘E’ illustrate calculated 

joint angles values tabulated for experiment scenario 1,3 and 4. 
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CHAPTER 2 

LITERATURE REVIEW 
 

Existing approaches developed for inverse kinematic solutions, path planning and 

trajectory planning of robot manipulators and other similar applications are discussed 

in this chapter. Robot manipulators are highly involved in modern manufacturing 

industries specially in automotive [1]. Robot programming is critical significantly in 

order to operate productively and various programming techniques are used. Currently 

sophisticated robot controllers and software interfaces are involved [2] and most of 

these applications are expensive in use thus teaching method is highly used. Teaching 

method can be imprecise, time consuming process in some applications where 

technical expertise of the application should be concerned in order to perform robot 

teaching [3]. Offline robot programming methods are introduced as a revolutionary 

solution for the drawbacks of current online programming techniques including 

teaching where the robot programs are created in separate interface independent of 

actual robot cell prior to upload to the robot manipulator for execution [4]. Importance 

of the Path planning and trajectory planning is more valuable for robot operations and 

maintenance in order to increase the productivity and efficiency. 

 

2.1 Some Literature 

 

Even though there are many types of industrial robot manipulators and systems which 

are capable of offline robot programming, it is still very expensive and limited to a 

particular industrial application which tends to cost more when changing the 

application. In addition, the applications where the accuracy is highly concerned need 

advanced robot systems with controllers [1][2].  

A. Paulo Moreira ,Pedro Neto and J. Norberto Pires researchers in University of 

Coimbra, Portugal and University of Porto, Portugal have presented CAD-Based Off-

Line Robot Programming approach in order to optimize robot programmability [3].  
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Currently CAD systems can provide more design and modelling capabilities having 

high precision and standard, simulation can be also done with great accuracy. 

Therefore, CAD systems can be utilized to give effective engineering solutions for 

preparing robot path and trajectories in robot programming.  

L. Alonso Ferreira, M. Álvarez Souto, I. Fernández Iglesias and Y. Lapido Figueira, 

researchers present solution for offline robot programming method with CAD support 

to support ship building fabrications and supports [5]. They proposed a solution for a 

hyper-flexible welding cell with 6 DOF robot manipulator mounted on 3 axis gantry 

system which is programmed in a CAD environment [6] in order to prepare robot task 

sequences and extract relevant data for further processes. Figure 2.1 shows the 

application area of hyper flexible robotic cell they have implemented. 

 

 

 

Figure 2.1 Hyper flexible robotic cell 

It also emphasizes the capability of creating accurate robotic cell for complex robotic 

system arrangements in a CAD system which gives unexperienced programmers to 

program robot tasks easily. 

Kinematics of a robot manipulator is a very critical problem when we deal with 

automatic control of the robot operation. A. Khan, C. Xiangming, Z. Xingxing and W.  
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Quan present method and solutions of closed form inverse kinematic modelling for a 

6 DOF robot manipulator [7]. The manipulator is based on Puma560 robot which is 

intended to move in underwater area. They have developed a closed-form solution of 

inverse kinematics model for a 6-DOF manipulator and were able to validate the 

developed algorithm using simulation in Robotic toolbox.  

Mustafa Jabbar Hayawi from Thi-Qar University has presented an Analytical Inverse 

kinematics Algorithm of A 5-DOF Robot Arm. Forward kinematics and a closed form 

inverse kinematic solution for the educational 5 DOF robot manipulator TR 4000 are 

presented to overcome the high number of iterative numerical solution [8]. 

 

Trajectory planning is very essential to maintain Smoothness and Ease of accurate 

tracking by the manipulator. Non-smooth trajectories cause problems like high torque 

in actuators, Vibrations, Error in path tracking, manipulator wear and low level of 

quality output [9]. Jerk controlling is very important in order to minimize these 

problems since the nature of the jerk profile predicts the behavior of the motion. 

Studies shows that a trajectory with controlled jerk profile is essential in order to 

achieve the desired features. Controlled jerk trajectory can be achieved by, 

1. Maintaining zero bound starting and ending profile which reserve the 

smoothness at start and end motion. 

2. Maintaining continuous jerk profile to avoid potential ‘Infinite jerk’ of non-

continuous jerk profiles. 

3. Limiting jerk between known values where user can compare with 

manufacturer’s recommendations. 

Trajectory planning can be executed in joint space or operational space. In joint space 

trajectory planning, the motion is described by joint values whereas in operational 

space trajectory planning, the motion is described in Cartesian space in many cases. 

The motion between two points is unpredictable in joint space trajectory planning 

while it is easy to visualize the path and the motion between the two points is known 

in Cartesian space trajectory planning. Collision can be prevented by proper trajectory 

planning in operational space but it is computationally expensive since we need to 
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solve inverse kinematics between discretized points along initial point to final point at 

each step. In joint space trajectory planning, inverse kinematics is needed to be 

calculated only once and constraints like joint angle and velocity can be concerned 

[10]. 
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CHAPTER 3 

ROBOT AND APPLICATION SYSTEM  

 

This chapter explains the behavior of robot system and the application. Section 3.1 

presents information about the robot system with relevant sub systems required for the 

operation. Section 3.2 presents information about the application which is evaluated 

by implementing proposed methods in order to optimize the output. Section 3.3 

expresses the necessary details about the total system represented the entire robot 

working cell for the application. 

3.1 Robot system 

 

Robot system is consisted of two major sub systems.  

1. Denso VP 6242 robot manipulator 

2. Robot controller system 

 

Denso VP 6242 robot [Figure 3.1] is a high speed, high accuracy robot unit produced 

by DENSO Robotics. It is categorized as mini sized vertical articulated robot.  

 

Figure 3.1: Denso VP 6242 mini sized vertical articulated robot 
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Denso VP 6242 arm is a 6-axis type robot arm built with joints similar to a human arm, 

great flexibility can be achieved. 6-axis freedom of movement makes them suitable to 

handle a much wider application range such as assembly, Dispensing, Grinding, Laser 

welding, material handling, material removal, packaging, pick and place, ultrasonic 

welding, polishing, spot welding.  

It is suitable for installations where operational space is limited. It has excellent 

repeatability of ±0.02 mm. It can handle payloads up to 3 kg and can reach up to 

432mm maximum [Figure 3.2]. It can be ceiling or ceiling mounted with no special 

hardware needed [Figure 3.3].  

 

Figure 3.2: External Dimensions and Workable Space (VP-6242) 
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Figure 3.3: VP 6242 robot arm ceiling or ceiling mounted 

VP 6242 robot arm is consisted of six joints operated with AC servomotors and brakes 

for all axes. Each joint has motion and speed limitation and table 1 presents the range 

of motion and speed limitation.  

 

Table 1: Joint movement and speed limitation [VP 6242] 

Joint Range of motion (°) Maximum joint speed (°/sec.) 

J1 ±160 250 

J2  ±120 187 

J3   +19, +160 250 

J4  ±160 300 

J5  ±120 300 

J6 ±360 300 

Source: Denso VP 6242 user manual [11] 
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Model RC8A and RC8 are the controller compatible with the VP 6242 robot system. 

It features and supports the Safety Motion function [Figure 3.4]. 

 

Figure 3.4: RC8A controller for VP 6242 robot system 

Robot controller can be connected many sub systems such as control devices, software 

and other peripherals for further expansions [Figure 3.5].  

 

Figure 3.5: RC8A controller System configuration 

The controller is the main controlling device of the industrial robotic arm which allows 

robot system and parts to function together. It also allows other systems to be 

connected with the current systems. The controller runs a set of instructions written in 

code named a program. The program is inputted or entered with a teach pendant 

[Figure 07] or software interface that built on most of operating systems. It converts 

the commands in the source code of the program to motion or motor drivers which are 

connected with robot arm joints. Internal model of kinematic structure of the robot 
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manipulator is inbuilt with the controller. It can coordinate the motions precisely which 

are commanded by each individual robot arm motor drives. Thousands of parameters 

are referred by the controller to ensure the robot operating precision of the required 

task enrolled with the application. 

Wincaps III software interface is a programming tool developed by Denso corporation 

and it is used for various application including program developments, parameter 

settings, transferring relevant data between robot arm and the controller and robot 

posture checking on a 3D screen. Robot can be programmed in a separate area called 

program editing window and functions such as line number display, command color 

display, indentation, comment block and bookmark can be implemented. Simulation 

capability is more advantageous where programmer can run the program on a 

computer system. Cycle time measurement, interference can be checked by user prior 

to transfer to the controller. Program start/stop and break points with robot motion with 

robot trajectory display are beneficial in order to increase the productivity. 3D arm 

view is the capability of the displaying robots and peripheral devices three 

dimensionally when robot motion is simulated [Figure 3.6]. 3D graphic data, format 

of VRML, DirectX can be imported in to Wincaps interface. Programmer can obtain 

location data information [Figure 3.7] of the robot end easily in order understand and 

get relevant data for further calculations. 

 

Figure 3.6: 3D arm view – Wincaps III software 
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Figure 3.7: Data location data – Wincaps III software 

 

3.2 Automated welding operation  

 

Robot manipulators are highly involved in modern manufacturing and fabrication 

industries such as arc welding and spot-welding operations are included [Figure 3.8].  

 

Figure 3.8: Robotic welding operation – ABB robotics [12] 
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For welding operation, smooth movement with constant speed of the welding torch is 

highly important to get higher quality welding output. Due to higher temperature at 

the end of the welding torch, even a small jerk at a point in the moving line causes a 

huge impact to the output [Figure 3.9].  

 

Figure 3.9: Arc welding defects due to speed changes [13] 

Robotic welding operated system consists of two major parts. 

1. Robot manipulator and controller system 

2. Welding torch for robotic operations 

Robot manipulator is used to handle the welding torch and operated as a human arm 

when the welding operation is done manually. Specially developed welding torch is 

now available for automated robotic operation since the conventional welding 

equipment cannot be used for robotic operation due to complexity of system 

components. Robotic welding torch can be attached to the robot end as an end effector 

without need of much effort. Figure 3.10 illustrates the differences of the design of 

conventional welding torch used for manual welding and robotic welding torch.  
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Figure 3.10: Differences of welding torch unit between Manual welding and Robotic 

welding [14] 

 

 

3.3 Robotic welding Robot cell  

 

Robotic welding operation done for fabricating a machine head cover by welding the 

edge of the head cover is evaluated as a research model in order to apply and test 

developed methods for trajectory planning with CAD based offline programming 

approach for a robot manipulator. Three-dimensional (3D) design of the overall system 

and dimensions are illustrated in Figure 3.11 and Figure 3.12. 
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Figure 3.11: Robotic welding application – 3D model 

 

Figure 3.12: Welding application - Layout 

 

Figure 3.13 illustrates the dimensions of the machine head cover which is confronted 

for welding. 

Denso VP 6242 

Robot Manipulator 

Welding Torch 

Machine 

Head Cover 
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Figure 3.13: Machine Head Cover - Dimensions 

 

 

Figure 3.14 shows a sample industrial Robotic welding torch used in the industry [15]. 

Figure 3.15 illustrates the dimensions of the welding torch attached to end of the robot 

end as an end effector.  

 

Figure 3.14: Industrial Robotic welding torch [15] 
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Figure 3.15: Robotic Welding Torch - Dimensions 

Figure 3.16 shows the robot end moving path along the cover edge which is followed 

by the robot end effector to get proper welding operation. 

 

Figure 3.16: Robot End travelling path (marked in blue color) 
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CHAPTER 4 

SYSTEM AND PROCESS DESIGN IDENTIFICATION 

 

This chapter describes development approach over optimized methods of finding 

inverse kinematics of 6 DOF robot manipulator and trajectory planning done according 

to path planning using CAD systems. Section 4.1 illustrates the methods and 

mathematical approach for finding optimized inverse kinematic solution for the robot 

manipulator in order to find accurate joint space data of the robot while operating along 

the path. Section 4.2 illustrates the process of creating the robotic cell or the human 

robot interface in CAD environment where programmer can develop precise virtual 

model of the robot and the application in a software. Section 4.3 proposes methods to 

path planning for the particular application and information extraction in order to 

create robot moving sequences. Section 4.4 proposes the mathematical approach for 

mapping trajectories according to speed limitation with respect to path planning.  

 

4.1 Mathematical approach for closed form solution of inverse kinematic of 6 

DOF robot manipulator 

 

Inverse kinematics problem of robot manipulator is very essential to solve to find joint 

angles of each joints of the robot locating at a position and orientation of the robot end 

effector. Robot users work in the cartesian space but the robot operates in the joint 

space. Therefore, inverse kinematics is defined as transformation from cartesian space 

to joint space. Finding joint angles is more important as robot end position is needed 

to be located precisely. Solving inverse kinematic is the practical complication of 

manipulator control and need numerical methods to solve. Inverse kinematics is more 

complex comparatively and numerous solutions may exist for the identical robot 

manipulator posture. Closed form solutions cannot be derived always since 

trigonometric nonlinear simultaneous equations are consisted with inverse kinematics 

of robot manipulator. There may not always exist solutions for inverse kinematics for 

a particular range of robot end effector posture. Numerical methods are used to derive 
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inverse kinematic solutions to find joint space values when  kinematic equations are 

not possible to solve analytically [16]. 

Denso VP 6242 Robot is a 6 DOF robot manipulator consists of six revolute joints at 

each links. Representation of the Denavit–Hartenberg (D-H) model can be used to 

model connections of the robot links and joints [17]. It is needed for finding solutions 

for forward kinematics and inverse kinematics. 

The base of the manipulator is link 0 and not considered one of the six links generally. 

Link 1 is connected to the base link by joint 1. Links are maintaining a fixed 

relationship with joints at each link end. The common normal distance is ai(length) and 

αi (twist) is the angle between the axes in a plane perpendicular to ai. The distance 

between each joint is denoted as di and the angle between normal of each joint is 

denoted as θi. Coordinates can be assigned for the VP 6242 robot as illustrated in 

Figure 4.1. 

 

Figure 4.1: Coordinate assignment – Denso VP 6242 
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According the coordinates assigned for the robot manipulator, relevant parameters can 

be assigned [Table 2].  

Table 2: Denso VP 6242 robot manipulator D-H parameters 

Joint 

i 

αi-1 ai-1 di θi 

1 0 0 0 θ 1 

2 90o 0 0 90o+θ2 

3 0 210 0 90o+θ3 

4 90o 75 210 θ 4 

5 -90o 0 0 θ 5 

6 90o 0 70 θ 6 

 

4.1.1 Robot manipulator forward kinematic 

 

Determining forward kinematic problem is finding robot end effector position, 

orientation given by joint angles. Every joint is consisted of position, orientation values 

relative to its previous joint values. Transformation matrices denote these relations. 

Following equation represents a general formulation for transformation matrix 

calculation. 

T 

i-1

i
  = Rx(αi-1) Dx(ai-1) Rz(θi) Dz(di)       (1) 

     

Where  

Rx(αi - 1) = rotation matrix about the X axis by αi – 1  

Dx(ai - 1) = translation matrix along the X axis by  ai – 1 

Rz(θi) = rotation matrix about the Z axis by θi 

Dz(di) = translation matrix along the Z axis by di 

a, α, θ, d are manipulator D-H parameters. 
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Rx(αi-1) = [

1 0 0 0
0 cos α𝑖−1 − sin α𝑖−1 0
0 sin α𝑖−1 sin α𝑖−1 0
0 0 0 1

]      (2) 

 

Dx( ai - 1) = [

1 0 0 a𝑖−1

0 1 0 0
0 0 1 0
0 0 0 1

]        (3) 

Rz( θi) = [

cosθ𝑖 −𝑠𝑖𝑛θ𝑖 0 0
𝑠𝑖𝑛θ𝑖 cosθ𝑖 0 0

0 0 1 0
0 0 0 1

]       (4) 

 

Dz( di) = [

1 0 0 0
0 1 0 0
0 0 1 d𝑖

0 0 0 1

]        (5) 

 

And T 

i-1

i
  is  

[

cosθ𝑖 −𝑠𝑖𝑛θ𝑖 0 a𝑖−1

cos α𝑖−1 𝑠𝑖𝑛θ𝑖 cos α𝑖−1 cosθ𝑖 − sin α𝑖−1 −d𝑖 sin α𝑖−1

sin α𝑖−1 𝑠𝑖𝑛θ𝑖 sin α𝑖−1 cosθ𝑖 cos α𝑖−1 d𝑖 cos α𝑖−1

0 0 0 1

]    (6) 

T 

0

1
 = [

𝐶1 −𝑆1 0 𝑎1

𝑆1 𝐶1 0 0
0 0 1 0
0 0 0 1

]        (7) 

T 

1

2
 = [

𝐶2 −𝑆2 0 𝑎2

0 0 −1 0
𝑆2 𝐶2 0 0
0 0 0 1

]        (8) 
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T 

2

3
 = [

𝐶3 −𝑆3 0 210
𝑆3 𝐶3 0 0
0 0 1 0
0 0 0 1

]       (9) 

T 

3

4
 = [

𝐶4 −𝑆4 0 75
0 0 −1 −210
𝑆4 𝐶4 0 0
0 0 0 1

]      (10) 

T 

4

5
 = [

𝐶5 −𝑆5 0 0
0 0 −1 0
𝑆5 𝐶5 0 0
0 0 0 1

]       (11) 

T 

5

6
 = [

𝐶6 −𝑆6 0 0
0 0 −1 −70
𝑆6 𝐶6 0 0
0 0 0 1

]      (12) 

 

Hence, multiplication of matrices (7,8,9,10,11,12) calculates the transformation matrix 

T 

0

6
 that gives end effector position, orientation with respect to frame 0 (13).  

T 

0

6
  = T 

0

1
  T 

1

2
  T 

2

3
 T 

3

4
  T 

4

5
  T 

5

6
       (13) 

4.1.2 Robot manipulator inverse kinematic 

 

Determining robot manipulator inverse kinematic is finding robot joint angles when 

end effector position, orientation location known. 

Considering Denso VP 6242 robot manipulator, last three joints axes intersect at one 

point and it is referred as point A [figure 19]. The point A position can be considered 

as independent of the consecutive last three joints θ4, θ5, θ6. Hence, previous three 

joints are considered when determining Point A position. 

End effector position and orientation = [Px,Py,Pz,γ,β,α]T   

 

Where, 
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α is the angle between Z6 and Z0(Z axis of 6th and 1st joint) 

β is the angle between Y6 and Y0(Y axis of 6th and 1st joint) 

γ is the angle between X6 and X0(X axis of 6th and 1st joint) 

The Point A position is denoted as Pa = [Pax, Pay, Paz]
T 

Pa can be described as, 

 Pax = Px - d6 * ax 

 Pay = Py – d6 * ay 

 Paz = Pz – d6 * az  

Where 

 ax  = Z͞6 . X͞0       ay  = Z͞6 . Y͞0 az  = Z͞6 . Z͞0 

 

Solution for the θ1, θ2 and θ3 can be derived as follows. 

Pa, Point A position can be derived from homogeneous transformation matrix T 

0

4
  

derived from T 

0

1
  T 

1

2
  T

2

3
  and T

3

4
 . 

T 

0

4
  = T 

0

1
  T 

1

2
  T

2

3
 T

3

4
  = [

𝑟11 𝑟12 𝑟13 P𝑎𝑥

𝑟21 𝑟22 𝑟23 P𝑎𝑦

𝑟31 𝑟32 𝑟33 P𝑎𝑧

0 0 0 1

] 

Where 

𝑟11 = S1S4 - C4(C1C2C3 - C1S2S3) 

𝑟12 = C4S1 + S4(C1C2C3 - C1S2S3) 

𝑟13 = - C1C2S3 - C1C3S2 

𝑟21 = - C1S4 - C4(C2C3S1 - S1S2S3) 

𝑟22 = S4(C2C3S1 - S1S2S3) - C1C4 

𝑟23 = - C2S1S3 - C3S1S2 

𝑟31 = -C4(C2S3 + C3S2)               

𝑟32 = S4(C2S3 + C3S2) 

𝑟33 = C2C3 - S2S3                          

P𝑎𝑥= 75 C1S2S3 – 75 C1C2C3 – 210 C1C2S3 – 210 C1C3S2 – 210 C1S2 (14) 
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P𝑎𝑦= 75 S1S2S3 – 75 C2C3S1 – 210 C2S1S3 – 210 C3S1S2 – 210 S1S2  (15) 

P𝑎𝑧= 210 C2 + 210 C2C3 – 75 C2S3 – 75 C3S2 – 210 S2S3                                              (16) 

 

Where Si = sinθi and Ci = cosθi 

 

(14) × ( S1) – (15) × (C1) = 0  

Therefore, 

Pax × S1 = Pay × C1 

 
S1

𝑐1
 = 

P𝑎𝑦

P𝑎𝑥
 

tanθ1 = 
P𝑎𝑦

P𝑎𝑥
 hence θ1  = tan-1(

P𝑎𝑦

P𝑎𝑥
)      (17) 

 

by (14) × ( C1) + (15) × (S1) , the following is obtained. 

PaxC1 + PayS1 = 75S2S3 - 75C2C3 - 210C2S3 - 210C3S2 - 210S2    (18) 

By taking Pax× C1 + Pay × S1 = m, the following can be obtained. 

Therefore from (18) : -75 C23 – 210 S23 – 210S2 = m 

Where C23 = Cos(θ2+θ3)  

 S23 = Sin(θ2+θ3) 

-75 C23 – 210 S23 = m + 210S2      (19) 

From (16): 210C23 – 75S23 = Paz – 210C2     (20) 

From (19) and (20), the following is obtained. 

C23 =  
14P𝑎𝑧

3315
 - 

m

663
 - 

70S2

221
 - 

196C2

221
      (21) 

S23 = - 
P𝑎𝑧

663
 - 

14m

3315
 - 

196S2

221
 + 

70C2

221
      (22) 

Further simplifies by substituting following, 
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n = 
14P𝑎𝑧

3315
 - 

m

663
 and o = 

−P𝑎𝑧

663
 - 

14𝑚

3315
 

then equations (21) and (22) can be simplified as follows. 

C23 = n - 
70S2

221
 - 

196C2

221
       (23) 

S23 = o - 
196S2

221
 + 

70C2

221
       (24) 

substituting the equations (23) and (24) to S23
2 + C23

2 = 1 

then the following can be obtained. 

196𝑐2
2

221
 - 

392C2𝑛

221
 + 

140C2𝑜

221
 + n2 - 

140S2𝑛

221
 + o2 - 

392S2𝑜

221
 + 

196𝑠2
2

221
 = 1  (25) 

Equation (25) can be simplified by taking p = n2 + o2 + 
196

221
 

Substituting p then 

- 
392c2𝑛

221
 + 

140c2𝑜

221
 - 

140s2𝑛

221
 - 

392s2𝑜

221
 = 1- p    (26) 

a S2 + b C2 = c 

by substituting a = - 
140𝑛

221
 - 

392𝑜

221
 , b = - 

392𝑛

221
 + 

140𝑜

221
 and c = 1 – p for equation (26) 

then the joint 2 angle θ2 can be calculated as follows. 

θ2 = Atan2(a,b)  ±  Atan2((a2 +b2 – c2)1/2,c)    (27) 

from equation (19):  -75 C23 – 210 S23 = m + 210S2  (28) 

Considering equation   e C23 + f S23 = g     

by substituting e = -210 , f = -75 and g = m + 210S2 for equation (28) 

then, θ2 + θ3 = Atan2(e,f)  ±  Atan2((e2 +f2 – g2)1/2,g)  (29) 

Hence the joint 3 angle value can be derived as follows. 

θ3 = Atan2(e,f)  ±  Atan2((e2 + f2 – g2)1/2,g) - θ2   (30) 
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Solutions for θ4, θ5 and θ6 

End effector orientation is defined by R 

0

6
  . Since robot orientation is described by 

rotation matrix, position A orientation is defined by R 

0

3
 .  

R 

0

6
 can be described as R 

0

6
  = R 

0

3
  R 

3

6
  

Matrix R 

3

6
 can be described as 

R 

3

6
 = R 

3

4
  R 

4

5
  R 

5

6
 = [

𝑐4𝑐5
2 − 𝑠4𝑠6 −𝑠4𝑐5 − 𝑐4𝑐5𝑠6 𝑐4𝑠5

𝑠5𝑐5 −𝑠5𝑠6 −𝑐5

𝑠4𝑐5
2 + 𝑐4𝑠6 𝑐4𝑐5 − 𝑠4𝑐5𝑠6 𝑠4𝑠5

] = [

𝑛11 𝑛12 𝑛13

𝑛21 𝑛22 𝑛23

𝑛31 𝑛32 𝑛33

] 

 

 

Where Si = sin(θi) and Ci = cos(θi) 

Then the joint 4 angle can be calculated as follows.  

θ4 = tan-1 
n33

n13
  when θ5 ≠ 0       (31) 

when θ5 = 0 , the link axes are in collinear which the arms are at singular position. In 

this condition, there is only one motion of robot end effector orientation which can be 

calculated by sum or difference of θ4 and θ6. In most cases, current θ4 value is 

considered. 

T 

4

6
  Can be derived as follows. 

T 

4

6
  =T 

0
4 

−1

T 

0

6
  since θ1, θ2 , θ3 , θ4 and T 

0

6
  are known. 

T 

4

6
  can be described as  

T 

4

6
   = T 

4

5
  T 

5

6
   = [

𝑐5𝑐6 −𝑐5𝑠6 𝑠5 70𝑠5

𝑠6 𝑐6 0 0
−𝑠5𝑐6 𝑠5𝑠6 𝑐5 70𝑐5

0 0 0 1

]  

Where  Si = sin(θi)  

Ci = cos(θi) 

Therefore joint 5 angle θ5 can be calculated as follows. 
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θ5  = sin-1  T 

4

6
 (1,3)        (32) 

T 

5

6
  Can be derived as follows.  

T 

5

6
  =T 

0
5 

−1

  T 

0

6
  since θ1, θ2 θ3 ,θ4 , θ5 and T 

0

6
  are known. 

T 

5

6
  can be described as follows. 

 

T 

5

6
  =  [

𝑐5 −𝑠5 0 0
0 0 −1 0
𝑠5 𝑐5 0 0
0 0 0 1

] 

 

Therefore, joint 6 angle θ6 can be calculated as, 

θ6   = sin-1  T 

5

6
 (1,2)        (33) 

 

 

 

4.2 The Human Robot interface 

 

Denso VP 6242 robot manipulator can be virtually developed in a three dimensional 

graphical user interface using available CAD software interfaces which is high 

accurate and user friendly. Solidworks [18] is used to develop the CAD models. Model 

for each links of the robot manipulator can be designed and modelled [Figure 4.2]. 3D 

design is developed on 1:1 scale since it is used for creating simulation model in the 

simulation interface.  
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Figure 4.2: Robot links 3D design models 

 

Created 3D link models can be assembled in Solidworks in order to create the complete 

robot assembly [Figure 4.3].  
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Figure 4.3: Robot manipulator assembly in Solidworks 

Coordinate systems can be assigned to the relevant joint axes which are needed to 

describe the relative position and orientation of each link [Figure 4.4]. Work 

coordinate system can be assigned relative to developed mathematical model in section 

4.1.  
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Figure 4.4: Coordinate system assignment in 3D model 

 

Tool which is attached to the robot end can be modelled on 1:1 scale [Figure 4.5]. 

Figure 4.5: 

Tool design – Welding torch 
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The machine head cover can be modelled on 1:1 scale [Figure 4.6]. 

 

Figure 4.6: Machine head cover – 3D design 

The head cover can be located according the actual robot cell dimensions [Figure 4.7]. 

 

Figure 4.7: Machine Head cover location 

Complete robot cell is illustrated in Figure 4.8. 
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Figure 4.8: Complete 3D design for the robot cell 

4.3 Path planning and information extraction 

 

Robot end moving line can be defined using a spline which is accurate to describe the 

path efficiently [Figure 4.9].  

 

Figure 4.9: Spline feature for robot moving path definition 
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Points are located along the line which assigned to represent robot moving sequence 

[Figure 4.10]. 

 

Figure 4.10: Point allocation along the robot path 

 Position values of these points relative to origin can be used for calculating forward 

and inverse kinematics [Section 4.1].  X, Y and Z coordinate values are extracted from 

the CAD spline. VB (Visual Basic) based macro is developed and run in Solidworks 

to generate the point coordinate values [Figure 4.11]. VB based macro is also capable 

to generate excel sheet with x y z point values [Figure 4.12]. 

 

Figure 4.11: VB based macro for data extraction 
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Figure 4.12: Data extracted values in Microsoft excel 

 

 

 

 

4.4 Mathematical approach for mapping trajectories 

 

Joint space trajectory generation in robotic field is commonly using for arranging 

smooth motion between one set of joint angles with another set such as for travelling 

between two specific cartesian postures having two joint angles sets for each posture. 

This has to be done simultaneously while generating for all joints independently. 

Generally initial assumptions are considered as two discrete joint value sets are known 

and the requirement is to move between those two joint angles sets smoothly in joint 

space. The velocity and acceleration need to vary smoothly in order to maintain 

optimized robot movement without existing infinite jerks which make robot 

manipulators inaccurate operations, high vibration and wear. 
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Each of joints has a motor drive which is connected to rotate the joint according to 

control input by the robot controller system. The motor should be controlled under 

technical specifications such as maximum angular velocity, joint motion range, 

maximum inertia movement [11]. Each motor is limited with maximum angular 

velocity and controllers should manipulate the robot arm under these limitations. 

A trajectory can be specified by assigning initial and final conditions on a time period, 

position, velocity, acceleration etc. Then, trajectory planning can be determined as a 

function so that the required conditions are satisfied. This is considered as a boundary 

condition problem which can be explained by considering polynomial functions such 

as: 

q(t) = a0 + a1t + a2t
2 + . . . + ant

n 

The degree n of the polynomial depends on the number of boundary conditions which 

should be determined by the trajectory smoothness we require. Given an initial and a 

final time period i.e. ti and tf, a trajectory segment can be specified by assigning initial 

and final conditions: 

initial position and velocity qi, q̇i 

final position and velocity qf, q̇f 

A polynomial of degree 3 can be considered since there are four boundary conditions. 

From the studies [10], it may be noticed that position and velocity profiles are 

continuous functions of time but cannot be true for the acceleration so that 

discontinuities among different segments can be occurred. Besides, there is no 

possibility to specify initial and final values for each segment. In some cases, this is 

not a major problem and it is enough to have smooth trajectories. But for most cases, 

acceleration initial and final values for obtaining acceleration profiles is required for 

avoiding possible infinite jerks of non-continuous jerk profiles. Therefore, fifth order 

polynomial functions should be considered.  

q(t) = a0 + a1t + a2t
2 + a3t

3 + a4t
4 + a5t

5 
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Boundary conditions are defined as follows: 

q(ti) = qi : initial position at time ti  q(tf) = qf : final position at time tf  

q̇(ti) = q̇i : initial velocity at time ti  q̇(tf) = q̇f : final velocity at time tf 

q̈(ti) = q̈I : initial acceleration at time ti q̈(tf) = q̈f : final acceleration at time tf 

The coefficient of the polynomial can be derived. 

In this case, the coefficients of the polynomial are derived as follows. 

a0 = qi          (34) 

a1 = q̇i          (35) 

a2 = 
1

2
 q̈i         (36) 

a3 = 
1

2T3 [20( qf − qi ) − (8q̇f + 12q̇i)T − (3q̈f – q̈i)T
2]    (37) 

a4 = 
1

2T4 [30(qi − qf ) + (14q̇f + 16q̇i)T + (3q̈f – 2q̈i)T
2]   (38) 

a5 = 
1

2T5 [12(qf − qi ) − 6(q̇f + q̇i )T − (q̈f – q̈i )T
2]    (39) 

where T = tf − ti  

Velocity, acceleration and jerk profile are derived as follows. 

q̇(t) = a1 + 2a2t + 3a3t
2 + 4a4t

3 + 5a5t
4 (fourth order polynomial)  (40) 

q̈(t) = 2a2 + 6a3t + 12a4t
2 + 20a5t

3 (third order polynomial)   (41) 

q̈̇(t) = 6a3 + 24a4t + 60a5t
2 (second order polynomial)   (42) 

Robot position is intended to travel point to point movement along the path via 

assigned positions. Boundary conditions of the trajectories are defined as follows. 

q̇i = 0 : initial velocity at time ti  q̇f = 0 : final velocity at time tf 

q̈i = 0 : initial acceleration at time ti  q̈f = 0 : final acceleration at time tf 

Figure 4.13 illustrates Typical trajectory profile for position variation. 
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Figure 4.13: Typical trajectory profile for position variation 

Figure 4.14 illustrates typical trajectory profile for velocity variation. 

 

Figure 4.14: Typical trajectory profile for velocity variation 

Figure 4.15 illustrates typical trajectory profile for acceleration variation. 
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Figure 4.15: Typical trajectory profile for acceleration variation 

Figure 4.16 illustrates typical trajectory profile for Jerk variation. 

 

Figure 4.16: Typical trajectory profile for jerk variation 
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From the equations (34) to (39) with boundary conditions assigned, following 

expressions can be derived. 

a0 = qi          (43)  

a1 = 0          (44) 

a2 = 0          (45) 

a3 = 
1

2T3
 [20( qf − qi )]        (46) 

a4 = 
1

2T4 [30(qi − qf )]        (47) 

a5 = 
1

2T5 [12(qf − qi )]        (48) 

Maximum velocity of a particular joint is reached in the middle of the time duration 

[Figure 32]. Therefore, maximum velocity can be derived as follows. 

Applying solutions to the equation (40): 

q̇(t) = 3 
1

2T3 [20( qf − qi )] t
2 + 4 

1

2T4 [30(qi − qf )] t
3 + 5 

1

2T5 [12(qf − qi )] t
4  

when t = 
T

2
   

Then,  

q̇(t)max = 3 
1

2T3 [20( qf − qi )] (
T

2
) 2 + 4 

1

2T4 [30(qi − qf )] (
T

2
) 3 + 5 

1

2T5 [12(qf − qi )] (
T

2
)4 

q̇(t)max =  
15(qf− qi)

8T
         (49) 

therefore, T (time period from one position to another) can be calculated for a 

particular speed limit. 

T  ≥ 
15(qf− qi)

8q̇(t)𝑚𝑎𝑥 
         (50) 

Maximum velocity should be considered when the robot manipulator is operated with 

a significant operating speed such that when robot is moving from one cartesian 

location to another position in a limited time period. Variation of each joint speed is 

varied depends on the location and robot arm configuration and speed limitation is 
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defined in order protect from possible breakdowns and enhance the robot operation. 

The robot user can realize the possible speed limitations by mapping maximum speed 

of each joint while moving along the path via assigned position points. Then the 

position points can be allocated according to the observations in order to minimize the 

joint speed variation and optimize the system in order to increase the productivity. 
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CHAPTER 5 

SYSTEM DESIGN AND SIMULATION  

 
Mathematical models developed for inverse kinematics are described in this chapter 

and trajectory planning solutions proposed in Chapter 4. Section 5.1 presents the 

procedure to implement inverse kinematic solution for the 6 DOF robot manipulator 

which is needed to derive joint space data for further development of trajectory 

planning. Section 5.2 presents the procedure to implement trajectory planning scheme 

developed for moving robot arm effectively. Development of robot cell to trial in a 

Simulation environment is illustrated in Section 5.3 which clarifies the accuracy and 

the effectiveness of the mathematical solutions and schemes developed.  

 

5.1 Design and Implementation of Inverse kinematic model  

 

Algorithms can be developed using derived mathematical models developed in section 

4. Matlab is a software tool used for analyzing data, developing algorithms, or creating 

models [19]. 

The inverse kinematic model for the Denso VP 6242 robot arm has been developed 

considering without end effector attachment. But we can see tools attached to the robot 

arm end for many industrial uses such as painting nozzle, welding torch, cutter unit. 

In this application, welding torch has been applied as an end effector. Therefore, the 

tool end is subjected to move along the path. Path and Points can be assigned according 

to user’s requirements [Figure 5.1]. 

   

Figure 5.1: Path and point allocation along the robot moving path 



48 
 

Robot end tool position and orientation are needed to define for calculating and 

perform developed algorithm. Tool position is same as the point location of the defined 

path. Orientation is defined as follows and the orientation is needed to persist the same 

along the path [Figure 5.2 and Figure 5.3]. 

 

Figure 5.2: Tool orientation along the path 

 

Figure 5.3: Tool orientation with respect to work 0 coordinate 
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The end-effector(tool) position, orientation with respect to base, known as T 

0

Tool
 is 

defined as follows. 

T 

0

Tool
 = [𝑅𝑇𝑜𝑜𝑙

0 𝑃𝑇𝑜𝑜𝑙
0

0 0 0 1
]       (51) 

Where 𝑃𝑇𝑜𝑜𝑙
0  = [Xtool, Ytool, Ztool]

T position coordinate and  𝑅𝑇𝑜𝑜𝑙
0  can be derived as 

follows. 

𝑅𝑇𝑜𝑜𝑙
0  = RZ (1800 ) RY (-900 ) RX(00)      (52) 

 

Then T 

0

Tool
  can be derived as T 

0

Tool
 = T 

0

6
  T 

6

Tool
    (53) 

 

 T 

6

Tool
 Tool position, orientation with respect to joint coordinate 6 is derived as 

follows. 

T 

6

Tool
 = [

1 0 0 10
0 1 0 0
0 0 1 130
0 0 0 1

]  [Figure 5.4]     (54) 
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Figure 5.4: Tool dimensions 

From equation (53), T 

0

6
 can be derived as T 

0

6
 = T 

0

Tool
 T 

6
Tool 

−1

   (55) 

X, Y, Z cartesian point data can be derived from the Solidworks CAD environment by 

running a Visual Basic based macro [Section 4.3]. This macro exports cartesian point 

values of each point location only and we need to manually input the Rx, Ry, Rz 

rotation angles (around axes X ,Y, Z) for each point location or sequence which will 

10mm

m 
130mm 
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be needed for finding joint angles of the robot arm for each point location by 

developing algorithms in Matlab software. This rotation angles are the angles values 

defined in equation (52) [Figure 5.5]. 

 

Figure 5.5: Orientation defined by manually 

 

The position of point A in the robot arm is needed to find in order to implement the 

developed algorithms in section 4.1.2. Matlab codes can be written to implement this 

procedure in order to find the Pa location. 
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Importing data extracted from the CAD features 

C = xlsread('C:\Users\pcadmin\research\simulation1.xlsx','Sheet1'); 
tam = size(C); 

  
Pa = []; 
for i = 1 : tam 

     
    T6EF = [1 0 0 10;0 1 0 0;0 0 1 130;0 0 0 1];   

     
    X(i,1) = C(i,1);%X value 
    Y(i,2) = C(i,2);%Y value 
    Z(i,3) = C(i,3);%Z value 

     
    al = C(i,6); %angle arond Z axis 
    be = C(i,5);%angle around Y axis 
    ga = C(i,4);%angle around X axis 

     
    %Eular angle Z,Y,X 
    Rz = [ cosd(al) -sind(al)  0; 
         sind(al) cosd(al)  0; 
         0   0   1;]; 

 
    Ry = [ cosd(be)  0   sind(be); 
         0   1   0; 
         -sind(be)  0   cosd(be);]; 

 
    Rx = [ 1   0   0; 
         0   cosd(ga)  -sind(ga); 
         0   sind(ga)  cosd(ga);]; 

     
    %Rotation Matrix 
    A_R_B = Rz*Ry*Rx; 

     
TT(:, :, i) = [A_R_B(1,1) A_R_B(1,2) A_R_B(1,3) X(i,1); A_R_B(2,1) 

A_R_B(2,2) A_R_B(2,3) Y(i,2); A_R_B(3,1) A_R_B(3,2) A_R_B(3,3) 

Z(i,3);  

0 0 0 1]; 

  
T6EFT = ((T6EF)^(-1)); 
T(:, :, i) = TT(:, :, i)* T6EFT; 

  
%Pa position  
x = T(1,4,i)- (70)*T(1,3,i);%Pa x position 
y = T(2,4,i)- (70)*T(2,3,i);%Pa y position 
z = T(3,4,i)- (70)*T(3,3,i);%Pa z position 
end 
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Algorithms for finding joint angles θ1, θ2 and θ3 

Implementing equation (17) from section 4.1.2 

%Calculating theta 1 
theta1 = atan2d(y,x); 

  
if theta1 == 180 
    theta1 = 0; 
end 

  

  
if (90<theta1) && (theta1<180) 
    theta1 = -(180 - theta1); 
end 

  
if (-180>theta1) && (theta1>-90) 
    theta1 = 180 + theta1; 
end 
%} 

  

Implementing equation (27) and (30)  

 
%Calculating theta 2 and theta 3 
c1 = cosd(theta1); 
s1 = sind(theta1); 

  
m = (x*c1) + (y*s1); 
n = (-l/663) + (14*z/3315); 
o = ((-14*l)/3315) - (z/663); 
p = (196/221) + (n^2) + (o^2); 

  
a_ = ((-140*n) - (392*o))/221; 
b_ = ((140*o) - (392*n))/221; 

  
c = 1 - p; 

  
theta2 = atan2(a_,b_) + atan2(((a_^2 + b_^2 - c^2))^(1/2),c); 
theta2 = (theta2*180)/pi; 

  
if theta2 ==360  
    theta2 = 0; 
end 

  
if (180<theta2) && (theta2<360) 
theta2 = 360 - theta2; 
end 

  
%Theta 3 

  
e = -210.00; 
f = -75.00; 
g = l+(210*(sind(theta2))); 
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h = ((e^2 + f^2 - g^2))^(1/2); 

  
if isreal(h) == 1 
    theta23_1 = atan2(e,f)+ atan2(h,g); 
    theta23_1 = (theta23_1*180)/pi; 

  
    theta_23_2 = atan2(e,f)- atan2(h,g); 
    theta_23_2 = (theta_23_2*180)/pi; 

  
    if (theta_23_2>-360) && (theta_23_2<-180) 
        theta_23_2 = theta_23_2 + 360; 
    end 

  
    theta_3_1 = - theta2 + theta23_1; 

  
    theta_3_2 = - theta2 + theta_23_2; 

  

 
theta2_ = atan2(a_,b_) - atan2((a_^2 + b_^2 - c^2)^(1/2),c); 
theta2_ = (theta2_*180)/pi; 

  
if ( theta2_ > -360) && (theta2_ < -180) 
    theta2_ = 360 + theta2_;  
end 

  

  
e = -210.00; 
f = -75.00; 
g_ = l+(210*(sind(theta2_))); 
h_ = (e^2 + f^2 - g_^2)^(1/2); 

  
if isreal(h_) == 1 
    theta23_3 = atan2(e,f)+ atan2(h_,g_); 
    theta23_3 = (theta23_3*180)/pi; 

  
    theta23_4 = atan2(e,f)- atan2(h_,g_); 
    theta23_4 = (theta23_3*180)/pi; 

  
    theta_3_3 = - theta2_ + theta23_3; 

  
    theta_3_4 = - theta2_ + theta23_4; 

  
else 
    theta_3_3 = 0 - theta2_; 

  
    theta_3_4 = 0 - theta2_; 
end 
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Algorithms for finding joint angles θ4, θ5 and θ6 

%DH parameters 
al_0=0;al_1=90,al2=0;al_3=90;al_4=-90;al_5=90; 
a_0=0;a_1=0;a_2=210;a_3=75;a_4=0;a_5=0; 
d_1=0;d_2=0;d_3=0;d_4=210;d_5=0;d_6=70; 
t_1=theta_1;t_2=90+theta_2;t_3=90+theta_3; 

  
T1_0 = [ cosd(t_1),           -sind(t_1),              0,          

a_0           ; 
        sind(t_1)*cosd(al_0), cosd(t_1)*cosd(al_0),     -sind(al_0), 

-sind(al_0)*d_1; 
        sind(t_1)*sind(al_0), cosd(t_1)*sind(al_0),     cosd(al_0),  

cosd(al_0)*d_1 ; 
        0,                  0,                      0,          1            

;   ] 

  
T2_1 = [ cosd(t_2),           -sind(t_2),              0,          

a_1           ; 
        sind(t_2)*cosd(al_1), cosd(t_2)*cosd(al_1),     -sind(al_1), 

-sind(al_1)*d_2; 
        sind(t_2)*sind(al_1), cosd(t_2)*sind(al_1),     cosd(al_1),  

cosd(al_1)*d_2 ; 
        0,                  0,                      0,          1            

;   ]   

     
T3_2 = [ cosd(t_3),           -sind(t_3),              0,          

a_2           ; 
        sind(t_3)*cosd(al_2), cosd(t_3)*cosd(al_2),     -sind(al_2), 

-sind(al_2)*d_3; 
        sind(t_3)*sind(al_2), cosd(t_3)*sind(al2)_     cosd(al_2),  

cosd(al_2)*d_3 ; 
        0,                  0,                      0,          1            

;   ] 

  

Implementing equation (31) 
 

%Calculating theta4     
T3_0 = T1_0*T2_1*T3_2;     

    

  
R03 = [T3_0(1,1:3); 
        T3_0(2,1:3); 
        T3_0(3,1:3);]; 

  
R03T = transpose(R03); 

  
R06 = [T(1,1:3); 
        T(2,1:3); 
        T(3,1:3);]; 

  
R6_3 =  R03T*R06; 

  
theta4 = atan2d(R6_3(3,3),R6_3(1,3)); 
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if theta4 == 180 
    theta4 = 0; 
end 

  

Implementing equation (32) 
  
%Calculating theta 5 
T_4 = theta4; 
T4_3 = [ cosd(t_4),           -sind(t_4),              0,          

a_3           ; 
        sind(t_4)*cosd(al_3), cosd(t4)*cosd(al_3),     -sind(al_3), 

-sind(al_3)*d_4; 
        sind(t_4)*sind(al_3), cosd(t_4)*sind(al_3),     cosd(al_3),  

cosd(al_3)*d_4 ; 
        0,                  0,                      0,          1            

;   ] 

  
T4_0 = T3_0 * T4_3;   

  

  
T4_0T = transpose(T4_0); 
T46 = T4_0T * T; 
theta5 = asind(T46(1,3)); 
 

Implementing equation (33)  
 
%Calculating theta 6 
t_4 = theta4; 
t_5 = theta5; 

  
T4_3 = [ cosd(t_4),           -sind(t_4),              0,          

a_3           ; 
        sind(t_4)*cosd(al_3), cosd(t_4)*cosd(al_3),     -sind(al_3), 

-sind(al_3)*d_4; 
        sind(t_4)*sind(al_3), cosd(t_4)*sind(al_3),     cosd(al_3),  

cosd(al_3)*d_4 ; 
        0,                  0,                      0,          1            

;   ]   

     
T5_4 = [ cosd(t_5),           -sind(t_5),              0,          

a_4           ; 
        sind(t_5)*cosd(al_4), cosd(t_5)*cosd(al_4),     -sind(al_4), 

-sind(al_4)*d_5; 
        sind(t_5)*sind(al_4), cosd(t_5)*sind(al_4),     cosd(al_4),  

cosd(al_4)*d_5 ; 
        0,                  0,                      0,          1            

;   ] 

  
T5_0 = T3_0*T4_3*T5_4; 

    

  
R05 = [T5_0(1,1:3); 
        T5_0(2,1:3); 
        T5_0(3,1:3);]; 
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R5_0T = transpose(R05); 

  
R6_0 = [T(1,1:3); 
        T(2,1:3); 
        T(3,1:3);]; 

  
R6_5 =  R5_0T*R6_0; 

  
%Calculating theta6 
theta6 = asind(-R6_5(1,2)); 

  
end 

 

5.2 Algorithms for developing trajectory planning schemes in section 4.4 
 
initial_time=0; 
final_time=time; 
timestep=.05; 
x=initial_time:timestep:final_time;%time 0 to 20 seconds 

  
t = size(x,2); 

  
jtable(t,7)=0;%joint table 
vtable(t,7)=0;%velociy table 
atable(t,7)=0;%angular table 
qtable(t,7)=0;%jerk table 
jtable(:,1)=x;%table with time 
vtable(:,1)=x;%table with time 
atable(:,1)=x;%table with time 
qtable(:,1)=x;%table with time 
c = jtable(1:t,1);%time from 0 to 10seconds 
t1 = size(c,1); 

  
%joint parameters 

  
    if line == 1 

     
    jointi=[51.84,12.298,-119.428,-103.03,-53.81,111.40];%home 

position [230,140,215,0,-90,180] 
    

jointf=[t_t(line,1),t_t(line,2),t_t(line,3),t_t(line,4),t_t(line,5),

t_t(line,6)]; 
    else 
    jointi=[t_t(line-1,1),t_t(line-1,2),t_t(line-1,3),t_t(line-

1,4),t_t(line-1,5),t_t(line-1,6)]; 
    

jointf=[t_t(line,1),t_t(line,2),t_t(line,3),t_t(line,4),t_t(line,5),

t_t(line,6)]; 
    end  
%Joint boundary conditions 
for k=1:6 

    
ji=jointi(k); %Initial position 
jf=jointf(k); % Final position 
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j_vi=0; % Initial Angular velocity is assumed as zero 
j_vf=0; % Final Angular velocity is assumed as zero 
j_ai=0;% Initial acceleration is assumed as zero 
j_af=0; % Final acceleration is assumed as zero 

  
% Assume arm comes to the end position position with time 
t_i=0;%initial time 
t_f=x(1,t);%final time 
T=t_f-t_i;%time difference 

  
%Coefficients calculation 
for i = 1:t 

  
a0=ji; 
a1=j_vi; 
a2=j_ai/2; 
a3=[20*(jf-ji)-(8*j_vf+12*j_vi)*T-(3*j_af-j_ai)*T.^2]/(2*T.^3); 
a4=[30*(ji-jf)+(14*j_vf+16*j_vi)*T+(3*j_af-2*j_ai)*T.^2]/(2*T.^4); 
a5=[12*(jf-ji)-6*(j_vf+j_vi)*T-(j_af-j_ai)*T.^2]/(2*T.^5); 
Coefficients_J1=[a_0 a_1 a_2 a_3 a_4 a_5] 

 
jtable(i,k+1)= 

a_0+(a_1*x(1,i))+(a_2*(x(1,i))^2)+(a_3*(x(1,i))^3)+(a_4*(x(1,i))^4)+

(a_5*(x(1,i))^5); 
vtable(i,k+1)= 

a_1+(2*a_2*x(1,i))+(3*a_3*(x(1,i)^2))+(4*a_4*(x(1,i)^3))+(5*a_5*(x(1

,i)^4)); 
atable(i,k+1)= 

(2*a_2)+(6*a_3*x(1,i))+(12*a_4*(x(1,i)^2))+(20*a_5*(x(1,i)^3)); 
qtable(i,k+1)= 6*a_3+(24*a_4*x(1,i))+(60*a_5*(x(1,i)^2)) 

  
end 

 

Implementation of maximum velocity mapping 

for i = 1:tam 

     
[jtable vtable atable qtable] = trajectory(i,1);%line number,time 

  
vsize = size(vtable); 

  
    for q = 2:7 
        vmax(i,q-1) = max(abs(vtable(:,q))) 
    end 
end  

  
vmaxtable = 

array2table(vmax(2:tam,:),'VariableNames',{'J1','J2','J3','J4','J5',

'J6'}); 

  
figure; 
plot(2:tam,vmax(2:tam,1:6)) 
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ylabel('Maximum velocity(deg/sec)');xlabel('Line 

number');set(gca,'XTick',[0:1:line]); 
legend('joint 1','joint 2','joint 3','joint 4','joint 5','joint 6') 

 

sample graph derived for the maximum velocity mapping is shown in Figure 5.6. 

 

Figure 5.6: Maximum velocity mapping 

Time calculation algorithm for reaching maximum velocity developed in section 4.4. 

initial_time=0; 
final_time=2; 
timestep=.05; 
x=initial_time:timestep:final_time;%time 0 to 20 seconds 

  
t = size(x,2); 

  
if joint == 1 
    v_max = 250; 
else 
    if joint == 2 
        v_max = 187; 
    else 
        if joint == 3 
            v_max = 250; 
        else 
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            if joint == 4 
                v_max = 300; 
            else 
                if joint == 5 
                    v_max = 300; 
                else 
                    if joint == 6 
                        v_max = 300; 
                    end 
                end 
            end 
        end 
    end 
end 

             

  
if line == 1 

     
jointi=[51.84,12.298,-119.428,-103.03,-53.81,111.40]; 
    

jointf=[t_t(line,1),t_t(line,2),t_t(line,3),t_t(line,4),t_t(line,5),

t_t(line,6)]; 
    else 
    jointi=[t_t(line-1,1),t_t(line-1,2),t_t(line-1,3),t_t(line-

1,4),t_t(line-1,5),t_t(line-1,6)]; 
    

jointf=[t_t(line,1),t_t(line,2),t_t(line,3),t_t(line,4),t_t(line,5),

t_t(line,6)]; 
end  

     
ji = jointi(joint); 
jf = jointf(joint); 
dj = jf - ji; 
j_vi=0; % Initial Angular velocity is assumed as zero 
j_vf=0; % Final Angular velocity is assumed as zero 
j_ai=0;% Initial acceleration is assumed as zero 
j_af=0; % Final acceleration is assumed as zero 

  

 
%Coefficients calculation 

  
a_0=ji; 
a_1=j_vi; 
a_2=j_ai/2; 
a_3=[20*(dj)-(8*j_vf+12*j_vi)*T-(3*j_af-j_ai)*T.^2]/(2*T.^3); 
a_4=[30*(-dj)+(14*j_vf+16*j_vi)*T+(3*j_af-2*j_ai)*T.^2]/(2*T.^4); 
a_5=[12*(dj)-6*(j_vf+j_vi)*T-(j_af-j_ai)*T.^2]/(2*T.^5); 
Coefficients_J1=[a_0 a_1 a_2 a_3 a_4 a_5] 

 
t_max = (15*dj)/(v_max*8); 
time = abs(t_max); 
end 
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5.3 Simulation model  

 

Results taken by running developed algorithms are required to be verified in order to 

troubleshoot the system and its outcome. Verification of Algorithms developed for 

forward kinematics and inverse kinematics can be done by performing simulations in 

a separate simulating software tool. Wincaps III robot programming tool from 

Densowave corporation is used here for developing robot cell graphically and 

simulating the experiments to get better results [20]. 

 

5.3.1 Creating Robot cell 

 

Robot working cell can be developed virtually in Wincaps III and the summarized 

procedure is illustrated below. 

In Wincaps III, Robot arm can be selected and imported to the simulation module 

[Figure 5.7].  

 

Figure 5.7: Robot Arm selection in Wincaps III 

Default configuration is shown in Figure 5.8. 
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Figure 5.8: Default Robot configuration in Wincaps III 

Designs of Machine head cover and the tool can be imported to Wincaps III working 

module and located according to actual working dimensions [Figure 5.9]. 

 

  

Figure 5.9: Machine head cover and Tool placement in the simulation module 

 

Work and Tool coordinates are defined according to the developed coordinate 

assignment [Figure 5.10]. 
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Figure 5.10: Work and Tool coordinate assignment 

Robot program is written and executed according to robot movement along the robot 

end points positioned in the line [Figure 5.11]. 

 

Figure 5.11: Robot programs for simulating robot movement via points 

Position and orientation data can be imported to the simulation module in order to run 

the simulation [ Figure 5.12]. 

New Work zero 

J6 coordinate Tool coordinate 
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Figure 5.12: Import Point location data into the program 

Execution of the program and the simulation can be done according to the user’s speed 

requirement. Joint angle values of each joint can be observed at each robot end point 

while moving via that point [Figure 5.13]. By observing these joint angles values, 

experiments can be done to troubleshoot the algorithms and developed methods. 

Optimization of the solution can be done in order to increase the accuracy. 

 

Figure 5.13: Joint angles of the robot arm at point 1 position 

 

 

Point location data 

 

Point 1 

Joint angle values at 

Point 1 location 
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CHAPTER 6 

RESULTS AND CONCLUSION 

 
Validations of implemented algorithms are discussed in this chapter and systems in 

chapter 4 and 5. Section 6.1 illustrates simulations done for various point cloud 

allocation along the robot moving path. Optimization of path planning with trajectory 

planning is validated by performing several trials. Suitability of using Computer Aided 

Design features used as an offline robot programming approach for optimizing 

trajectory planning of 6 DOF robot manipulator in order to enhance the productivity 

is discussed in the conclusion in section 6.2. The thesis suggests additional 

developments of the proposed trajectory and path planning scheme which can be 

implemented in other robotic applications as the upcoming work in section 6.3.     

 
 

6.1 Various point cloud simulation Results   

 

 

Simulations for various point cloud of the path validate the efficiency of using offline 

robot programming techniques for path planning and trajectory planning. By trialing 

several scenarios with various point to point locations along the path, programmer can 

conclude an optimized path planning scenario for the application which enhance the 

productivity of the robot operation. 

 

Simulation objectives: 

 Observe and analyze on various cartesian point allocation along a predefined 

path. 

 Identification of Velocity behavior and limits. 

 Identification of maximum velocity along task points/sequence. 

 Optimization of point allocation in order to get smooth velocity variations 

along the task sequence. 
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Procedure 

1. Point allocation done as per the user’s parameters.  

2. Point located data is extracted by running developed VB based macro.  

3. Find joint angles for each point location. 

4. Verify scenario joint angles results with simulation in Wincaps III. 

5. Mapping maximum velocity variation of robot arm joint movement. 

 

 

Robot task and operation requirements 

 

Path length is 405.33mm and the target cycle time for the operation is needed to be 

maintained below 60 seconds. [Figure 6.1] 

Variation of the robot joint speeds should be low in order to get smooth operation 

while optimizing the cycle time. 

 

Figure 6.1: Robot path length 

 

 

 

 

 

 



67 
 

Scenario 1 

 

Initial point to point distance can be calculated by taking the average point to point 

distance which is 6.75mm (405.33mm / 60 point to point intervals) considering point 

to point time duration as 1 second. These parameters can be considered as base 

parameters to commence the simulation. 

  

 

Parameters:  

Point to point distance  : 6. 75mm 

Number of points  : 61 

Point to point time duration : 1 Second   [Figure 6.2] 

 

 

Figure 6.2: Point allocation scenario 1 

 

Scenario 1 results 

 

1. Joint angles can be calculated using developed algorithms as depicted in 

Appendix C. 

2. Simulation verifies that the resulted joint angles values are accurate and set in 

order [Figure 6.3]. 

Maximum velocity of joint movement is generated and mapped in order to analyze the 

robot movement [Figure 6.4]. 
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Figure 6.3: Scenario 1 simulation results 

Point 1 Point 15 

Point 22 Point 30 

Point 32 Point 39 

Point 45 Point 61 
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Figure 6.4: Maximum velocity of joint rotation scenario 1  

 

 

Observations: 

 Smooth velocity profiles can be observed. 

 Significant variation between joint 4, 6 and other joints can be observed. 

Maximum velocity is 32.18 deg/sec (joint 4) and the maximum velocity of joint 

1 is 7.196 deg/sec. Joint 2, 3 and 5 velocities are varied below joint 1 maximum 

velocity. Maximum velocity difference between those joints is 24.984 deg/sec. 

 

Scenario 2 

In order to reduce the cycle time, number of points has to be reduced by increasing 

point to point distance. Point to point distance is increased to 9.88mm from 6.75mm. 

Parameters:  

Point to point distance  : 9.88mm (10mm approximately) 

Number of points  : 42 

Point to point time duration : 1 Second   [Figure 6.5] 
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Figure 6.5: Point allocation scenario 2 

 

Scenario 2 results 

 

3. Joint angles can be calculated using developed algorithms as depicted in Table 

3. 

4. Simulation verifies that the resulted joint angles values are accurate and set in 

order [Figure 6.6]. 

5. Maximum velocity of joint movement is generated and mapped in order to 

analyze the robot movement [Figure 6.7]. 
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Table 3: Scenario 2 joint angles calculation results 

Line No: 
Joint 

J1 J2 J3 J4 J5 J6 

1 -54.462 -14.039 123.366 103.300 56.737 66.684 

2 -54.462 -13.962 120.765 101.667 56.191 69.640 

3 -54.462 -13.766 118.067 100.006 55.721 72.606 

4 -54.352 -13.581 115.373 98.339 55.215 75.591 

5 -53.836 -13.742 113.023 96.723 54.382 78.557 

6 -52.891 -14.259 111.135 95.175 53.202 81.402 

7 -51.510 -15.112 109.795 93.714 51.662 84.026 

8 -49.688 -16.271 109.066 92.370 49.746 86.336 

9 -47.432 -17.690 108.984 91.188 47.445 88.244 

10 -44.772 -19.312 109.552 90.242 44.772 89.659 

11 -41.774 -21.034 110.626 89.543 41.775 90.612 

12 -38.464 -22.665 111.647 88.720 38.476 91.635 

13 -34.821 -24.170 112.549 87.671 34.854 92.837 

14 -30.824 -25.532 113.329 86.315 30.895 94.293 

15 -26.542 -26.546 113.443 83.815 26.709 96.917 

16 -22.324 -27.005 112.498 79.167 22.751 101.723 

17 -18.630 -26.882 110.572 71.942 19.634 109.095 

18 -15.867 -26.233 107.829 62.790 17.905 118.383 

19 -12.626 -25.553 105.180 51.206 16.288 129.945 

20 -8.149 -25.108 103.260 34.894 14.347 145.953 

21 -2.819 -24.889 102.251 12.683 12.944 167.629 

22 2.819 -24.889 102.251 -12.683 12.944 192.371 

23 8.149 -25.108 103.260 -34.894 14.347 214.047 

24 12.626 -25.553 105.180 -51.206 16.288 230.055 

25 15.867 -26.233 107.829 -62.790 17.905 241.617 

26 18.630 -26.882 110.572 -71.942 19.634 250.905 

27 22.324 -27.005 112.498 -79.167 22.751 258.277 

28 26.542 -26.546 113.443 -83.815 26.709 263.083 

29 30.824 -25.532 113.329 -86.315 30.895 265.707 

30 34.821 -24.170 112.549 -87.671 34.854 267.163 

31 38.464 -22.665 111.647 -88.720 38.476 268.365 

32 41.774 -21.034 110.626 -89.543 41.775 269.388 

33 44.772 -19.312 109.552 -90.242 44.772 270.341 

34 47.432 -17.690 108.984 -91.188 47.445 271.756 

35 49.688 -16.271 109.066 -92.370 49.746 273.664 

36 51.510 -15.112 109.795 -93.714 51.662 275.974 

37 52.891 -14.259 111.135 -95.175 53.202 278.598 

38 53.836 -13.742 113.023 -96.723 54.382 281.443 

39 54.352 -13.581 115.373 -98.339 55.215 284.409 

40 54.462 -13.766 118.067 -100.006 55.721 287.394 

41 54.462 -13.962 120.765 -101.667 56.191 290.360 

42 54.462 -14.039 123.366 -103.300 56.737 293.316 
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Figure 6.6: Scenario 2 simulation results 

Point 1 Point 6 

Point 15 Point 21 

Point 22 Point 28 

Point 37 Point 42 
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Figure 6.7: Maximum velocity of joint rotation scenario 2 

Observations: 

 Smooth velocity profiles can be observed. 

 Significant variation between joint 4, 6 and other joints can be observed. 

Maximum velocity is 47.56 deg/sec in joint 4 increased from 32.18 deg/sec and 

the maximum velocity of joint 1 is 10.57 deg/sec from 7.196 deg/sec. Joint 2, 

3 and 5 velocities are varied below joint 1 maximum velocity. Maximum 

velocity difference between those joints is 36.99 deg/sec increased from 24.984 

deg/sec. 

 

Scenario 3 

 

It is realized that the after point 14 up to 30, there is a significant variance in velocities 

of joint 4 and joint 6 [Figure 6.8]. This variance can be reduced by reducing the 

distance between points within that area. Therefore, point to point distance between 

that area has been reduced up to 5mm. 
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Figure 6.8: Point identification of the velocity variance begins  

 

 

Parameters: 

Point to point distance  : 5 and 10mm 

Number of points  : 57 

Point to point time duration : 1 Second    [Figure 6.9] 

 

 

Figure 6.9: Point allocation scenario 3 

 

Point 14 
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Scenario 3 results 

 

1. Joint angles can be derived by running the algorithms developed [Appendix 

D]. 

2. Simulation verifies that the resulted joint angles values are accurate and set in 

order [Figure 6.10]. 

3. Maximum velocity of joint movement is generated and mapped in order to 

analyze the robot movement [Figure 6.11]. 
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Figure 6.10: Scenario 3 simulation results 
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Figure 6.11: Maximum velocity of joint rotation scenario 3 

 

 

 

Observations 

 Smooth velocity profiles can be observed. 

 Sudden changes of the joint 1 and 5 profile can be observed.  

 Variation between joint 4, 6 and other joints is reduced than scenario 2. 

Maximum velocity is 23.78 deg/sec in joint 4 decreased from 47.56 deg/sec 

and the maximum velocity of joint 1 is 7.492 deg/sec decreased from 10.57 

deg/sec. Joint 2, 3 and 5 velocities are varied below joint 1 maximum velocity. 

Maximum velocity difference between those joints is 16.288 deg/sec decreased 

from 36.99 deg/sec deg/sec. 

 

Scenario 4 

 

It is realized that the variance of maximum velocities in joint 4 and joint 6 has been 

reduced and velocities in joint 1 and joint 5 between position 14 to 15 and 44 to 45 are 

subjected to sudden changes which make robot arm to sudden movement. This incident 

can be occurred as the point to point distance changes from 10mm to 5mm between 
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those point locations. This effect can be minimized by allocating points which are 

located its point to point distances from 10mm to 5mm gradually. 

 

Parameters: 

Point to point distance  : 10mm (point 1 to 13 and 44  to 56)  

            5mm (point 17 to 40) 

Number of points  : 56 

Point to point time duration : 1 Second    [Figure 6.12] 

 

 

 

 

Figure 6.12: Point allocation scenario 4 
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Scenario 4 results 

 

1. Joint angles can be derived by running the algorithms developed [Appendix 

E]. 

2. Simulation verifies that the resulted joint angles values are accurate and set in 

order [Figure 6.13]. 

3. Maximum velocity of joint movement is generated and mapped in order to 

analyze the robot movement [Figure 6.14]. 
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Figure 6.13: Scenario 4 simulation results 
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Figure 6.14: Maximum velocity of joint rotation scenario 4 

 

Observations: 

 Smooth velocity profiles can be observed. 

 Sudden changes of the joint 1 and 5 has been improved. Maximum velocity is 

23.6 deg/sec in joint 4 and the maximum velocity of joint 1 is 6.831 deg/sec 

decreased from 7.492 deg/sec. Joint 2, 3 and 5 velocities are varied below 

joint 1 maximum velocity. Maximum velocity difference between those joints 

is 16.769 deg/sec nearly same to scenario 3 results. 

 

Total cycle time is 55 seconds which is below than target cycle time 60 seconds. 

Maximum velocity variation between joints has been minimized up to 16.769 deg/sec 

which is a significant improvement from the results of initial simulation and scenarios.  

 

From the above simulations, it is clear that trajectory planning for the robot arm 

moving along the path can be optimized by realizing the joint speed variations and 

allocating task points with proper evaluation in order to increase the productivity. This 

method is introduced as an offline programming technique where programmer can 

generate the robot programs with optimum output in a different environment 

separately and the robot operation is not needed to stop for programming.  
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6.2 Conclusion 

 

SolidWorks features with computer aided design capabilities were used to create the 

robot cell and generate programs for robot operation with significant accuracy. Path 

planning of a robot movement can be done efficiently using Solidworks design features 

and proposed method proves its capability to create the robot working cell virtually. 

Developed design models can be used frequently for different type of robot cells unless 

the robot, tool and work piece are not changed.  

The proposed method for finding inverse kinematic solutions of the Denso VP 6242 

robot manipulator can be used in many working areas in the robot cell and 

implemented for other types of robot manipulators available in the industry.  

Various point clouds with different point to point distances were tested and simulated 

in Denso Wincaps III software. Optimized point cloud allocation along the robot 

moving path, was derived gradually by simulating various point to point distances 

while maintaining smooth robot joint movement. Total cycle time is reduced to 55 

seconds which is below required maximum cycle time (60 seconds). Maximum 

velocity difference between joint 1 and joint 4 has been reduced to 16.769 deg/sec 

from 24.984 deg/sec which is a significant improvement from the results of initial 

simulation and scenarios.    

Mapping maximum velocity of joint variation between robot moving from one point 

to another, is very effective to understand overall behavior of the robot motion along 

the whole path. Simulation 3 Result demonstrates possible changes which are not 

suitable for better robot operation can be identified and user can improve the path 

planning according to its outcome needed. Simulation 4 result validates the possibility 

of arranging robot smooth movement by allocating proper task point cloud. 

Simulations validate that the point cloud allocation along the robot moving path can 

be optimized by running several simulations with various point to point distances. 
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6.3 Future works 

 

Computer Aided Design software and tools are still developing gradually with the 

development of current manufacturing industries and its requirements hence the 

efficiency of its utilization can be further improved. Developed inverse kinematic 

model can be further developed for other types of robot manipulators and can be used 

for other types of robotic applications.  
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APPENDICES 

 

Appendix A 

 Algorithms for inverse kinematic solution of 6 DOF robot manipulator 

and trajectory planning in Matlab 

 Machine head cover dimensions 

 Robotic cell layout 

Appendix B - Dimensions and the configuration of the Denso VP 6242 

Appendix C - Scenario 2 joint angles calculation results 

Appendix D - Scenario 3 joint angles calculation results 
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Appendix A 

Algorithms for inverse kinematic solution of 6 DOF robot manipulator and 

trajectory planning in Matlab 
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The main program 

clear all; 
clc; 

  
syms c1 s1 d3 c23 s23 s2 c2 al be t l  
syms m n p 
syms s1 s2 s3 s4 s5 s6 c1 c2 c3 c4 c5 c6; 
global tt; 

  

  

  
%position read 

  
C = xlsread('C:\Users\pcadmin\Desktop\MSc\research 

matlab\simulation3.xlsx','Sheet1'); 
tam = size(C); 

  
Pa = []; 
for i = 1 : tam 

     
    T6EF = [1 0 0 10;0 1 0 0;0 0 1 130;0 0 0 1];   

     
    X(i,1) = C(i,1);%X value 
    Y(i,2) = C(i,2);%Y value 
    Z(i,3) = C(i,3);%Z value 

     
    al = C(i,6); %angle arond Z axis 
    be = C(i,5);%angle around Y axis 
    ga = C(i,4);%angle around X axis 

     
    %Eular angle Z,Y,X 
    Rz = [ cosd(al) -sind(al)  0; 
         sind(al) cosd(al)  0; 
         0   0   1;]; 

 
    Ry = [ cosd(be)  0   sind(be); 
         0   1   0; 
         -sind(be)  0   cosd(be);]; 

 
    Rx = [ 1   0   0; 
         0   cosd(ga)  -sind(ga); 
         0   sind(ga)  cosd(ga);]; 
    %Rotation Matrix 
    ARB = Rz*Ry*Rx; 

     
TT(:, :, i) = [A_R_B(1,1) A_R_B(1,2) A_R_B(1,3) X(i,1); A_R_B(2,1) 

A_R_B(2,2) A_R_B(2,3) Y(i,2); A_R_B(3,1) A_R_B(3,2) A_R_B(3,3) 

Z(i,3);  

0 0 0 1];  
T6EFT = ((T6EF)^(-1)); 
T(:, :, i) = TT(:, :, i)* T6EFT;  
%Pa position  
x = T(1,4,i)- (70)*T(1,3,i);%Pa x position 
y = T(2,4,i)- (70)*T(2,3,i);%Pa y position 
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z = T(3,4,i)- (70)*T(3,3,i);%Pa z position 

  
distance = (x^2 + y^2 + z^2)^(1/2); 
if distance > 420 
    disp('error'); 
    pause; 
end 

  
%Calculating theta 1 
theta1 = atan2d(y,x); 

  

 
if theta1 == 180 
    theta1 = 0; 
end 

  

  
if (90<theta1) && (theta1<180) 
    theta1 = -(180 - theta1); 
end 

  
if (-180>theta1) && (theta1>-90) 
    theta1 = 180 + theta1; 
end 
%} 

  

  
%Calculating theta 2 and theta 3 
c1 = cosd(theta1); 
s1 = sind(theta1); 

  
l = (x*c1) + (y*s1); 
m = (-l/663) + (14*z/3315); 
n = ((-14*l)/3315) - (z/663); 
p = (196/221) + (m^2) + (n^2); 

  
a_ = ((-140*m) - (392*n))/221; 
b_ = ((140*n) - (392*m))/221; 

  
c = 1 - p; 

  
theta2 = atan2(a_,b_)+ atan2(((a_^2 + b_^2 - c^2))^(1/2),c); 
theta2 = (theta2*180)/pi; 

  
if theta2 ==360  
    theta2 = 0; 
end 

  
if (180<theta2) && (theta2<360) 
theta2 = 360 - theta2; 
end 

  
%Theta 3 
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e = -210.00; 
f = -75.00; 
g = l+(210*(sind(theta2))); 
h = ((e^2 + f^2 - g^2))^(1/2); 

  
if isreal(h) == 1 
    theta_23_1 = atan2(e,f)+ atan2(h,g); 
    theta_23_1 = (theta_23_1*180)/pi; 

  
    theta_23_2 = atan2(e,f)- atan2(h,g); 
    theta_23_2 = (theta_23_2*180)/pi; 

  
    if (theta_23_2>-360) && (theta_23_2<-180) 
        theta_23_2 = 360 + theta_23_2; 
    end 

  
    theta_3_1 = - theta2 + theta_23_1; 

  
    theta_3_2 = - theta2 + theta_23_2; 

  
else 
    theta_3_1 = 0 - theta2; 

  
    theta_3_2 = 0 - theta2; 
end 

  
theta2_ = atan2(a,b)- atan2((a_^2 + b_^2 - c^2)^(1/2),c); 
theta2_ = (theta2_*180)/pi; 

  
if ( theta2_ > -360) && (theta2_ < -180) 
    theta2_ = 360 + theta2_;  
end 

  

  
e = -210.00; 
f = -75.00; 
g_ = l+(210*(sind(theta2_))); 
h_ = (e^2 + f^2 - g_^2)^(1/2); 

  
if isreal(h_) == 1 
    theta_23_3 = atan2(e,f)+ atan2(h_,g_); 
    theta_23_3 = (theta_23_3*180)/pi; 

  
    theta_23_4 = atan2(e,f)- atan2(h_,g_); 
    theta_23_4 = (theta_23_3*180)/pi; 

  
    theta_3_3 = - theta2_ + theta_23_3; 

  
    theta_3_4 = - theta2_ + theta_23_4; 

  
else 
    theta_3_3 = 0 - theta2_; 

  
    theta_3_4 = 0 - theta2_; 
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end 

  
%calculating theta 4,5,6 - four solutions  

  
[theta_4_1 theta_5_1 theta_6_1] = 

theta456calcalternative(theta1,theta2,theta_3_1,T(:,:,i)) 

  
[Orientation1 position1] = forwardkinamatic(theta1, theta2, 

theta_3_1, theta_4_1, theta_5_1, theta_6_1,T(:,:,i)) 

  

  

  
[theta_4_2 theta_5_2 theta_6_2] = 

theta456calcalternative(theta1,theta2,theta_3_2,T(:,:,i)) 

  
[Orientation2 position2] = forwardkinamatic(theta1, theta2, 

theta_3_2, theta_4_2, theta_5_2, theta_6_2,T(:,:,i)) 

  

  
[theta_4_3 theta_5_3 theta_6_3] = 

theta456calcalternative(theta1,theta2_,theta_3_3,T(:,:,i)) 

  
[Orientation3 position3] = forwardkinamatic(theta1, theta2_, 

theta_3_3, theta_4_3, theta_5_3, theta_6_3,T(:,:,i)) 

  

  
[theta_4_4 theta_5_4 theta_6_4] = 

theta456calcalternative(theta1,theta2_,theta_3_4,T(:,:,i)) 

  
[Orientation4 position4] = forwardkinamatic(theta1, theta2_, 

theta_3_4, theta_4_4, theta_5_4, theta_6_4,T(:,:,i)) 

  
%four solutions in table 
[table(:,1,i)] = 

[position1;theta1;theta2;theta_3_1;theta_4_1;theta_5_1;theta_6_1]; 
[table(:,2,i)] = 

[position2;theta1;theta2;theta_3_2;theta_4_2;theta_5_2;theta_6_2]; 
[table(:,3,i)] = 

[position3;theta1;theta2_;theta_3_3;theta_4_3;theta_5_3;theta_6_3]; 
[table(:,4,i)] = 

[position4;theta1;theta2_;theta_3_4;theta_4_4;theta_5_4;theta_6_4]; 

  
for k = 1:4 

             
        dx(i,k)= table(1,k,i)-T(1,4,i); 
        dy(i,k)= table(2,k,i)-T(2,4,i); 
        dz(i,k)= table(3,k,i)-T(3,4,i); 

  

  
if (abs(dx(i,k))>0) && (abs(dx(i,k))< 0.001) 
    dx(i,k)= 0; 
else  
    dx(i,k)= dx(i,k); 
end 
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if (abs(dy(i,k))>0) && (abs(dy(i,k))< 0.001) 
    dy(i,k)= 0; 
else  
    dy(i,k)= dy(i,k); 
end 

  
if (abs(dz(i,k))>0) && (abs(dz(i,k))< 0.001) 
    dz(i,k)= 0; 
else  
    dz(i,k)= dz(i,k); 
end 

  

  
end 
end; 

  
%Selecting correct solution 
tt(1,1:6)=[0 0 0 0 0 0]; 

  
for o = 1:tam 
for j = 1:4 
if dx(o,j)== 0 && dy(o,j) == 0 && dz(o,j) == 0 
    tt(o,1) = table(4,j,o); 
    tt(o,2) = table(5,j,o); 
    tt(o,3) = table(6,j,o); 
    tt(o,4) = table(7,j,o); 
    tt(o,5) = table(8,j,o); 
    tt(o,6) = table(9,j,o); 

  
end 
end 
end; 

  

     
for aa = 1:tam 
    for bb = 1:6 
        if (abs(tt(aa,bb))>0) && (abs(tt(aa,bb))< 0.001) 

             
            tt(aa,bb)=0; 
        else 
            tt(aa,bb) = tt(aa,bb); 
        end 
    end 
end; 

  

  
for ii = 1:tam 
    if Y(ii,2)<0 
    tt(ii,4) = 180+tt(ii,4); 
    else 
      tt(ii,4) = -180+tt(ii,4);   
    end 

     
    if tt(ii,4) > 270 
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        tt(ii,4) = tt(ii,4) - 360; 
    end 

     
    if tt(ii,4) < -270 
        tt(ii,4) = tt(ii,4) + 360; 
    end 

     
    tt(ii,5) = -tt(ii,5); 

  
    tt(ii,6) = -180+tt(ii,6); 

    
end 

  
for i = 1:tam 
    if 90<tt(i,4) && tt(i,4)<180 
        tt(i,6) = tt(i,6); 
    else if 0<tt(i,4) && tt(i,4)<90         
            tt(i,6) = -90 - (tt(i,6)+90);    
            else if 0>tt(i,4) && tt(i,4)>-90          
                tt(i,6) = -90 - (tt(i,6)+90); 
                    else if -90>tt(i,4) && tt(i,4)>-180 
                        tt(i,6) = 90 + (270 + tt(i,6)); 
                        end 
                end 
        end 
    end 
end 

  
for i= 1:tam 
    tt(i,6) = 180 + tt(i,6); 
end 

  
tttable = 

array2table(tt,'VariableNames',{'J1','J2','J3','J4','J5','J6'}); 

  
%Denso simulation 1 
Densot(:,1) = tt(:,1); 
Densot(:,2) = -tt(:,2); 
Densot(:,3) = -tt(:,3); 
Densot(:,4) = tt(:,4); 
Densot(:,5) = -tt(:,5); 
Densot(:,6) = tt(:,6); 

  
Densottable = 

array2table(Densot,'VariableNames',{'J1','J2','J3','J4','J5','J6'}); 

  
for i = 1:tam 

     
[jtable vtable atable qtable] = trajectory(i,1);%line number,time 

  
vsize = size(vtable); 

  
    for q = 2:7 
        vmax(i,q-1) = max(abs(vtable(:,q))) 
    end 
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end 

  

  

  
vmaxtable = 

array2table(vmax(2:tam,:),'VariableNames',{'J1','J2','J3','J4','J5',

'J6'}); 

  
figure; 
plot(2:tam,vmax(2:tam,1:6)) 
ylabel('Maximum velocity(deg/sec)');xlabel('Line 

number');set(gca,'XTick',[1:1:tam]); 
legend('joint 1','joint 2','joint 3','joint 4','joint 5','joint 6') 
%maxx = max(abs(vtable(:,3))); 

  

  
for ii = 1:tam 
    for jj=1:6 
        if vmax(ii,1)>250 
            vmaxd(ii,1)=vmax(ii,1)-250; 
        else 
            vmaxd(ii,1)= 0; 
        end 
        if vmax(ii,2)>187 
            vmaxd(ii,2)=vmax(ii,2)-187; 
        else 
            vmaxd(ii,2)= 0; 
        end 
        if vmax(ii,3)>250 
            vmaxd(ii,3)=vmax(ii,3)-250; 
        else 
            vmaxd(ii,3)= 0; 
        end 
        if vmax(ii,4)>300 
            vmaxd(ii,4)=vmax(ii,4)-300; 
        else 
            vmaxd(ii,4)= 0; 
        end 
        if vmax(ii,5)>300 
            vmaxd(ii,5)=vmax(ii,5)-300; 
        else 
            vmaxd(ii,5)= 0; 
        end 
        if vmax(ii,6)>300 
            vmaxd(ii,6)=vmax(ii,6)-300; 
        else 
            vmaxd(ii,6)= 0; 
        end 
    end 
end 

  
for ii=1:tam 

     
        vd(ii,1) = max(vmaxd(ii,:)); 
        for jj=1:6 
            if vd(ii,1)== vmaxd(ii,jj) 
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                vd(ii,2) = jj; 
            end 
                if vd(ii,1) == 0  
                vd(ii,2) = 0; 
                end 

             
        end 
end 

  
%Displaying velocity max values in same vmax table 
for i = 1:tam 
        if vmax(i,1)>250 
            vmax(i,7)=vmax(i,1); 
        end 
        if vmax(i,2)>187 
            vmax(i,8)=vmax(i,2); 
        end 
        if vmax(i,3)>250 
            vmax(i,9)=vmax(i,3); 
        end 
        if vmax(i,4)>300 
            vmax(i,10)=vmax(i,4); 
        end 
        if vmax(i,5)>300 
            vmax(i,11)=vmax(i,5); 
        end 
        if vmax(i,6)>300 
            vmax(i,12)=vmax(i,6); 
        end 
end 
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Sub functions 1 

 

function [Orientation position] = 

forwardkinamatic(theta_1,theta_2,theta_3,theta_4,theta_5,theta_6,T) 

 
format short g 
al_0=0;al_1=90,al_2=0;al_3=90;al_4=-90;al_5=90; 
a_0=0;a_1=0;a_2=210;a_3=75;a_4=0;a_5=0; 
d_1=0;d_2=0;d_3=0;d_4=210;d_5=0;d_6=70; 
t_1=theta_1; 
t_2=90+theta_2; 
t_3=90+theta_3; 
t_4=theta_4; 
t_5=theta_5; 
t_6=theta_6; 
T01 = [cosd(t_1),         -sind(t_1),              0,          a_0           

; 
sind(t_1)*cosd(al_0), cosd(t_1)*cosd(al_0),     -sind(al_0), -

sind(al_0)*d_1; 
sind(t_1)*sind(al_0), cosd(t_1)*sind(al_0),     cosd(al_0),  

cosd(al_0)*d_1 ; 
0,                  0,                      0,          1            

;   ] 

 
T12 = [ cosd(t_2),           -sind(t_2),            0,          a_1           

; 
sind(t2)*cosd(al_1), cosd(t_2)*cosd(al_1),     -sind(al_1), -

sind(al_1)*d_2; 
sind(t_2)*sind(al_1), cosd(t_2)*sind(al_1),     cosd(al_1),  

cosd(al_1)*d_2 ; 
0,                  0,                      0,          1            

;   ] 

 
T23 = [ cosd(t_3),           -sind(t_3),              0,          

a_2           ; 
sind(t_3)*cosd(al_2), cosd(t_3)*cosd(al_2),     -sind(al_2), -

sind(al2)*d_3; 
sind(t_3)*sind(al_2), cosd(t_3)*sind(al_2),     cosd(al_2),  

cosd(al_2)*d_3 ; 
0,                  0,                      0,          1            

;   ] 

 
T34 = [ cosd(t_4),           -sind(t_4),              0,          

a_3           ; 
sind(t_4)*cosd(al_3), cosd(t_4)*cosd(al_3),     -sind(al_3), -

sind(al3)*d_4; 
sind(t_4)*sind(al_3), cosd(t_4)*sind(al_3),     cosd(al_3),  

cosd(al_3)*d_4 ; 
0,                  0,                      0,          1            

;   ] 

 
T45 = [ cosd(t_5),           -sind(t_5),              0,          

a_4           ; 
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sind(t_5)*cosd(al4), cosd(t_5)*cosd(al_4),     -sind(al_4), -

sind(al_4)*d_5; 
sind(t_5)*sind(al_4), cosd(t_5)*sind(al_4),     cosd(al_4),  

cosd(al_4)*d_5 ; 
          0,                  0,                      0,                 

1              ;   ] 

 
T56 = [ cosd(t_6),           -sind(t_6),              0,          

a_5           ; 
sind(t_6)*cosd(al_5), cosd(t_6)*cosd(al_5),     -sind(al_5), -

sind(al_5)*d_6; 
sind(t_6)*sind(al_5), cosd(t_6)*sind(al_5),     cosd(al_5),  

cosd(al_5)*d_6 ; 
         0,                  0,                      0,             

1              ;   ] 

 

 
T_06 = T01 * T12 * T23 * T34 * T45 * T56 ; 

 

 
Orientation = T_06(1:3,1:3) 

 
position = T_06(1:3,4) 

 
end 
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Sub function 2 

function [theta4 theta5 theta6 R6_3, T4_0] = 

theta456calc(theta_1,theta_2,theta_3,T) 

  
%DH parameters 
al_0=0;al_1=90,al_2=0;al_3=90;al_4=-90;al_5=90; 
a_0=0;a_1=0;a_2=210;a_3=75;a_4=0;a_5=0; 
d_1=0;d_2=0;d_3=0;d_4=210;d_5=0;d_6=70; 
t_1=theta_1;t_2=90+theta_2;t_3=90+theta_3; 

  
T1_0 = [ cosd(t_1),           -sind(t_1),              0,          

a_0           ; 
        sind(t_1)*cosd(al_0), cosd(t_1)*cosd(al_0),     -sind(al_0), 

-sind(al_0)*d_1; 
        sind(t_1)*sind(al_0), cosd(t_1)*sind(al_0),     cosd(al_0),  

cosd(al_0)*d_1 ; 
        0,                  0,                      0,          1            

;   ] 

  
T2_1 = [ cosd(t_2),           -sind(t_2),              0,          

a_1           ; 
        sind(t_2)*cosd(al_1), cosd(t_2)*cosd(al_1),     -sind(al_1), 

-sind(al_1)*d_2; 
        sind(t_2)*sind(al_1), cosd(t_2)*sind(al_1),     cosd(al_1),  

cosd(al_1)*d_2 ; 
        0,                  0,                      0,          1            

;   ]   

     
T3_2 = [ cosd(t_3),           -sind(t_3),              0,          

a_2           ; 
        sind(t_3)*cosd(al_2), cosd(t_3)*cosd(al_2),     -sind(al_2), 

-sind(al_2)*d_3; 
        sind(t_3)*sind(al_2), cosd(t_3)*sind(al_2),     cosd(al_2),  

cosd(al2)*d_3 ; 
        0,                  0,                      0,          1            

;   ] 

  
%Calculating theta4     
T3_0 = T1_0*T2_1*T3_2;     

    

  
R03 = [T3_0(1,1:3); 
        T3_0(2,1:3); 
        T3_0(3,1:3);]; 

  
R03T = transpose(R03); 

  
R06 = [T(1,1:3); 
        T(2,1:3); 
        T(3,1:3);]; 

  
R6_3 =  R03T*R06; 
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theta4 = atan2d(R6_3(3,3),R6_3(1,3)); 

  

  
if theta4 == 180 
    theta4 = 0; 
end 

  

  
% 

  
%Calculating theta 5 
T_4 = theta4; 
T4_3 = [ cosd(t_4),           -sind(t_4),              0,          

a_3           ; 
        sind(t_4)*cosd(al_3), cosd(t_4)*cosd(al_3),     -sind(al_3), 

-sind(al_3)*d_4; 
        sind(t_4)*sind(al_3), cosd(t_4)*sind(al_3),     cosd(al_3),  

cosd(al_3)*d_4 ; 
        0,                  0,                      0,          1            

;   ] 

  
T4_0 = T3_0 * T4_3;   

  

  
T4_0T = transpose(T4_0); 
T46 = T4_0T * T; 
theta5 = asind(T46(1,3)); 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
%Calculating theta 6 
t_4 = theta4; 
t_5 = theta5; 

  
T4_3 = [ cosd(t_4),           -sind(t_4),              0,          

a_3           ; 
        sind(t_4)*cosd(al_3), cosd(t_4)*cosd(al_3),     -sind(al_3), 

-sind(al_3)*d_4; 
        sind(t_4)*sind(al_3), cosd(t_4)*sind(al_3),     cosd(al_3),  

cosd(al_3)*d_4 ; 
        0,                  0,                      0,          1            

;   ]   

     
T5_4 = [ cosd(t_5),           -sind(t_5),              0,          

a_4           ; 
        sind(t_5)*cosd(al_4), cosd(t_5)*cosd(al_4),     -sind(al_4), 

-sind(al_4)*d_5; 
        sind(t_5)*sind(al_4), cosd(t_5)*sind(al_4),     cosd(al_4),  

cosd(al_4)*d_5 ; 
        0,                  0,                      0,          1            

;   ] 

  
T5_0 = T3_0*T4_3*T5_4; 
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R05 = [T5_0(1,1:3); 
        T5_0(2,1:3); 
        T5_0(3,1:3);]; 

  
R5_0T = transpose(R05); 

  
R6_0 = [T(1,1:3); 
        T(2,1:3); 
        T(3,1:3);]; 

  
R6_5 =  R5_0T*R6_0; 

  
%Calculating theta6 
theta6 = asind(-R6_5(1,2)); 

  
end 
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Sub function 3 

 

function time = timecalc(line,joint) 

  

  
global tt; 

  
syms a1 a2 a3 a4 a5 v T dj ji 
eqn = a1+(2*a2*T)+(3*a3*(T^2))+(4*a4*(T^3))+(5*a5*(T^4))-v == 0; 
solt = solve(eqn,T); 

  
initial_time=0; 
final_time=2; 
timestep=.05; 
x=initial_time:timestep:final_time;%time 0 to 20 seconds 

  
t = size(x,2); 

  
if joint == 1 
    v_max = 250; 
else 
    if joint == 2 
        v_max = 187; 
    else 
        if joint == 3 
            v_max = 250; 
        else 
            if joint == 4 
                v_max = 300; 
            else 
                if joint == 5 
                    v_max = 300; 
                else 
                    if joint == 6 
                        v_max = 300; 
                    end 
                end 
            end 
        end 
    end 
end 

 

  
if line == 1 

     
    jointi=[51.84,12.298,-119.428,-103.03,-53.81,111.40];%home  
    

jointf=[t_t(line,1),t_t(line,2),t_t(line,3),t_t(line,4),t_t(line,5),

t_t(line,6)]; 
    else 
    jointi=[t_t(line-1,1),t_t(line-1,2),t_t(line-1,3),t_t(line-

1,4),t_t(line-1,5),t_t(line-1,6)]; 
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jointf=[t_t(line,1),t_t(line,2),t_t(line,3),t_t(line,4),t_t(line,5),

t_t(line,6)]; 
end  

     
ji = jointi(joint); 
jf = jointf(joint); 
dj = jf - ji; 
j_vi=0; % Initial Angular velocity is assumed as zero 
j_vf=0; % Final Angular velocity is assumed as zero 
j_ai=0;% Initial acceleration is assumed as zero 
j_af=0; % Final acceleration is assumed as zero 

  

 
%Coefficients calculation 

  
a0=ji; 
a1=j_vi; 
a2=j_ai/2; 
a3=[20*(dj)-(8*j_vf+12*j_vi)*T-(3*j_af-j_ai)*T.^2]/(2*T.^3); 
a4=[30*(-dj)+(14*j_vf+16*j_vi)*T+(3*j_af-2*j_ai)*T.^2]/(2*T.^4); 
a5=[12*(dj)-6*(j_vf+j_vi)*T-(j_af-j_ai)*T.^2]/(2*T.^5); 
Coefficients_J1=[a0 a1 a2 a3 a4 a5] 

 
vmaximum = (15*dj)/(8*T); 

  
t_max = (15*dj)/(v_max*8); 
time = abs(t_max); 
end 
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sub function 4 

 

function [jtable vtable atable qtable] = trajectory(line,time) 

 

  

  
global tt; 
initial_time=0; 
final_time=time; 
timestep=.05; 
x=initial_time:timestep:final_time;%time 0 to 20 seconds 

  
t = size(x,2); 

  
jtable(t,7)=0;%joint table 
vtable(t,7)=0;%velociy table 
atable(t,7)=0;%angular table 
qtable(t,7)=0;%jerk table 
jtable(:,1)=x;%table with time 
vtable(:,1)=x;%table with time 
atable(:,1)=x;%table with time 
qtable(:,1)=x;%table with time 
c = jtable(1:t,1);%time from 0 to 10seconds 
t1 = size(c,1); 

  
%joint parameters 

  

  
    if line == 1 
    %jointi=[0,-5.43,-22.0404,0,27.4438,0];%home position 

[50,0,500,0,0,0] 
    jointi=[51.84,12.298,-119.428,-103.03,-53.81,111.40];%home 

position [230,140,215,0,-90,180] 
    

jointf=[t_t(line,1),t_t(line,2),t_t(line,3),t_t(line,4),t_t(line,5),

t_t(line,6)]; 
    else 
    jointi=[t_t(line-1,1),t_t(line-1,2),t_t(line-1,3),t_t(line-

1,4),t_t(line-1,5),t_t(line-1,6)]; 
    

jointf=[t_t(line,1),t_t(line,2),t_t(line,3),t_t(line,4),t_t(line,5),

t_t(line,6)]; 
    end  
%Joint boundary conditions 
for k=1:6 

    
ji=jointi(k); %Initial position 
jf=jointf(k); % Final position 
j_vi=0; % Initial Angular velocity is assumed as zero 
j_vf=0; % Final Angular velocity is assumed as zero 
j_ai=0;% Initial acceleration is assumed as zero 
j_af=0; % Final acceleration is assumed as zero 

  
% Assume arm comes to the end position position with time 
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t_i=0;%initial time 
t_f=x(1,t);%final time 
T=t_f-t_i;%time difference 

  
%Coefficients calculation 
for i = 1:t 

  
a0=ji; 
a1=j_vi; 
a2=j_ai/2; 
a3=[20*(jf-ji)-(8*j_vf+12*j_vi)*T-(3*j_af-j_ai)*T.^2]/(2*T.^3); 
a4=[30*(ji-jf)+(14*j_vf+16*j_vi)*T+(3*j_af-2*j_ai)*T.^2]/(2*T.^4); 
a5=[12*(jf-ji)-6*(j_vf+j_vi)*T-(j_af-j_ai)*T.^2]/(2*T.^5); 
Coefficients_J1=[a0 a1 a2 a3 a4 a5] 

 
jtable(i,k+1)= 

a0+(a1*x(1,i))+(a2*(x(1,i))^2)+(a3*(x(1,i))^3)+(a4*(x(1,i))^4)+(a5*(

x(1,i))^5); 
vtable(i,k+1)= 

a1+(2*a2*x(1,i))+(3*a3*(x(1,i)^2))+(4*a4*(x(1,i)^3))+(5*a5*(x(1,i)^4

)); 
atable(i,k+1)= 

(2*a2)+(6*a3*x(1,i))+(12*a4*(x(1,i)^2))+(20*a5*(x(1,i)^3)); 
qtable(i,k+1)= 6*a3+(24*a4*x(1,i))+(60*a5*(x(1,i)^2)) 

  
end 

  
end 
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Appendix B 

Dimensions and the configuration of the Denso VP 6242 

Machine head cover dimensions 

Robotic cell layout 
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Dimensions and the configuration of the Denso VP 6242 

 

 

 

 

 



107 
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Appendix C  

Scenario 1 joint angles calculation results 
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Line No: 
Joint 

J1 J2 J3 J4 J5 J6 

1 -54.462 -14.039 123.366 103.300 56.737 66.684 

2 -54.429 -14.039 121.631 102.197 56.323 68.703 

3 -54.453 -13.914 119.798 101.065 56.002 70.724 

4 -54.470 -13.745 117.926 99.923 55.707 72.751 

5 -54.407 -13.613 116.081 98.784 55.368 74.789 

6 -54.190 -13.603 114.346 97.660 54.911 76.832 

7 -53.764 -13.775 112.812 96.567 54.283 78.845 

8 -53.134 -14.117 111.504 95.507 53.489 80.795 

9 -52.304 -14.614 110.438 94.484 52.533 82.655 

10 -51.275 -15.257 109.635 93.502 51.409 84.396 

11 -50.038 -16.041 109.120 92.577 50.108 85.986 

12 -48.589 -16.964 108.933 91.736 48.619 87.375 

13 -46.931 -18.016 109.105 91.018 46.940 88.510 

14 -45.093 -19.149 109.564 90.413 45.094 89.414 

15 -43.105 -20.308 110.193 89.878 43.105 90.168 

16 -40.972 -21.454 110.890 89.351 40.975 90.860 

17 -38.691 -22.560 111.579 88.775 38.702 91.570 

18 -36.255 -23.612 112.226 88.110 36.278 92.344 

19 -33.657 -24.596 112.800 87.305 33.700 93.238 

20 -30.893 -25.493 113.259 86.273 30.966 94.345 

21 -27.979 -26.248 113.465 84.778 28.106 95.916 

22 -25.007 -26.782 113.242 82.459 25.240 98.326 

23 -22.142 -27.031 112.488 78.986 22.580 101.903 

24 -19.588 -26.979 111.218 74.246 20.385 106.749 

25 -17.526 -26.639 109.486 68.480 18.887 112.624 

26 -15.656 -26.161 107.570 61.941 17.806 119.242 

27 -13.467 -25.696 105.746 54.188 16.689 126.990 

28 -10.733 -25.320 104.201 44.505 15.408 136.543 

29 -7.465 -25.062 103.059 32.213 14.106 148.572 

30 -3.822 -24.912 102.360 17.088 13.112 163.333 

31 0.016 -24.867 102.136 -0.073 12.731 180.071 

32 3.851 -24.919 102.379 -17.226 13.109 196.803 

33 7.499 -25.064 103.068 -32.348 14.118 211.559 

34 10.786 -25.313 104.189 -44.640 15.447 223.586 

35 13.488 -25.696 105.752 -54.246 16.702 233.067 

36 15.532 -26.204 107.656 -61.860 17.678 240.693 

37 17.442 -26.672 109.553 -68.471 18.797 247.378 

38 19.650 -26.963 111.196 -74.283 20.447 253.284 

39 22.213 -27.010 112.458 -79.003 22.651 258.109 



110 
 

40 25.062 -26.767 113.229 -82.482 25.295 261.696 

41 28.012 -26.257 113.515 -84.862 28.135 264.178 

42 30.914 -25.515 113.350 -86.390 30.983 265.791 

43 33.676 -24.606 112.851 -87.369 33.717 266.838 

44 36.272 -23.601 112.206 -88.101 36.296 267.644 

45 38.707 -22.545 111.549 -88.757 38.718 268.407 

46 40.987 -21.444 110.877 -89.348 40.990 269.136 

47 43.119 -20.294 110.170 -89.867 43.119 269.817 

48 45.108 -19.125 109.505 -90.379 45.110 270.536 

49 46.944 -17.993 109.045 -90.983 46.953 271.440 

50 48.590 -16.962 108.926 -91.732 48.620 272.619 

51 50.031 -16.051 109.141 -92.587 50.101 274.028 

52 51.270 -15.264 109.650 -93.510 51.404 275.615 

53 52.306 -14.614 110.441 -94.486 52.534 277.349 

54 53.135 -14.116 111.505 -95.509 53.491 279.208 

55 53.763 -13.777 112.817 -96.569 54.283 281.159 

56 54.191 -13.602 114.349 -97.662 54.913 283.172 

57 54.417 -13.602 116.073 -98.783 55.378 285.214 

58 54.474 -13.740 117.923 -99.923 55.712 287.251 

59 54.447 -13.922 119.805 -101.067 55.995 289.276 

60 54.415 -14.055 121.645 -102.202 56.310 291.297 

61 54.462 -14.039 123.366 -103.300 56.737 293.316 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



111 
 

Appendix D  

 

Scenario 3 joint angles calculation results 
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Line No: 
Joint 

J1 J2 J3 J4 J5 J6 

1 -54.462 -14.039 123.366 103.300 56.737 66.684 

2 -54.462 -13.962 120.765 101.667 56.191 69.640 

3 -54.462 -13.766 118.067 100.006 55.721 72.607 

4 -54.352 -13.581 115.373 98.339 55.215 75.591 

5 -53.836 -13.742 113.023 96.723 54.382 78.557 

6 -52.891 -14.259 111.134 95.175 53.202 81.402 

7 -51.510 -15.112 109.794 93.714 51.662 84.026 

8 -49.688 -16.271 109.066 92.369 49.746 86.336 

9 -47.431 -17.691 108.984 91.188 47.445 88.244 

10 -44.772 -19.312 109.552 90.242 44.772 89.659 

11 -41.773 -21.034 110.626 89.543 41.775 90.612 

12 -38.464 -22.665 111.647 88.719 38.475 91.636 

13 -34.820 -24.170 112.549 87.671 34.853 92.837 

14 -30.824 -25.532 113.329 86.315 30.895 94.293 

15 -28.701 -26.103 113.519 85.293 28.807 95.368 

16 -26.541 -26.546 113.443 83.815 26.709 96.917 

17 -24.396 -26.849 113.100 81.797 24.665 99.013 

18 -22.323 -27.005 112.498 79.166 22.751 101.724 

19 -20.382 -27.015 111.650 75.873 21.047 105.092 

20 -18.630 -26.882 110.572 71.941 19.634 109.096 

21 -17.116 -26.616 109.288 67.500 18.576 113.605 

22 -15.867 -26.233 107.829 62.789 17.904 118.384 

23 -14.418 -25.864 106.427 57.472 17.176 123.725 

24 -12.628 -25.553 105.178 51.208 16.290 129.943 

25 -10.523 -25.302 104.116 43.756 15.311 137.278 

26 -8.149 -25.108 103.260 34.895 14.347 145.952 

27 -5.560 -24.971 102.633 24.493 13.515 156.108 

28 -2.819 -24.889 102.251 12.682 12.944 167.630 

29 0.000 -24.862 102.123 0.000 12.739 180.000 

30 2.818 -24.889 102.251 -12.681 12.944 192.369 



113 
 

31 5.560 -24.971 102.633 -24.492 13.514 203.891 

32 8.149 -25.108 103.260 -34.895 14.347 214.048 

33 10.522 -25.302 104.115 -43.755 15.311 222.722 

34 12.627 -25.553 105.179 -51.207 16.289 230.056 

35 14.418 -25.864 106.427 -57.471 17.177 236.275 

36 15.867 -26.233 107.829 -62.789 17.904 241.616 

37 17.118 -26.616 109.287 -67.501 18.578 246.397 

38 18.630 -26.882 110.572 -71.941 19.634 250.905 

39 20.382 -27.015 111.650 -75.874 21.047 254.909 

40 22.324 -27.005 112.498 -79.166 22.751 258.276 

41 24.396 -26.849 113.100 -81.798 24.665 260.987 

42 26.541 -26.546 113.443 -83.815 26.709 263.083 

43 28.701 -26.103 113.520 -85.293 28.807 264.632 

44 30.824 -25.532 113.329 -86.315 30.895 265.707 

45 34.821 -24.170 112.549 -87.671 34.853 267.163 

46 38.464 -22.665 111.647 -88.719 38.475 268.365 

47 41.773 -21.034 110.626 -89.543 41.775 269.388 

48 44.772 -19.312 109.552 -90.242 44.773 270.341 

49 47.432 -17.690 108.984 -91.188 47.445 271.756 

50 49.688 -16.271 109.066 -92.369 49.746 273.664 

51 51.510 -15.112 109.795 -93.714 51.662 275.974 

52 52.891 -14.259 111.135 -95.175 53.202 278.598 

53 53.836 -13.742 113.023 -96.723 54.382 281.443 

54 54.352 -13.581 115.373 -98.339 55.215 284.409 

55 54.462 -13.766 118.067 -100.006 55.721 287.394 

56 54.462 -13.962 120.765 -101.667 56.191 290.360 

57 54.462 -14.039 123.366 -103.300 56.737 293.316 
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Appendix E  

Scenario 4 joint angles calculation results 
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Line No: 
Joint 

J1 J2 J3 J4 J5 J6 

1 -54.462 -14.039 123.366 103.300 56.737 66.684 

2 -54.462 -13.962 120.765 101.667 56.191 69.640 

3 -54.462 -13.766 118.067 100.006 55.721 72.606 

4 -54.352 -13.581 115.373 98.339 55.215 75.591 

5 -53.836 -13.742 113.023 96.723 54.382 78.557 

6 -52.891 -14.259 111.134 95.175 53.202 81.402 

7 -51.510 -15.112 109.795 93.714 51.662 84.026 

8 -49.688 -16.271 109.066 92.369 49.746 86.336 

9 -47.431 -17.691 108.984 91.188 47.444 88.244 

10 -44.772 -19.312 109.552 90.242 44.773 89.659 

11 -41.774 -21.034 110.626 89.543 41.775 90.612 

12 -38.464 -22.665 111.647 88.720 38.475 91.635 

13 -34.821 -24.170 112.549 87.671 34.854 92.837 

14 -31.197 -25.419 113.275 86.464 31.264 94.134 

15 -27.754 -26.315 113.521 84.707 27.884 95.983 

16 -25.135 -26.760 113.249 82.564 25.363 98.219 

17 -22.947 -26.973 112.709 80.041 23.319 100.825 

18 -20.991 -27.028 111.950 77.010 21.570 103.931 

19 -19.202 -26.943 110.962 73.344 20.078 107.669 

20 -17.623 -26.727 109.770 69.127 18.906 111.952 

21 -16.326 -26.382 108.382 64.585 18.133 116.564 

22 -15.025 -26.001 106.958 59.649 17.483 121.546 

23 -13.397 -25.672 105.666 53.889 16.667 127.289 

24 -11.451 -25.401 104.542 47.078 15.731 134.014 

25 -9.226 -25.186 103.610 38.989 14.764 141.948 

26 -6.769 -25.027 102.891 29.447 13.871 151.273 

27 -4.135 -24.921 102.401 18.442 13.174 162.011 

28 -1.391 -24.869 102.154 6.295 12.789 173.860 

29 1.390 -24.869 102.154 -6.293 12.789 186.138 

30 4.134 -24.921 102.401 -18.441 13.174 197.987 
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31 6.768 -25.027 102.891 -29.446 13.871 208.725 

32 9.226 -25.186 103.610 -38.988 14.763 218.051 

33 11.451 -25.401 104.543 -47.077 15.731 225.985 

34 13.397 -25.672 105.666 -53.889 16.667 232.711 

35 15.024 -26.001 106.959 -59.647 17.482 238.452 

36 16.330 -26.382 108.380 -64.588 18.136 243.438 

37 17.623 -26.727 109.770 -69.127 18.906 248.048 

38 19.202 -26.943 110.962 -73.344 20.078 252.331 

39 20.991 -27.028 111.950 -77.010 21.570 256.069 

40 22.947 -26.973 112.709 -80.041 23.319 259.175 

41 25.133 -26.760 113.249 -82.562 25.362 261.779 

42 27.752 -26.315 113.520 -84.705 27.882 264.014 

43 31.197 -25.418 113.272 -86.460 31.263 265.861 

44 34.821 -24.170 112.549 -87.671 34.854 267.163 

45 38.464 -22.665 111.647 -88.720 38.475 268.365 

46 41.774 -21.034 110.626 -89.543 41.775 269.388 

47 44.772 -19.312 109.552 -90.242 44.773 270.341 

48 47.432 -17.690 108.984 -91.188 47.445 271.756 

49 49.688 -16.271 109.066 -92.370 49.746 273.664 

50 51.510 -15.112 109.795 -93.714 51.662 275.974 

51 52.891 -14.259 111.135 -95.175 53.202 278.598 

52 53.836 -13.742 113.023 -96.723 54.382 281.443 

53 54.352 -13.581 115.373 -98.339 55.215 284.409 

54 54.462 -13.766 118.067 -100.006 55.721 287.394 

55 54.462 -13.962 120.765 -101.667 56.191 290.360 

56 54.462 -14.039 123.366 -103.300 56.737 293.316 

 

 


