
i

TRAJECTORY PLANNING FOR 6-DOF ROBOT

MANIPULATOR BASED ON OFFLINE ROBOT

PROGRAMMING APPROACH

Malnydelage Dimithri Maliyos Fernando

(148456D)

Degree of Master of Science

Department of Electronic and Telecommunication Engineering

University of Moratuwa

Sri Lanka

January 2019

TRAJECTORY PLANNING FOR 6-DOF ROBOT

MANIPULATOR BASED ON OFFLINE ROBOT

PROGRAMMING APPROACH

Malnydelage Dimithri Maliyos Fernando

(148456D)

Thesis submitted in partial fulfillment of the requirements for the

degree Master of Science in Electronics and Automation

Department of Electronic and Telecommunication Engineering

University of Moratuwa

Sri Lanka

January 2019

i

DECLARATION, COPYRIGHT STATEMENT AND THE

STATEMENT OF THE SUPERVISOR

“I declare that this is my own work and this thesis does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another

person except where the acknowledgement is made in the text”.

“Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce

and distribute my thesis, in whole or in part in print, electronic or other medium. I

retain the right to use this content in whole or part in future works (such as articles or

books)”.

Signature: ……………………… Date:

The above candidate has carried out research for the Master’s Thesis under my

supervision.

Name of the supervisor: Prof. Rohan Munasinghe

Signature of the supervisor: ……………………… Date:

ii

ABTRACT

Industrial robot manipulators are highly involved in modern manufacturing industries. Robot

programming is the procedure to carry out generating a sequence of robot instruction.

Teaching method is highly applied where a teach pendent is used to generate the robot

programme by teaching one point at a time. This process tends to consume more time and the

accuracy can be varied depends on the application. Several other methods are used to program

robot movement nevertheless industrial applications of these systems are still developing.

Programming tends to be difficult and restricts the productivity and industrial application.

Hence, requirement of flexible programming methods is still challenging for inexpert robot

operators. Trajectory planning for a robot system is still a developing area where the accuracy,

productivity and high quality on various operations are highly concerned. To address these

limitations, off-line programming systems can be used where computer systems with realistic

graphics, interfaces and features can be used to plan and program robot motions without using

robot hardware. The research is aimed to present methods for finding a better mathematical

way of optimized trajectory planning of 6-DOF industrial robot manipulator. Computer Aided

Design software systems are used to implement off-line programming technique by

developing human robot interface in order to create robot moving sequence and achieve

required data for further calculations. Welding process of machine head cover using a 6 DOF

robot manipulator is used to demonstrate and evaluate the proposed method. Methods for Point

allocation along the robot moving path and data extraction are presented. Inverse kinematic

model for the 6 DOF manipulator is developed and implemented in order to get joint space

data represented by joint angles. Derived data is studied to analyze the manipulator motion

behavior while moving along predefined path via points allocated. Robot path planning and

trajectory planning with CAD system involvement as off-line programming technique is

analyzed by comparing results in order to evaluate the performance of the proposed method.

Keywords: Offline robot programming, Computer Aided Design, 6 DOF robot manipulator,

inverse kinematics, Human robot interface

iii

ACKNOWLEDGEMENT

The basis of this master thesis is originated by an industrial project which was planned

and implemented in MAS Holdings Pvt Limited. I would like to express my sincere

gratitude to Mr. Randy Rajarathnam; General Manager- Technical, Mr. Maduranga

Pemarathne; Manager-Innovation as the project managers and for giving me technical

support to succeed this project. Further, I am sincerely grateful to other members of

project team for their support throughout the project and the research.

I am profoundly grateful to my supervisor, Prof. Rohan Munasinghe who has

motivated me with intense guidance and great supervision throughout the research. I

am also grateful to course coordinator of the MSc programme in Electronics and

Automation; Dr. Chamira Edussooriya for the guidance and advises given throughout

the research. I am thankful to Mr. Damith Kandage; course assistant for providing

assistances given throughout the whole duration of the research and finally I would

like to thank all the academic staff members and supportive staff members who

supported and inspired me by supporting whenever needed throughout the research.

Malnydelage Dimithri Maliyos Fernando

B.Sc. Eng. (Moratuwa)

Department of Mechanical Engineering,

University of Moratuwa,

Katubedda, Sri Lanka,

January 2019.

iv

TABLE OF CONTENTS

DECLARATION, COPYRIGHT STATEMENT AND THE STATEMENT OF THE

SUPERVISOR ... i

ABTRACT ...ii

ACKNOWLEDGEMENT ... iii

LIST OF FIGURES ... vi

LIST OF TABLES ... viii

LIST OF ABBREVIATIONS ... viii

LIST OF APPENDICES ... ix

INTRODUCTION .. 1

1.1 Background and Motivation ... 1

1.2. Problem Definition .. 5

1.2.1 Thesis Objectives ... 6

1.2.2 Goals ... 6

1.3 Limitations .. 6

1.4 Influences to the industry .. 7

1.5. Report Summary ... 7

LITERATURE REVIEW ... 9

2.1 Some Literature ... 9

ROBOT AND APPLICATION SYSTEM ... 13

3.1 Robot system... 13

3.2 Automated welding operation ... 18

3.3 Robotic welding Robot cell .. 20

SYSTEM AND PROCESS DESIGN IDENTIFICATION ... 24

4.1 Mathematical approach for closed form solution of inverse kinematic of 6 DOF

robot manipulator .. 24

4.1.1 Robot manipulator forward kinematics.. 26

4.1.2 Robot manipulator inverse kinematics ... 28

4.2 The Human Robot interface.. 33

4.3 Path planning and information extraction .. 38

4.4 Mathematical approach for mapping trajectories .. 40

SYSTEM DESIGN AND SIMULATION .. 47

5.1 Design and Implementation of Inverse kinematic model 47

v

5.2 Algorithms for developing trajectory planning schemes in section 4.4 57

5.3 Simulation model ... 61

5.3.1 Creating Robot cell ... 61

RESULTS AND CONCLUSION .. 65

6.1 Various point cloud simulation Results ... 65

6.2 Conclusion .. 82

6.3 Future works .. 83

BIBLIOGRAPHY .. 84

Algorithms for inverse kinematic solution of 6 DOF robot manipulator and

trajectory planning in Matlab ... 87

Dimensions and the configuration of the Denso VP 6242 ... 105

Machine head cover dimensions ... 105

Robotic cell layout .. 105

Scenario 1 joint angles calculation results ... 108

Scenario 3 joint angles calculation results ... 111

Scenario 4 joint angles calculation results ... 114

vi

LIST OF FIGURES
Page

Figure 1.1 Denso robotics six DOF robot manipulator model: VP 6242 02

Figure 2.1 Hyper flexible robotic cell 10

Figure 3.1 Denso VP 6242 mini sized vertical articulated robot 13

Figure 3.2 External Dimensions and Workable Space (VP-6242) 14

Figure 3.3 VP 6242 robot arm ceiling or ceiling mounted 15

Figure 3.4 RC8A controller for VP 6242 robot system 16

Figure 3.5 RC8A controller System configuration 16

Figure 3.6 3D arm view – Wincaps III software 17

Figure 3.7 Data location data – Wincaps III software 18

Figure 3.8 Robotic welding operation – ABB robotics 18

Figure 3.9 Arc welding defects due to speed changes 19

Figure 3.10 Differences of welding torch unit between Manual welding and

Robotic welding 20

Figure 3.11 Robotic welding application – 3D model 20

Figure 3.12 Welding application – Layout 21

Figure 3.13 Machine Head Cover – Dimensions 21

Figure 3.14 Industrial Robotic welding torch 22

Figure 3.15 Robotic Welding Torch – Dimensions 22

Figure 3.16 Robot End travelling path 23

Figure 4.1 Coordinate assignment – Denso VP 6242 25

Figure 4.2 Robot links 3D design models 34

Figure 4.3 Robot manipulator assembly in Solidworks 35

Figure 4.4 Coordinate system assignment in 3D model 36

Figure 4.5 Tool design – Welding torch 36

Figure 4.6 Machine head cover – 3D design 37

Figure 4.7 Machine Head cover location 37

Figure 4.8 Complete 3D design for the robot cell 38

Figure 4.9 Spline feature for robot moving path definition 38

vii

Figure 4.10 Point allocation along the robot path 39

Figure 4.11 VB based macro for data extraction 39

Figure 4.12 Data extracted values in Microsoft excel 40

Figure 4.13 Typical trajectory profile for position variation 43

Figure 4.14 Typical trajectory profile for velocity variation 43

Figure 4.15 Typical trajectory profile for acceleration variation 44

Figure 4.16 Typical trajectory profile for jerk variation 44

Figure 5.1 Path and point allocation along the robot moving path 47

Figure 5.2 Tool orientation along the path 48

Figure 5.3 Tool orientation with respect to work 0 coordinate 48

Figure 5.4 Tool dimensions 50

Figure 5.5 Orientation defined by manually 51

Figure 5.6 Maximum velocity mapping 59

Figure 5.7 Robot Arm selection in Wincaps III 61

Figure 5.8 Default Robot configuration in Wincaps III 62

Figure 5.9 Machine head cover and Tool placement in the simulation module 62

Figure 5.10 Work and Tool coordinate assignment 63

Figure 5.11 Robot programs for simulating robot movement via points 63

Figure 5.12 Import Point location data into the program 64

Figure 5.13 Joint angles of the robot arm at point 1 position 64

Figure 6.1 Robot path length 66

Figure 6.2 Point allocation scenario 1 67

Figure 6.3 Scenario 1 simulation results 68

Figure 6.4 Maximum velocity of joint rotation scenario 69

Figure 6.5 Point allocation scenario 2 70

Figure 6.6 Scenario 2 simulation results 72

Figure 6.7 Maximum velocity of joint rotation scenario 2 73

Figure 6.8 Point identification of the velocity variance begins 74

Figure 6.9 Point allocation scenario 3 74

Figure 6.10 Scenario 3 simulation results 76

viii

Figure 6.11 Maximum velocity of joint rotation scenario 3 77

Figure 6.12 Point allocation scenario 4 78

Figure 6.13 Scenario 4 simulation results 80

Figure 6.14 Maximum velocity of joint rotation scenario 4 81

LIST OF TABLES

Table 1 Joint movement and speed limitation (VP 6242) 15

Table 2 Denso VP 6242 robot manipulator D-H parameters 26

Table 3 Scenario 2 joint angles calculation results 71

LIST OF ABBREVIATIONS

Abbreviation Description

DOF Degree Of Freedom

CAD Computer Aided Design

3D Three Dimensional

OLP Off Line Programming

ix

LIST OF APPENDICES

Appendix Description Page

Appendix A Algorithms for inverse kinematic solution of 6 DOF robot

manipulator and trajectory planning in Matlab 87

Appendix B Dimensions and the configuration of the Denso VP 6242

 Machine head cover dimensions

 Robotic cell layout 105

Appendix C Scenario 1 joint angles calculation results 108

Appendix D Scenario 3 joint angles calculation results 111

Appendix E Scenario 4 joint angles calculation results 114

1

CHAPTER 1

INTRODUCTION

Chapter 1 explains about background and motivation of the research. It outlines the

foundation of the research initialization as a master thesis. The research is aimed for

finding optimized solutions for trajectory planning for 6 DOF robot manipulator based

on offline programming approach. Section 1.1 discusses the thesis background and

motivation. Problem definition and the objectives of the thesis are defined in section

1.2. Section 1.3 describes research limitations. Research influences over the industry

is discussed in section 1.4. Finally, Section 1.5 summarizes the remaining chapters of

the report.

1.1 Background and Motivation

Industrial robots are highly involved and utilized in modern manufacturing industries

due to its efficiency, productivity and programmability. The demand for the usage of

robots in automated manufacturing systems is increasing especially in automotive

systems. Performing high precision tasks with higher repeatability and quality makes

them more utilized in the industries. Industrial robots can be operated continuously

without taking a break. This supports manufacturers to increase the productivity and

efficiency.

There are several types of industrial robots and can be simplified to five major types.

1. Cartesian

2. cylindrical

3. Delta

4. SCARA

5. Articulated robots

2

Each robot type has different features and specific elements which utilize them more

appropriate for different applications. Main differentiators among them are speed, size

and workspace.

Articulated robots which resemble a human arm in its mechanical configuration are

the most commonly utilized industrial robots since the design and the configuration

offer most flexibility. Articulated robot has connecting links which are connected to

the base with rotary joints. Figure 1.1 shows an illustration of six degree of freedom

industrial robot manipulator manufactured by Denso robotics.

Figure 1.1: Denso robotics six degree of freedom robot manipulator model: VP 6242

6 DOF robot manipulator has many advantages such as high speed operation, large

work area for minimum floor space and ability to align to multiple planes. Even though

it has significant advantages, challenges are being confronted since it is complicated

in programming and kinematics.

Robot programming is the procedure to carry out creating a sequence of robot working

instruction and work location/points that achieves the required task. Various methods

and techniques are used to plan and program robot operations. Teaching method is

highly applied where a teach pendent is used to generate the robot programme by

teaching one point at a time. This process tends to consume more time and the accuracy

3

can be varied depends on the application. In some applications, technical expertise

may be required to perform the task like welding, spraying etc.

Several other methods are used to program robot movement such as,

• software dedicated to a particular industrial process.

• human body attached sensors to capture arm movements

• CAD based solutions.

• vision-based interfaces.

Due to several reasons including reliability issues, applications of these systems are

still developing. Thus, the teach pendant is considered as a common robot input device

which grant access to robotic functionalities. The difficulty of this robot programming

process limits the productivity of the robot and more widespread use of robot

technology. Hence, requirement of flexible programming methods is still challenging

for inexpert robot operators.

Currently CAD systems can provide more design and modelling capabilities having

high precision and standard, simulation can be also done with great accuracy.

Therefore, CAD systems can be utilized to give effective engineering solutions for

preparing robot path and trajectories in robot programming.

Off-line programming (OLP) is introduced as a revolutionary robot programming

method where the robot program can be created without considering the actual robot

cell which represent the robot system and the application. The created robot program

can be imported or uploaded to the robot controller for the robot manipulator

execution. Simulator can be used to create the robot cell by creating comprehensive

graphical three-dimension(3D) model. Currently, robot integrators use robotic

simulators and off-line programming techniques to create efficient program paths for

a particular robot manipulation to perform a specific task. Simulators are beneficial

where robot movement and reachability analysis, collision detection and cycle time

calculation can be done when robot programs are simulated.

4

Off-line robot programming is used to develop the robot program on an external

computer system without interfering the production or the robot operation. This

method improves the on-line programming abilities where programmers use teach

pendants to program the robot manually. Robot programming change over time can be

minimized by applying off-line robot programming techniques.

The capability to perform different operations and task is more important when

considering the flexibility of industrial robot manipulators. Robot system is subjected

to deal with higher degree of problems to resolve with respect to human flexibility.

When considering an object to move between two space points, several factors are

needed to be concerned.

1. Finding Optimum path or route.

2. Avoidance of obstacles and collisions.

3. Improving task productivity.

4. Maintaining higher efficiency.

Path planning is more important where planning of entire path from one point to

another point in work space including stopping in predefined path points is executed.

Path planning is a geometrical description of robot motion. Obstacles and path

constraints can restrict the motion of a robot.

Considering obstacle constraints, Path planning can be done assuming that robot has

to be moved by planning not moving through that obstacle takes place. Path constraints

are needed to be concerned where there can be reference points that the robot must

move through that points.

In the case of 6 DOF robot manipulator, physical limit of motion and mechanics

constraints are appeared in most cases. Trajectory planning is planning of desired

motion of a robot manipulator and depicts how well the robot manipulator operates.

For optimal solution, actuator positions, velocity, acceleration, jerk and the limit of

joints are needed to be considered. Energy expenditure while running the robot is more

concerned. In every movement, robot has to accelerate, hold and brake hence energy

is consumed. Therefore, unnecessary energy dissipation should be reduced in order to

increase the energy efficiency of the manipulator. Speed is more concerned where

5

productivity of the robot manipulator is highly focused. Cycle time for the task is

important in a high production rate hence integrator try to minimize as much as

possible. Therefore, time taken for a path is more important to be considered. Path

planning and trajectory planning should be highly concerned in order to get higher

productivity while maintaining better robot performance.

1.2. Problem Definition

Robot manipulators are highly involved in current manufacturing industries and for

planning and programming of the robot manipulator, teaching method is highly used.

It is more suitable for simple operations where programmers need less time for take

necessary point locations in robot moving path. In some critical operations such as

welding, painting etc. time taken for teaching is much higher than usual since there

can be higher number of task points hence programmer need significant time to teach

and the experience and expertise is more important. If any modification has to be done,

programmers face numerus problem where in some cases, the teaching of the robot

path has to be done from the beginning. Offline robot programming is applied to

overcome this kind of issue. Dedicated software solutions are available but can be

expensive and limited to particular operations.

Computer Aided Design software is highly used in manufacturing industries since

higher accuracy level can be achieved. User friendliness is the other factor that users

involve CAD systems in their operations. CAD systems can be involved to develop

human robot interface hence programmer can define robot path while analyzing the

system graphically. Path planning can be done effectively and relevant data extraction

from CAD system can be used.

Inverse kinematics of 6 DOF robot manipulator is needed to find joint space values for

particular robot position in work space. Inverse kinematics is studied for many decades

and solving of inverse kinematic for a particular robot system is difficult

computationally and time to solve is higher. Effective inverse kinematic solution is

more important to find joint angles since the actuator works in joint space. Trajectory

6

planning is important to improve the productivity of the robot manipulator operation.

Optimization of the trajectory planning enhance the production while maintain the

robot work cycle smoothly.

1.2.1 Thesis Objectives

Thesis main objective is to research and develop methods to involve CAD systems as

offline robot programming technique to improve and optimize the trajectory planning

of 6 DOF robot manipulator by implementing enhanced inverse kinematic model for

the manipulator. In this research, methods for path planning and relevant data

extraction in CAD systems, inverse kinematic model for the robot manipulator and

trajectory planning optimization with CAD systems are investigated. Proposed method

is validated by implementing for a practical robot application and comparing the

results and its performance.

1.2.2 Goals

In this research, it is intended to present methods for optimizing trajectory planning

using offline robot programming techniques in order to increase the productivity and

accuracy. This research intends to find a better mathematical way of optimized

trajectory planning of 6-DOF industrial robot manipulator.

1.3 Limitations

Proposed method is based on the controlling and operation of 6 DOF robot

manipulator. Therefore, the development of the inverse kinematics model is limited to

the type of 6 DOF manipulator which is intended to research on. Welding operation of

a machine head cover using Denso VP 6242 robot manipulator is evaluated in order to

apply the proposed method and analysis the result and performance. Inverse kinematic

7

model is subjected to change with types of robot manipulator and the work space where

the robot end effector operates.

1.4 Influences to the industry

This research work demonstrates an approach to develop methods to optimize

trajectory planning in order to increase the efficiency and productivity with offline

programming techniques. The proposed method can be implemented for most common

available 6 DOF manipulators in the industry and can be applied for other types of

robot manipulators. The method uses for path planning including path creation, task

point allocation and data extraction in CAD systems can be used for any kind of

industrial operation for further development. Trajectory planning can be analyzed and

path planning methods can be optimized according to trajectory planning requirements

in order to reduce task cycle time while maintaining robot smooth movement.

Integrators can develop other methods based on this proposed method for further

development.

1.5. Report summary

The remaining sections is arranged as follows.

In Chapter 2,some literature is reviewed about existing methods for solving kinematics

of robot manipulators, optimizing of trajectory planning for different applications and

influence of current offline programming methods for best robot operation. Chapter 3

illustrates the behavior of the robot and the application which is evaluated. It also

extends the background of the system that will support to develop methods for

optimum solutions. In Chapter 4, an approach for developing appropriate methods for

optimizing trajectory planning of 6 DOF robot manipulator is proposed. Path planning

with CAD system support, mathematical model for inverse kinematic solution of 6

DOF robot manipulator and analysis of trajectory planning from derived joint space

data in order to optimize of the robot programmability and operability are proposed.

8

Simulation model is developed in a separate robot programming software tool in order

to verify the developed mathematical model results and debug for further development

in chapter 5. The final results of the research are described in chapter 6 and it validates

the results over the results of the simulation. It also suggests improvements as

forthcoming developments. The development procedure of the mathematical model

and algorithms for inverse kinematic solution of 6 DOF robot manipulator and

trajectory planning are illustrated in appendix ‘A’. Appendix ‘B’ shows the dimensions

and the configuration of the Denso VP 6242. It also presents the dimensions of the

work piece and the robotic cell layout. Appendix ‘C’, ‘D’ and ‘E’ illustrate calculated

joint angles values tabulated for experiment scenario 1,3 and 4.

9

CHAPTER 2

LITERATURE REVIEW

Existing approaches developed for inverse kinematic solutions, path planning and

trajectory planning of robot manipulators and other similar applications are discussed

in this chapter. Robot manipulators are highly involved in modern manufacturing

industries specially in automotive [1]. Robot programming is critical significantly in

order to operate productively and various programming techniques are used. Currently

sophisticated robot controllers and software interfaces are involved [2] and most of

these applications are expensive in use thus teaching method is highly used. Teaching

method can be imprecise, time consuming process in some applications where

technical expertise of the application should be concerned in order to perform robot

teaching [3]. Offline robot programming methods are introduced as a revolutionary

solution for the drawbacks of current online programming techniques including

teaching where the robot programs are created in separate interface independent of

actual robot cell prior to upload to the robot manipulator for execution [4]. Importance

of the Path planning and trajectory planning is more valuable for robot operations and

maintenance in order to increase the productivity and efficiency.

2.1 Some Literature

Even though there are many types of industrial robot manipulators and systems which

are capable of offline robot programming, it is still very expensive and limited to a

particular industrial application which tends to cost more when changing the

application. In addition, the applications where the accuracy is highly concerned need

advanced robot systems with controllers [1][2].

A. Paulo Moreira ,Pedro Neto and J. Norberto Pires researchers in University of

Coimbra, Portugal and University of Porto, Portugal have presented CAD-Based Off-

Line Robot Programming approach in order to optimize robot programmability [3].

10

Currently CAD systems can provide more design and modelling capabilities having

high precision and standard, simulation can be also done with great accuracy.

Therefore, CAD systems can be utilized to give effective engineering solutions for

preparing robot path and trajectories in robot programming.

L. Alonso Ferreira, M. Álvarez Souto, I. Fernández Iglesias and Y. Lapido Figueira,

researchers present solution for offline robot programming method with CAD support

to support ship building fabrications and supports [5]. They proposed a solution for a

hyper-flexible welding cell with 6 DOF robot manipulator mounted on 3 axis gantry

system which is programmed in a CAD environment [6] in order to prepare robot task

sequences and extract relevant data for further processes. Figure 2.1 shows the

application area of hyper flexible robotic cell they have implemented.

Figure 2.1 Hyper flexible robotic cell

It also emphasizes the capability of creating accurate robotic cell for complex robotic

system arrangements in a CAD system which gives unexperienced programmers to

program robot tasks easily.

Kinematics of a robot manipulator is a very critical problem when we deal with

automatic control of the robot operation. A. Khan, C. Xiangming, Z. Xingxing and W.

11

Quan present method and solutions of closed form inverse kinematic modelling for a

6 DOF robot manipulator [7]. The manipulator is based on Puma560 robot which is

intended to move in underwater area. They have developed a closed-form solution of

inverse kinematics model for a 6-DOF manipulator and were able to validate the

developed algorithm using simulation in Robotic toolbox.

Mustafa Jabbar Hayawi from Thi-Qar University has presented an Analytical Inverse

kinematics Algorithm of A 5-DOF Robot Arm. Forward kinematics and a closed form

inverse kinematic solution for the educational 5 DOF robot manipulator TR 4000 are

presented to overcome the high number of iterative numerical solution [8].

Trajectory planning is very essential to maintain Smoothness and Ease of accurate

tracking by the manipulator. Non-smooth trajectories cause problems like high torque

in actuators, Vibrations, Error in path tracking, manipulator wear and low level of

quality output [9]. Jerk controlling is very important in order to minimize these

problems since the nature of the jerk profile predicts the behavior of the motion.

Studies shows that a trajectory with controlled jerk profile is essential in order to

achieve the desired features. Controlled jerk trajectory can be achieved by,

1. Maintaining zero bound starting and ending profile which reserve the

smoothness at start and end motion.

2. Maintaining continuous jerk profile to avoid potential ‘Infinite jerk’ of non-

continuous jerk profiles.

3. Limiting jerk between known values where user can compare with

manufacturer’s recommendations.

Trajectory planning can be executed in joint space or operational space. In joint space

trajectory planning, the motion is described by joint values whereas in operational

space trajectory planning, the motion is described in Cartesian space in many cases.

The motion between two points is unpredictable in joint space trajectory planning

while it is easy to visualize the path and the motion between the two points is known

in Cartesian space trajectory planning. Collision can be prevented by proper trajectory

planning in operational space but it is computationally expensive since we need to

12

solve inverse kinematics between discretized points along initial point to final point at

each step. In joint space trajectory planning, inverse kinematics is needed to be

calculated only once and constraints like joint angle and velocity can be concerned

[10].

13

CHAPTER 3

ROBOT AND APPLICATION SYSTEM

This chapter explains the behavior of robot system and the application. Section 3.1

presents information about the robot system with relevant sub systems required for the

operation. Section 3.2 presents information about the application which is evaluated

by implementing proposed methods in order to optimize the output. Section 3.3

expresses the necessary details about the total system represented the entire robot

working cell for the application.

3.1 Robot system

Robot system is consisted of two major sub systems.

1. Denso VP 6242 robot manipulator

2. Robot controller system

Denso VP 6242 robot [Figure 3.1] is a high speed, high accuracy robot unit produced

by DENSO Robotics. It is categorized as mini sized vertical articulated robot.

Figure 3.1: Denso VP 6242 mini sized vertical articulated robot

14

Denso VP 6242 arm is a 6-axis type robot arm built with joints similar to a human arm,

great flexibility can be achieved. 6-axis freedom of movement makes them suitable to

handle a much wider application range such as assembly, Dispensing, Grinding, Laser

welding, material handling, material removal, packaging, pick and place, ultrasonic

welding, polishing, spot welding.

It is suitable for installations where operational space is limited. It has excellent

repeatability of ±0.02 mm. It can handle payloads up to 3 kg and can reach up to

432mm maximum [Figure 3.2]. It can be ceiling or ceiling mounted with no special

hardware needed [Figure 3.3].

Figure 3.2: External Dimensions and Workable Space (VP-6242)

15

Figure 3.3: VP 6242 robot arm ceiling or ceiling mounted

VP 6242 robot arm is consisted of six joints operated with AC servomotors and brakes

for all axes. Each joint has motion and speed limitation and table 1 presents the range

of motion and speed limitation.

Table 1: Joint movement and speed limitation [VP 6242]

Joint Range of motion (°) Maximum joint speed (°/sec.)

J1 ±160 250

J2 ±120 187

J3 +19, +160 250

J4 ±160 300

J5 ±120 300

J6 ±360 300

Source: Denso VP 6242 user manual [11]

16

Model RC8A and RC8 are the controller compatible with the VP 6242 robot system.

It features and supports the Safety Motion function [Figure 3.4].

Figure 3.4: RC8A controller for VP 6242 robot system

Robot controller can be connected many sub systems such as control devices, software

and other peripherals for further expansions [Figure 3.5].

Figure 3.5: RC8A controller System configuration

The controller is the main controlling device of the industrial robotic arm which allows

robot system and parts to function together. It also allows other systems to be

connected with the current systems. The controller runs a set of instructions written in

code named a program. The program is inputted or entered with a teach pendant

[Figure 07] or software interface that built on most of operating systems. It converts

the commands in the source code of the program to motion or motor drivers which are

connected with robot arm joints. Internal model of kinematic structure of the robot

17

manipulator is inbuilt with the controller. It can coordinate the motions precisely which

are commanded by each individual robot arm motor drives. Thousands of parameters

are referred by the controller to ensure the robot operating precision of the required

task enrolled with the application.

Wincaps III software interface is a programming tool developed by Denso corporation

and it is used for various application including program developments, parameter

settings, transferring relevant data between robot arm and the controller and robot

posture checking on a 3D screen. Robot can be programmed in a separate area called

program editing window and functions such as line number display, command color

display, indentation, comment block and bookmark can be implemented. Simulation

capability is more advantageous where programmer can run the program on a

computer system. Cycle time measurement, interference can be checked by user prior

to transfer to the controller. Program start/stop and break points with robot motion with

robot trajectory display are beneficial in order to increase the productivity. 3D arm

view is the capability of the displaying robots and peripheral devices three

dimensionally when robot motion is simulated [Figure 3.6]. 3D graphic data, format

of VRML, DirectX can be imported in to Wincaps interface. Programmer can obtain

location data information [Figure 3.7] of the robot end easily in order understand and

get relevant data for further calculations.

Figure 3.6: 3D arm view – Wincaps III software

18

Figure 3.7: Data location data – Wincaps III software

3.2 Automated welding operation

Robot manipulators are highly involved in modern manufacturing and fabrication

industries such as arc welding and spot-welding operations are included [Figure 3.8].

Figure 3.8: Robotic welding operation – ABB robotics [12]

19

For welding operation, smooth movement with constant speed of the welding torch is

highly important to get higher quality welding output. Due to higher temperature at

the end of the welding torch, even a small jerk at a point in the moving line causes a

huge impact to the output [Figure 3.9].

Figure 3.9: Arc welding defects due to speed changes [13]

Robotic welding operated system consists of two major parts.

1. Robot manipulator and controller system

2. Welding torch for robotic operations

Robot manipulator is used to handle the welding torch and operated as a human arm

when the welding operation is done manually. Specially developed welding torch is

now available for automated robotic operation since the conventional welding

equipment cannot be used for robotic operation due to complexity of system

components. Robotic welding torch can be attached to the robot end as an end effector

without need of much effort. Figure 3.10 illustrates the differences of the design of

conventional welding torch used for manual welding and robotic welding torch.

20

Figure 3.10: Differences of welding torch unit between Manual welding and Robotic

welding [14]

3.3 Robotic welding Robot cell

Robotic welding operation done for fabricating a machine head cover by welding the

edge of the head cover is evaluated as a research model in order to apply and test

developed methods for trajectory planning with CAD based offline programming

approach for a robot manipulator. Three-dimensional (3D) design of the overall system

and dimensions are illustrated in Figure 3.11 and Figure 3.12.

21

Figure 3.11: Robotic welding application – 3D model

Figure 3.12: Welding application - Layout

Figure 3.13 illustrates the dimensions of the machine head cover which is confronted

for welding.

Denso VP 6242

Robot Manipulator

Welding Torch

Machine

Head Cover

22

Figure 3.13: Machine Head Cover - Dimensions

Figure 3.14 shows a sample industrial Robotic welding torch used in the industry [15].

Figure 3.15 illustrates the dimensions of the welding torch attached to end of the robot

end as an end effector.

Figure 3.14: Industrial Robotic welding torch [15]

23

Figure 3.15: Robotic Welding Torch - Dimensions

Figure 3.16 shows the robot end moving path along the cover edge which is followed

by the robot end effector to get proper welding operation.

Figure 3.16: Robot End travelling path (marked in blue color)

24

CHAPTER 4

SYSTEM AND PROCESS DESIGN IDENTIFICATION

This chapter describes development approach over optimized methods of finding

inverse kinematics of 6 DOF robot manipulator and trajectory planning done according

to path planning using CAD systems. Section 4.1 illustrates the methods and

mathematical approach for finding optimized inverse kinematic solution for the robot

manipulator in order to find accurate joint space data of the robot while operating along

the path. Section 4.2 illustrates the process of creating the robotic cell or the human

robot interface in CAD environment where programmer can develop precise virtual

model of the robot and the application in a software. Section 4.3 proposes methods to

path planning for the particular application and information extraction in order to

create robot moving sequences. Section 4.4 proposes the mathematical approach for

mapping trajectories according to speed limitation with respect to path planning.

4.1 Mathematical approach for closed form solution of inverse kinematic of 6

DOF robot manipulator

Inverse kinematics problem of robot manipulator is very essential to solve to find joint

angles of each joints of the robot locating at a position and orientation of the robot end

effector. Robot users work in the cartesian space but the robot operates in the joint

space. Therefore, inverse kinematics is defined as transformation from cartesian space

to joint space. Finding joint angles is more important as robot end position is needed

to be located precisely. Solving inverse kinematic is the practical complication of

manipulator control and need numerical methods to solve. Inverse kinematics is more

complex comparatively and numerous solutions may exist for the identical robot

manipulator posture. Closed form solutions cannot be derived always since

trigonometric nonlinear simultaneous equations are consisted with inverse kinematics

of robot manipulator. There may not always exist solutions for inverse kinematics for

a particular range of robot end effector posture. Numerical methods are used to derive

25

inverse kinematic solutions to find joint space values when kinematic equations are

not possible to solve analytically [16].

Denso VP 6242 Robot is a 6 DOF robot manipulator consists of six revolute joints at

each links. Representation of the Denavit–Hartenberg (D-H) model can be used to

model connections of the robot links and joints [17]. It is needed for finding solutions

for forward kinematics and inverse kinematics.

The base of the manipulator is link 0 and not considered one of the six links generally.

Link 1 is connected to the base link by joint 1. Links are maintaining a fixed

relationship with joints at each link end. The common normal distance is ai(length) and

αi (twist) is the angle between the axes in a plane perpendicular to ai. The distance

between each joint is denoted as di and the angle between normal of each joint is

denoted as θi. Coordinates can be assigned for the VP 6242 robot as illustrated in

Figure 4.1.

Figure 4.1: Coordinate assignment – Denso VP 6242

z2

 x2

x0

x1

x3
z3

x4

 x5

x6

z4

z5

z6

z0

z1

26

According the coordinates assigned for the robot manipulator, relevant parameters can

be assigned [Table 2].

Table 2: Denso VP 6242 robot manipulator D-H parameters

Joint

i

αi-1 ai-1 di θi

1 0 0 0 θ 1

2 90o 0 0 90o+θ2

3 0 210 0 90o+θ3

4 90o 75 210 θ 4

5 -90o 0 0 θ 5

6 90o 0 70 θ 6

4.1.1 Robot manipulator forward kinematic

Determining forward kinematic problem is finding robot end effector position,

orientation given by joint angles. Every joint is consisted of position, orientation values

relative to its previous joint values. Transformation matrices denote these relations.

Following equation represents a general formulation for transformation matrix

calculation.

T

i-1

i
 = Rx(αi-1) Dx(ai-1) Rz(θi) Dz(di) (1)

Where

Rx(αi - 1) = rotation matrix about the X axis by αi – 1

Dx(ai - 1) = translation matrix along the X axis by ai – 1

Rz(θi) = rotation matrix about the Z axis by θi

Dz(di) = translation matrix along the Z axis by di

a, α, θ, d are manipulator D-H parameters.

27

Rx(αi-1) = [

1 0 0 0
0 cos α𝑖−1 − sin α𝑖−1 0
0 sin α𝑖−1 sin α𝑖−1 0
0 0 0 1

] (2)

Dx(ai - 1) = [

1 0 0 a𝑖−1

0 1 0 0
0 0 1 0
0 0 0 1

] (3)

Rz(θi) = [

cosθ𝑖 −𝑠𝑖𝑛θ𝑖 0 0
𝑠𝑖𝑛θ𝑖 cosθ𝑖 0 0

0 0 1 0
0 0 0 1

] (4)

Dz(di) = [

1 0 0 0
0 1 0 0
0 0 1 d𝑖

0 0 0 1

] (5)

And T

i-1

i
 is

[

cosθ𝑖 −𝑠𝑖𝑛θ𝑖 0 a𝑖−1

cos α𝑖−1 𝑠𝑖𝑛θ𝑖 cos α𝑖−1 cosθ𝑖 − sin α𝑖−1 −d𝑖 sin α𝑖−1

sin α𝑖−1 𝑠𝑖𝑛θ𝑖 sin α𝑖−1 cosθ𝑖 cos α𝑖−1 d𝑖 cos α𝑖−1

0 0 0 1

] (6)

T

0

1
 = [

𝐶1 −𝑆1 0 𝑎1

𝑆1 𝐶1 0 0
0 0 1 0
0 0 0 1

] (7)

T

1

2
 = [

𝐶2 −𝑆2 0 𝑎2

0 0 −1 0
𝑆2 𝐶2 0 0
0 0 0 1

] (8)

28

T

2

3
 = [

𝐶3 −𝑆3 0 210
𝑆3 𝐶3 0 0
0 0 1 0
0 0 0 1

] (9)

T

3

4
 = [

𝐶4 −𝑆4 0 75
0 0 −1 −210
𝑆4 𝐶4 0 0
0 0 0 1

] (10)

T

4

5
 = [

𝐶5 −𝑆5 0 0
0 0 −1 0
𝑆5 𝐶5 0 0
0 0 0 1

] (11)

T

5

6
 = [

𝐶6 −𝑆6 0 0
0 0 −1 −70
𝑆6 𝐶6 0 0
0 0 0 1

] (12)

Hence, multiplication of matrices (7,8,9,10,11,12) calculates the transformation matrix

T

0

6
 that gives end effector position, orientation with respect to frame 0 (13).

T

0

6
 = T

0

1
 T

1

2
 T

2

3
 T

3

4
 T

4

5
 T

5

6
 (13)

4.1.2 Robot manipulator inverse kinematic

Determining robot manipulator inverse kinematic is finding robot joint angles when

end effector position, orientation location known.

Considering Denso VP 6242 robot manipulator, last three joints axes intersect at one

point and it is referred as point A [figure 19]. The point A position can be considered

as independent of the consecutive last three joints θ4, θ5, θ6. Hence, previous three

joints are considered when determining Point A position.

End effector position and orientation = [Px,Py,Pz,γ,β,α]T

Where,

29

α is the angle between Z6 and Z0(Z axis of 6th and 1st joint)

β is the angle between Y6 and Y0(Y axis of 6th and 1st joint)

γ is the angle between X6 and X0(X axis of 6th and 1st joint)

The Point A position is denoted as Pa = [Pax, Pay, Paz]
T

Pa can be described as,

 Pax = Px - d6 * ax

 Pay = Py – d6 * ay

 Paz = Pz – d6 * az

Where

 ax = Z͞6 . X͞0 ay = Z͞6 . Y͞0 az = Z͞6 . Z͞0

Solution for the θ1, θ2 and θ3 can be derived as follows.

Pa, Point A position can be derived from homogeneous transformation matrix T

0

4

derived from T

0

1
 T

1

2
 T

2

3
 and T

3

4
 .

T

0

4
 = T

0

1
 T

1

2
 T

2

3
 T

3

4
 = [

𝑟11 𝑟12 𝑟13 P𝑎𝑥

𝑟21 𝑟22 𝑟23 P𝑎𝑦

𝑟31 𝑟32 𝑟33 P𝑎𝑧

0 0 0 1

]

Where

𝑟11 = S1S4 - C4(C1C2C3 - C1S2S3)

𝑟12 = C4S1 + S4(C1C2C3 - C1S2S3)

𝑟13 = - C1C2S3 - C1C3S2

𝑟21 = - C1S4 - C4(C2C3S1 - S1S2S3)

𝑟22 = S4(C2C3S1 - S1S2S3) - C1C4

𝑟23 = - C2S1S3 - C3S1S2

𝑟31 = -C4(C2S3 + C3S2)

𝑟32 = S4(C2S3 + C3S2)

𝑟33 = C2C3 - S2S3

P𝑎𝑥= 75 C1S2S3 – 75 C1C2C3 – 210 C1C2S3 – 210 C1C3S2 – 210 C1S2 (14)

30

P𝑎𝑦= 75 S1S2S3 – 75 C2C3S1 – 210 C2S1S3 – 210 C3S1S2 – 210 S1S2 (15)

P𝑎𝑧= 210 C2 + 210 C2C3 – 75 C2S3 – 75 C3S2 – 210 S2S3 (16)

Where Si = sinθi and Ci = cosθi

(14) × (S1) – (15) × (C1) = 0

Therefore,

Pax × S1 = Pay × C1

S1

𝑐1
 =

P𝑎𝑦

P𝑎𝑥

tanθ1 =
P𝑎𝑦

P𝑎𝑥
 hence θ1 = tan-1(

P𝑎𝑦

P𝑎𝑥
) (17)

by (14) × (C1) + (15) × (S1) , the following is obtained.

PaxC1 + PayS1 = 75S2S3 - 75C2C3 - 210C2S3 - 210C3S2 - 210S2 (18)

By taking Pax× C1 + Pay × S1 = m, the following can be obtained.

Therefore from (18) : -75 C23 – 210 S23 – 210S2 = m

Where C23 = Cos(θ2+θ3)

 S23 = Sin(θ2+θ3)

-75 C23 – 210 S23 = m + 210S2 (19)

From (16): 210C23 – 75S23 = Paz – 210C2 (20)

From (19) and (20), the following is obtained.

C23 =
14P𝑎𝑧

3315
 -

m

663
 -

70S2

221
 -

196C2

221
 (21)

S23 = -
P𝑎𝑧

663
 -

14m

3315
 -

196S2

221
 +

70C2

221
 (22)

Further simplifies by substituting following,

31

n =
14P𝑎𝑧

3315
 -

m

663
 and o =

−P𝑎𝑧

663
 -

14𝑚

3315

then equations (21) and (22) can be simplified as follows.

C23 = n -
70S2

221
 -

196C2

221
 (23)

S23 = o -
196S2

221
 +

70C2

221
 (24)

substituting the equations (23) and (24) to S23
2 + C23

2 = 1

then the following can be obtained.

196𝑐2
2

221
 -

392C2𝑛

221
 +

140C2𝑜

221
 + n2 -

140S2𝑛

221
 + o2 -

392S2𝑜

221
 +

196𝑠2
2

221
 = 1 (25)

Equation (25) can be simplified by taking p = n2 + o2 +
196

221

Substituting p then

-
392c2𝑛

221
 +

140c2𝑜

221
 -

140s2𝑛

221
 -

392s2𝑜

221
 = 1- p (26)

a S2 + b C2 = c

by substituting a = -
140𝑛

221
 -

392𝑜

221
 , b = -

392𝑛

221
 +

140𝑜

221
 and c = 1 – p for equation (26)

then the joint 2 angle θ2 can be calculated as follows.

θ2 = Atan2(a,b) ± Atan2((a2 +b2 – c2)1/2,c) (27)

from equation (19): -75 C23 – 210 S23 = m + 210S2 (28)

Considering equation e C23 + f S23 = g

by substituting e = -210 , f = -75 and g = m + 210S2 for equation (28)

then, θ2 + θ3 = Atan2(e,f) ± Atan2((e2 +f2 – g2)1/2,g) (29)

Hence the joint 3 angle value can be derived as follows.

θ3 = Atan2(e,f) ± Atan2((e2 + f2 – g2)1/2,g) - θ2 (30)

32

Solutions for θ4, θ5 and θ6

End effector orientation is defined by R

0

6
 . Since robot orientation is described by

rotation matrix, position A orientation is defined by R

0

3
 .

R

0

6
 can be described as R

0

6
 = R

0

3
 R

3

6

Matrix R

3

6
 can be described as

R

3

6
 = R

3

4
 R

4

5
 R

5

6
 = [

𝑐4𝑐5
2 − 𝑠4𝑠6 −𝑠4𝑐5 − 𝑐4𝑐5𝑠6 𝑐4𝑠5

𝑠5𝑐5 −𝑠5𝑠6 −𝑐5

𝑠4𝑐5
2 + 𝑐4𝑠6 𝑐4𝑐5 − 𝑠4𝑐5𝑠6 𝑠4𝑠5

] = [

𝑛11 𝑛12 𝑛13

𝑛21 𝑛22 𝑛23

𝑛31 𝑛32 𝑛33

]

Where Si = sin(θi) and Ci = cos(θi)

Then the joint 4 angle can be calculated as follows.

θ4 = tan-1
n33

n13
 when θ5 ≠ 0 (31)

when θ5 = 0 , the link axes are in collinear which the arms are at singular position. In

this condition, there is only one motion of robot end effector orientation which can be

calculated by sum or difference of θ4 and θ6. In most cases, current θ4 value is

considered.

T

4

6
 Can be derived as follows.

T

4

6
 =T

0
4

−1

T

0

6
 since θ1, θ2 , θ3 , θ4 and T

0

6
 are known.

T

4

6
 can be described as

T

4

6
 = T

4

5
 T

5

6
 = [

𝑐5𝑐6 −𝑐5𝑠6 𝑠5 70𝑠5

𝑠6 𝑐6 0 0
−𝑠5𝑐6 𝑠5𝑠6 𝑐5 70𝑐5

0 0 0 1

]

Where Si = sin(θi)

Ci = cos(θi)

Therefore joint 5 angle θ5 can be calculated as follows.

33

θ5 = sin-1 T

4

6
 (1,3) (32)

T

5

6
 Can be derived as follows.

T

5

6
 =T

0
5

−1

 T

0

6
 since θ1, θ2 θ3 ,θ4 , θ5 and T

0

6
 are known.

T

5

6
 can be described as follows.

T

5

6
 = [

𝑐5 −𝑠5 0 0
0 0 −1 0
𝑠5 𝑐5 0 0
0 0 0 1

]

Therefore, joint 6 angle θ6 can be calculated as,

θ6 = sin-1 T

5

6
 (1,2) (33)

4.2 The Human Robot interface

Denso VP 6242 robot manipulator can be virtually developed in a three dimensional

graphical user interface using available CAD software interfaces which is high

accurate and user friendly. Solidworks [18] is used to develop the CAD models. Model

for each links of the robot manipulator can be designed and modelled [Figure 4.2]. 3D

design is developed on 1:1 scale since it is used for creating simulation model in the

simulation interface.

34

Figure 4.2: Robot links 3D design models

Created 3D link models can be assembled in Solidworks in order to create the complete

robot assembly [Figure 4.3].

35

Figure 4.3: Robot manipulator assembly in Solidworks

Coordinate systems can be assigned to the relevant joint axes which are needed to

describe the relative position and orientation of each link [Figure 4.4]. Work

coordinate system can be assigned relative to developed mathematical model in section

4.1.

36

Figure 4.4: Coordinate system assignment in 3D model

Tool which is attached to the robot end can be modelled on 1:1 scale [Figure 4.5].

Figure 4.5:

Tool design – Welding torch

37

The machine head cover can be modelled on 1:1 scale [Figure 4.6].

Figure 4.6: Machine head cover – 3D design

The head cover can be located according the actual robot cell dimensions [Figure 4.7].

Figure 4.7: Machine Head cover location

Complete robot cell is illustrated in Figure 4.8.

38

Figure 4.8: Complete 3D design for the robot cell

4.3 Path planning and information extraction

Robot end moving line can be defined using a spline which is accurate to describe the

path efficiently [Figure 4.9].

Figure 4.9: Spline feature for robot moving path definition

39

Points are located along the line which assigned to represent robot moving sequence

[Figure 4.10].

Figure 4.10: Point allocation along the robot path

 Position values of these points relative to origin can be used for calculating forward

and inverse kinematics [Section 4.1]. X, Y and Z coordinate values are extracted from

the CAD spline. VB (Visual Basic) based macro is developed and run in Solidworks

to generate the point coordinate values [Figure 4.11]. VB based macro is also capable

to generate excel sheet with x y z point values [Figure 4.12].

Figure 4.11: VB based macro for data extraction

40

Figure 4.12: Data extracted values in Microsoft excel

4.4 Mathematical approach for mapping trajectories

Joint space trajectory generation in robotic field is commonly using for arranging

smooth motion between one set of joint angles with another set such as for travelling

between two specific cartesian postures having two joint angles sets for each posture.

This has to be done simultaneously while generating for all joints independently.

Generally initial assumptions are considered as two discrete joint value sets are known

and the requirement is to move between those two joint angles sets smoothly in joint

space. The velocity and acceleration need to vary smoothly in order to maintain

optimized robot movement without existing infinite jerks which make robot

manipulators inaccurate operations, high vibration and wear.

41

Each of joints has a motor drive which is connected to rotate the joint according to

control input by the robot controller system. The motor should be controlled under

technical specifications such as maximum angular velocity, joint motion range,

maximum inertia movement [11]. Each motor is limited with maximum angular

velocity and controllers should manipulate the robot arm under these limitations.

A trajectory can be specified by assigning initial and final conditions on a time period,

position, velocity, acceleration etc. Then, trajectory planning can be determined as a

function so that the required conditions are satisfied. This is considered as a boundary

condition problem which can be explained by considering polynomial functions such

as:

q(t) = a0 + a1t + a2t
2 + . . . + ant

n

The degree n of the polynomial depends on the number of boundary conditions which

should be determined by the trajectory smoothness we require. Given an initial and a

final time period i.e. ti and tf, a trajectory segment can be specified by assigning initial

and final conditions:

initial position and velocity qi, q̇i

final position and velocity qf, q̇f

A polynomial of degree 3 can be considered since there are four boundary conditions.

From the studies [10], it may be noticed that position and velocity profiles are

continuous functions of time but cannot be true for the acceleration so that

discontinuities among different segments can be occurred. Besides, there is no

possibility to specify initial and final values for each segment. In some cases, this is

not a major problem and it is enough to have smooth trajectories. But for most cases,

acceleration initial and final values for obtaining acceleration profiles is required for

avoiding possible infinite jerks of non-continuous jerk profiles. Therefore, fifth order

polynomial functions should be considered.

q(t) = a0 + a1t + a2t
2 + a3t

3 + a4t
4 + a5t

5

42

Boundary conditions are defined as follows:

q(ti) = qi : initial position at time ti q(tf) = qf : final position at time tf

q̇(ti) = q̇i : initial velocity at time ti q̇(tf) = q̇f : final velocity at time tf

q̈(ti) = q̈I : initial acceleration at time ti q̈(tf) = q̈f : final acceleration at time tf

The coefficient of the polynomial can be derived.

In this case, the coefficients of the polynomial are derived as follows.

a0 = qi (34)

a1 = q̇i (35)

a2 =
1

2
 q̈i (36)

a3 =
1

2T3 [20(qf − qi) − (8q̇f + 12q̇i)T − (3q̈f – q̈i)T
2] (37)

a4 =
1

2T4 [30(qi − qf) + (14q̇f + 16q̇i)T + (3q̈f – 2q̈i)T
2] (38)

a5 =
1

2T5 [12(qf − qi) − 6(q̇f + q̇i)T − (q̈f – q̈i)T
2] (39)

where T = tf − ti

Velocity, acceleration and jerk profile are derived as follows.

q̇(t) = a1 + 2a2t + 3a3t
2 + 4a4t

3 + 5a5t
4 (fourth order polynomial) (40)

q̈(t) = 2a2 + 6a3t + 12a4t
2 + 20a5t

3 (third order polynomial) (41)

q̈̇(t) = 6a3 + 24a4t + 60a5t
2 (second order polynomial) (42)

Robot position is intended to travel point to point movement along the path via

assigned positions. Boundary conditions of the trajectories are defined as follows.

q̇i = 0 : initial velocity at time ti q̇f = 0 : final velocity at time tf

q̈i = 0 : initial acceleration at time ti q̈f = 0 : final acceleration at time tf

Figure 4.13 illustrates Typical trajectory profile for position variation.

43

Figure 4.13: Typical trajectory profile for position variation

Figure 4.14 illustrates typical trajectory profile for velocity variation.

Figure 4.14: Typical trajectory profile for velocity variation

Figure 4.15 illustrates typical trajectory profile for acceleration variation.

44

Figure 4.15: Typical trajectory profile for acceleration variation

Figure 4.16 illustrates typical trajectory profile for Jerk variation.

Figure 4.16: Typical trajectory profile for jerk variation

45

From the equations (34) to (39) with boundary conditions assigned, following

expressions can be derived.

a0 = qi (43)

a1 = 0 (44)

a2 = 0 (45)

a3 =
1

2T3
 [20(qf − qi)] (46)

a4 =
1

2T4 [30(qi − qf)] (47)

a5 =
1

2T5 [12(qf − qi)] (48)

Maximum velocity of a particular joint is reached in the middle of the time duration

[Figure 32]. Therefore, maximum velocity can be derived as follows.

Applying solutions to the equation (40):

q̇(t) = 3
1

2T3 [20(qf − qi)] t
2 + 4

1

2T4 [30(qi − qf)] t
3 + 5

1

2T5 [12(qf − qi)] t
4

when t =
T

2

Then,

q̇(t)max = 3
1

2T3 [20(qf − qi)] (
T

2
) 2 + 4

1

2T4 [30(qi − qf)] (
T

2
) 3 + 5

1

2T5 [12(qf − qi)] (
T

2
)4

q̇(t)max =
15(qf− qi)

8T
 (49)

therefore, T (time period from one position to another) can be calculated for a

particular speed limit.

T ≥
15(qf− qi)

8q̇(t)𝑚𝑎𝑥
 (50)

Maximum velocity should be considered when the robot manipulator is operated with

a significant operating speed such that when robot is moving from one cartesian

location to another position in a limited time period. Variation of each joint speed is

varied depends on the location and robot arm configuration and speed limitation is

46

defined in order protect from possible breakdowns and enhance the robot operation.

The robot user can realize the possible speed limitations by mapping maximum speed

of each joint while moving along the path via assigned position points. Then the

position points can be allocated according to the observations in order to minimize the

joint speed variation and optimize the system in order to increase the productivity.

47

CHAPTER 5

SYSTEM DESIGN AND SIMULATION

Mathematical models developed for inverse kinematics are described in this chapter

and trajectory planning solutions proposed in Chapter 4. Section 5.1 presents the

procedure to implement inverse kinematic solution for the 6 DOF robot manipulator

which is needed to derive joint space data for further development of trajectory

planning. Section 5.2 presents the procedure to implement trajectory planning scheme

developed for moving robot arm effectively. Development of robot cell to trial in a

Simulation environment is illustrated in Section 5.3 which clarifies the accuracy and

the effectiveness of the mathematical solutions and schemes developed.

5.1 Design and Implementation of Inverse kinematic model

Algorithms can be developed using derived mathematical models developed in section

4. Matlab is a software tool used for analyzing data, developing algorithms, or creating

models [19].

The inverse kinematic model for the Denso VP 6242 robot arm has been developed

considering without end effector attachment. But we can see tools attached to the robot

arm end for many industrial uses such as painting nozzle, welding torch, cutter unit.

In this application, welding torch has been applied as an end effector. Therefore, the

tool end is subjected to move along the path. Path and Points can be assigned according

to user’s requirements [Figure 5.1].

Figure 5.1: Path and point allocation along the robot moving path

48

Robot end tool position and orientation are needed to define for calculating and

perform developed algorithm. Tool position is same as the point location of the defined

path. Orientation is defined as follows and the orientation is needed to persist the same

along the path [Figure 5.2 and Figure 5.3].

Figure 5.2: Tool orientation along the path

Figure 5.3: Tool orientation with respect to work 0 coordinate

49

The end-effector(tool) position, orientation with respect to base, known as T

0

Tool
 is

defined as follows.

T

0

Tool
 = [𝑅𝑇𝑜𝑜𝑙

0 𝑃𝑇𝑜𝑜𝑙
0

0 0 0 1
] (51)

Where 𝑃𝑇𝑜𝑜𝑙
0 = [Xtool, Ytool, Ztool]

T position coordinate and 𝑅𝑇𝑜𝑜𝑙
0 can be derived as

follows.

𝑅𝑇𝑜𝑜𝑙
0 = RZ (1800) RY (-900) RX(00) (52)

Then T

0

Tool
 can be derived as T

0

Tool
 = T

0

6
 T

6

Tool
 (53)

 T

6

Tool
 Tool position, orientation with respect to joint coordinate 6 is derived as

follows.

T

6

Tool
 = [

1 0 0 10
0 1 0 0
0 0 1 130
0 0 0 1

] [Figure 5.4] (54)

50

Figure 5.4: Tool dimensions

From equation (53), T

0

6
 can be derived as T

0

6
 = T

0

Tool
 T

6
Tool

−1

 (55)

X, Y, Z cartesian point data can be derived from the Solidworks CAD environment by

running a Visual Basic based macro [Section 4.3]. This macro exports cartesian point

values of each point location only and we need to manually input the Rx, Ry, Rz

rotation angles (around axes X ,Y, Z) for each point location or sequence which will

10mm

m
130mm

51

be needed for finding joint angles of the robot arm for each point location by

developing algorithms in Matlab software. This rotation angles are the angles values

defined in equation (52) [Figure 5.5].

Figure 5.5: Orientation defined by manually

The position of point A in the robot arm is needed to find in order to implement the

developed algorithms in section 4.1.2. Matlab codes can be written to implement this

procedure in order to find the Pa location.

52

Importing data extracted from the CAD features

C = xlsread('C:\Users\pcadmin\research\simulation1.xlsx','Sheet1');
tam = size(C);

Pa = [];
for i = 1 : tam

 T6EF = [1 0 0 10;0 1 0 0;0 0 1 130;0 0 0 1];

 X(i,1) = C(i,1);%X value
 Y(i,2) = C(i,2);%Y value
 Z(i,3) = C(i,3);%Z value

 al = C(i,6); %angle arond Z axis
 be = C(i,5);%angle around Y axis
 ga = C(i,4);%angle around X axis

 %Eular angle Z,Y,X
 Rz = [cosd(al) -sind(al) 0;
 sind(al) cosd(al) 0;
 0 0 1;];

 Ry = [cosd(be) 0 sind(be);
 0 1 0;
 -sind(be) 0 cosd(be);];

 Rx = [1 0 0;
 0 cosd(ga) -sind(ga);
 0 sind(ga) cosd(ga);];

 %Rotation Matrix
 A_R_B = Rz*Ry*Rx;

TT(:, :, i) = [A_R_B(1,1) A_R_B(1,2) A_R_B(1,3) X(i,1); A_R_B(2,1)

A_R_B(2,2) A_R_B(2,3) Y(i,2); A_R_B(3,1) A_R_B(3,2) A_R_B(3,3)

Z(i,3);

0 0 0 1];

T6EFT = ((T6EF)^(-1));
T(:, :, i) = TT(:, :, i)* T6EFT;

%Pa position
x = T(1,4,i)- (70)*T(1,3,i);%Pa x position
y = T(2,4,i)- (70)*T(2,3,i);%Pa y position
z = T(3,4,i)- (70)*T(3,3,i);%Pa z position
end

53

Algorithms for finding joint angles θ1, θ2 and θ3

Implementing equation (17) from section 4.1.2

%Calculating theta 1
theta1 = atan2d(y,x);

if theta1 == 180
 theta1 = 0;
end

if (90<theta1) && (theta1<180)
 theta1 = -(180 - theta1);
end

if (-180>theta1) && (theta1>-90)
 theta1 = 180 + theta1;
end
%}

Implementing equation (27) and (30)

%Calculating theta 2 and theta 3
c1 = cosd(theta1);
s1 = sind(theta1);

m = (x*c1) + (y*s1);
n = (-l/663) + (14*z/3315);
o = ((-14*l)/3315) - (z/663);
p = (196/221) + (n^2) + (o^2);

a_ = ((-140*n) - (392*o))/221;
b_ = ((140*o) - (392*n))/221;

c = 1 - p;

theta2 = atan2(a_,b_) + atan2(((a_^2 + b_^2 - c^2))^(1/2),c);
theta2 = (theta2*180)/pi;

if theta2 ==360
 theta2 = 0;
end

if (180<theta2) && (theta2<360)
theta2 = 360 - theta2;
end

%Theta 3

e = -210.00;
f = -75.00;
g = l+(210*(sind(theta2)));

54

h = ((e^2 + f^2 - g^2))^(1/2);

if isreal(h) == 1
 theta23_1 = atan2(e,f)+ atan2(h,g);
 theta23_1 = (theta23_1*180)/pi;

 theta_23_2 = atan2(e,f)- atan2(h,g);
 theta_23_2 = (theta_23_2*180)/pi;

 if (theta_23_2>-360) && (theta_23_2<-180)
 theta_23_2 = theta_23_2 + 360;
 end

 theta_3_1 = - theta2 + theta23_1;

 theta_3_2 = - theta2 + theta_23_2;

theta2_ = atan2(a_,b_) - atan2((a_^2 + b_^2 - c^2)^(1/2),c);
theta2_ = (theta2_*180)/pi;

if (theta2_ > -360) && (theta2_ < -180)
 theta2_ = 360 + theta2_;
end

e = -210.00;
f = -75.00;
g_ = l+(210*(sind(theta2_)));
h_ = (e^2 + f^2 - g_^2)^(1/2);

if isreal(h_) == 1
 theta23_3 = atan2(e,f)+ atan2(h_,g_);
 theta23_3 = (theta23_3*180)/pi;

 theta23_4 = atan2(e,f)- atan2(h_,g_);
 theta23_4 = (theta23_3*180)/pi;

 theta_3_3 = - theta2_ + theta23_3;

 theta_3_4 = - theta2_ + theta23_4;

else
 theta_3_3 = 0 - theta2_;

 theta_3_4 = 0 - theta2_;
end

55

Algorithms for finding joint angles θ4, θ5 and θ6

%DH parameters
al_0=0;al_1=90,al2=0;al_3=90;al_4=-90;al_5=90;
a_0=0;a_1=0;a_2=210;a_3=75;a_4=0;a_5=0;
d_1=0;d_2=0;d_3=0;d_4=210;d_5=0;d_6=70;
t_1=theta_1;t_2=90+theta_2;t_3=90+theta_3;

T1_0 = [cosd(t_1), -sind(t_1), 0,

a_0 ;
 sind(t_1)*cosd(al_0), cosd(t_1)*cosd(al_0), -sind(al_0),

-sind(al_0)*d_1;
 sind(t_1)*sind(al_0), cosd(t_1)*sind(al_0), cosd(al_0),

cosd(al_0)*d_1 ;
 0, 0, 0, 1

;]

T2_1 = [cosd(t_2), -sind(t_2), 0,

a_1 ;
 sind(t_2)*cosd(al_1), cosd(t_2)*cosd(al_1), -sind(al_1),

-sind(al_1)*d_2;
 sind(t_2)*sind(al_1), cosd(t_2)*sind(al_1), cosd(al_1),

cosd(al_1)*d_2 ;
 0, 0, 0, 1

;]

T3_2 = [cosd(t_3), -sind(t_3), 0,

a_2 ;
 sind(t_3)*cosd(al_2), cosd(t_3)*cosd(al_2), -sind(al_2),

-sind(al_2)*d_3;
 sind(t_3)*sind(al_2), cosd(t_3)*sind(al2)_ cosd(al_2),

cosd(al_2)*d_3 ;
 0, 0, 0, 1

;]

Implementing equation (31)

%Calculating theta4
T3_0 = T1_0*T2_1*T3_2;

R03 = [T3_0(1,1:3);
 T3_0(2,1:3);
 T3_0(3,1:3);];

R03T = transpose(R03);

R06 = [T(1,1:3);
 T(2,1:3);
 T(3,1:3);];

R6_3 = R03T*R06;

theta4 = atan2d(R6_3(3,3),R6_3(1,3));

56

if theta4 == 180
 theta4 = 0;
end

Implementing equation (32)

%Calculating theta 5
T_4 = theta4;
T4_3 = [cosd(t_4), -sind(t_4), 0,

a_3 ;
 sind(t_4)*cosd(al_3), cosd(t4)*cosd(al_3), -sind(al_3),

-sind(al_3)*d_4;
 sind(t_4)*sind(al_3), cosd(t_4)*sind(al_3), cosd(al_3),

cosd(al_3)*d_4 ;
 0, 0, 0, 1

;]

T4_0 = T3_0 * T4_3;

T4_0T = transpose(T4_0);
T46 = T4_0T * T;
theta5 = asind(T46(1,3));

Implementing equation (33)

%Calculating theta 6
t_4 = theta4;
t_5 = theta5;

T4_3 = [cosd(t_4), -sind(t_4), 0,

a_3 ;
 sind(t_4)*cosd(al_3), cosd(t_4)*cosd(al_3), -sind(al_3),

-sind(al_3)*d_4;
 sind(t_4)*sind(al_3), cosd(t_4)*sind(al_3), cosd(al_3),

cosd(al_3)*d_4 ;
 0, 0, 0, 1

;]

T5_4 = [cosd(t_5), -sind(t_5), 0,

a_4 ;
 sind(t_5)*cosd(al_4), cosd(t_5)*cosd(al_4), -sind(al_4),

-sind(al_4)*d_5;
 sind(t_5)*sind(al_4), cosd(t_5)*sind(al_4), cosd(al_4),

cosd(al_4)*d_5 ;
 0, 0, 0, 1

;]

T5_0 = T3_0*T4_3*T5_4;

R05 = [T5_0(1,1:3);
 T5_0(2,1:3);
 T5_0(3,1:3);];

57

R5_0T = transpose(R05);

R6_0 = [T(1,1:3);
 T(2,1:3);
 T(3,1:3);];

R6_5 = R5_0T*R6_0;

%Calculating theta6
theta6 = asind(-R6_5(1,2));

end

5.2 Algorithms for developing trajectory planning schemes in section 4.4

initial_time=0;
final_time=time;
timestep=.05;
x=initial_time:timestep:final_time;%time 0 to 20 seconds

t = size(x,2);

jtable(t,7)=0;%joint table
vtable(t,7)=0;%velociy table
atable(t,7)=0;%angular table
qtable(t,7)=0;%jerk table
jtable(:,1)=x;%table with time
vtable(:,1)=x;%table with time
atable(:,1)=x;%table with time
qtable(:,1)=x;%table with time
c = jtable(1:t,1);%time from 0 to 10seconds
t1 = size(c,1);

%joint parameters

 if line == 1

 jointi=[51.84,12.298,-119.428,-103.03,-53.81,111.40];%home

position [230,140,215,0,-90,180]

jointf=[t_t(line,1),t_t(line,2),t_t(line,3),t_t(line,4),t_t(line,5),

t_t(line,6)];
 else
 jointi=[t_t(line-1,1),t_t(line-1,2),t_t(line-1,3),t_t(line-

1,4),t_t(line-1,5),t_t(line-1,6)];

jointf=[t_t(line,1),t_t(line,2),t_t(line,3),t_t(line,4),t_t(line,5),

t_t(line,6)];
 end
%Joint boundary conditions
for k=1:6

ji=jointi(k); %Initial position
jf=jointf(k); % Final position

58

j_vi=0; % Initial Angular velocity is assumed as zero
j_vf=0; % Final Angular velocity is assumed as zero
j_ai=0;% Initial acceleration is assumed as zero
j_af=0; % Final acceleration is assumed as zero

% Assume arm comes to the end position position with time
t_i=0;%initial time
t_f=x(1,t);%final time
T=t_f-t_i;%time difference

%Coefficients calculation
for i = 1:t

a0=ji;
a1=j_vi;
a2=j_ai/2;
a3=[20*(jf-ji)-(8*j_vf+12*j_vi)*T-(3*j_af-j_ai)*T.^2]/(2*T.^3);
a4=[30*(ji-jf)+(14*j_vf+16*j_vi)*T+(3*j_af-2*j_ai)*T.^2]/(2*T.^4);
a5=[12*(jf-ji)-6*(j_vf+j_vi)*T-(j_af-j_ai)*T.^2]/(2*T.^5);
Coefficients_J1=[a_0 a_1 a_2 a_3 a_4 a_5]

jtable(i,k+1)=

a_0+(a_1*x(1,i))+(a_2*(x(1,i))^2)+(a_3*(x(1,i))^3)+(a_4*(x(1,i))^4)+

(a_5*(x(1,i))^5);
vtable(i,k+1)=

a_1+(2*a_2*x(1,i))+(3*a_3*(x(1,i)^2))+(4*a_4*(x(1,i)^3))+(5*a_5*(x(1

,i)^4));
atable(i,k+1)=

(2*a_2)+(6*a_3*x(1,i))+(12*a_4*(x(1,i)^2))+(20*a_5*(x(1,i)^3));
qtable(i,k+1)= 6*a_3+(24*a_4*x(1,i))+(60*a_5*(x(1,i)^2))

end

Implementation of maximum velocity mapping

for i = 1:tam

[jtable vtable atable qtable] = trajectory(i,1);%line number,time

vsize = size(vtable);

 for q = 2:7
 vmax(i,q-1) = max(abs(vtable(:,q)))
 end
end

vmaxtable =

array2table(vmax(2:tam,:),'VariableNames',{'J1','J2','J3','J4','J5',

'J6'});

figure;
plot(2:tam,vmax(2:tam,1:6))

59

ylabel('Maximum velocity(deg/sec)');xlabel('Line

number');set(gca,'XTick',[0:1:line]);
legend('joint 1','joint 2','joint 3','joint 4','joint 5','joint 6')

sample graph derived for the maximum velocity mapping is shown in Figure 5.6.

Figure 5.6: Maximum velocity mapping

Time calculation algorithm for reaching maximum velocity developed in section 4.4.

initial_time=0;
final_time=2;
timestep=.05;
x=initial_time:timestep:final_time;%time 0 to 20 seconds

t = size(x,2);

if joint == 1
 v_max = 250;
else
 if joint == 2
 v_max = 187;
 else
 if joint == 3
 v_max = 250;
 else

60

 if joint == 4
 v_max = 300;
 else
 if joint == 5
 v_max = 300;
 else
 if joint == 6
 v_max = 300;
 end
 end
 end
 end
 end
end

if line == 1

jointi=[51.84,12.298,-119.428,-103.03,-53.81,111.40];

jointf=[t_t(line,1),t_t(line,2),t_t(line,3),t_t(line,4),t_t(line,5),

t_t(line,6)];
 else
 jointi=[t_t(line-1,1),t_t(line-1,2),t_t(line-1,3),t_t(line-

1,4),t_t(line-1,5),t_t(line-1,6)];

jointf=[t_t(line,1),t_t(line,2),t_t(line,3),t_t(line,4),t_t(line,5),

t_t(line,6)];
end

ji = jointi(joint);
jf = jointf(joint);
dj = jf - ji;
j_vi=0; % Initial Angular velocity is assumed as zero
j_vf=0; % Final Angular velocity is assumed as zero
j_ai=0;% Initial acceleration is assumed as zero
j_af=0; % Final acceleration is assumed as zero

%Coefficients calculation

a_0=ji;
a_1=j_vi;
a_2=j_ai/2;
a_3=[20*(dj)-(8*j_vf+12*j_vi)*T-(3*j_af-j_ai)*T.^2]/(2*T.^3);
a_4=[30*(-dj)+(14*j_vf+16*j_vi)*T+(3*j_af-2*j_ai)*T.^2]/(2*T.^4);
a_5=[12*(dj)-6*(j_vf+j_vi)*T-(j_af-j_ai)*T.^2]/(2*T.^5);
Coefficients_J1=[a_0 a_1 a_2 a_3 a_4 a_5]

t_max = (15*dj)/(v_max*8);
time = abs(t_max);
end

61

5.3 Simulation model

Results taken by running developed algorithms are required to be verified in order to

troubleshoot the system and its outcome. Verification of Algorithms developed for

forward kinematics and inverse kinematics can be done by performing simulations in

a separate simulating software tool. Wincaps III robot programming tool from

Densowave corporation is used here for developing robot cell graphically and

simulating the experiments to get better results [20].

5.3.1 Creating Robot cell

Robot working cell can be developed virtually in Wincaps III and the summarized

procedure is illustrated below.

In Wincaps III, Robot arm can be selected and imported to the simulation module

[Figure 5.7].

Figure 5.7: Robot Arm selection in Wincaps III

Default configuration is shown in Figure 5.8.

62

Figure 5.8: Default Robot configuration in Wincaps III

Designs of Machine head cover and the tool can be imported to Wincaps III working

module and located according to actual working dimensions [Figure 5.9].

Figure 5.9: Machine head cover and Tool placement in the simulation module

Work and Tool coordinates are defined according to the developed coordinate

assignment [Figure 5.10].

63

Figure 5.10: Work and Tool coordinate assignment

Robot program is written and executed according to robot movement along the robot

end points positioned in the line [Figure 5.11].

Figure 5.11: Robot programs for simulating robot movement via points

Position and orientation data can be imported to the simulation module in order to run

the simulation [Figure 5.12].

New Work zero

J6 coordinate Tool coordinate

64

Figure 5.12: Import Point location data into the program

Execution of the program and the simulation can be done according to the user’s speed

requirement. Joint angle values of each joint can be observed at each robot end point

while moving via that point [Figure 5.13]. By observing these joint angles values,

experiments can be done to troubleshoot the algorithms and developed methods.

Optimization of the solution can be done in order to increase the accuracy.

Figure 5.13: Joint angles of the robot arm at point 1 position

Point location data

Point 1

Joint angle values at

Point 1 location

65

CHAPTER 6

RESULTS AND CONCLUSION

Validations of implemented algorithms are discussed in this chapter and systems in

chapter 4 and 5. Section 6.1 illustrates simulations done for various point cloud

allocation along the robot moving path. Optimization of path planning with trajectory

planning is validated by performing several trials. Suitability of using Computer Aided

Design features used as an offline robot programming approach for optimizing

trajectory planning of 6 DOF robot manipulator in order to enhance the productivity

is discussed in the conclusion in section 6.2. The thesis suggests additional

developments of the proposed trajectory and path planning scheme which can be

implemented in other robotic applications as the upcoming work in section 6.3.

6.1 Various point cloud simulation Results

Simulations for various point cloud of the path validate the efficiency of using offline

robot programming techniques for path planning and trajectory planning. By trialing

several scenarios with various point to point locations along the path, programmer can

conclude an optimized path planning scenario for the application which enhance the

productivity of the robot operation.

Simulation objectives:

 Observe and analyze on various cartesian point allocation along a predefined

path.

 Identification of Velocity behavior and limits.

 Identification of maximum velocity along task points/sequence.

 Optimization of point allocation in order to get smooth velocity variations

along the task sequence.

66

Procedure

1. Point allocation done as per the user’s parameters.

2. Point located data is extracted by running developed VB based macro.

3. Find joint angles for each point location.

4. Verify scenario joint angles results with simulation in Wincaps III.

5. Mapping maximum velocity variation of robot arm joint movement.

Robot task and operation requirements

Path length is 405.33mm and the target cycle time for the operation is needed to be

maintained below 60 seconds. [Figure 6.1]

Variation of the robot joint speeds should be low in order to get smooth operation

while optimizing the cycle time.

Figure 6.1: Robot path length

67

Scenario 1

Initial point to point distance can be calculated by taking the average point to point

distance which is 6.75mm (405.33mm / 60 point to point intervals) considering point

to point time duration as 1 second. These parameters can be considered as base

parameters to commence the simulation.

Parameters:

Point to point distance : 6. 75mm

Number of points : 61

Point to point time duration : 1 Second [Figure 6.2]

Figure 6.2: Point allocation scenario 1

Scenario 1 results

1. Joint angles can be calculated using developed algorithms as depicted in

Appendix C.

2. Simulation verifies that the resulted joint angles values are accurate and set in

order [Figure 6.3].

Maximum velocity of joint movement is generated and mapped in order to analyze the

robot movement [Figure 6.4].

68

Figure 6.3: Scenario 1 simulation results

Point 1 Point 15

Point 22 Point 30

Point 32 Point 39

Point 45 Point 61

69

Figure 6.4: Maximum velocity of joint rotation scenario 1

Observations:

 Smooth velocity profiles can be observed.

 Significant variation between joint 4, 6 and other joints can be observed.

Maximum velocity is 32.18 deg/sec (joint 4) and the maximum velocity of joint

1 is 7.196 deg/sec. Joint 2, 3 and 5 velocities are varied below joint 1 maximum

velocity. Maximum velocity difference between those joints is 24.984 deg/sec.

Scenario 2

In order to reduce the cycle time, number of points has to be reduced by increasing

point to point distance. Point to point distance is increased to 9.88mm from 6.75mm.

Parameters:

Point to point distance : 9.88mm (10mm approximately)

Number of points : 42

Point to point time duration : 1 Second [Figure 6.5]

70

Figure 6.5: Point allocation scenario 2

Scenario 2 results

3. Joint angles can be calculated using developed algorithms as depicted in Table

3.

4. Simulation verifies that the resulted joint angles values are accurate and set in

order [Figure 6.6].

5. Maximum velocity of joint movement is generated and mapped in order to

analyze the robot movement [Figure 6.7].

71

Table 3: Scenario 2 joint angles calculation results

Line No:
Joint

J1 J2 J3 J4 J5 J6

1 -54.462 -14.039 123.366 103.300 56.737 66.684

2 -54.462 -13.962 120.765 101.667 56.191 69.640

3 -54.462 -13.766 118.067 100.006 55.721 72.606

4 -54.352 -13.581 115.373 98.339 55.215 75.591

5 -53.836 -13.742 113.023 96.723 54.382 78.557

6 -52.891 -14.259 111.135 95.175 53.202 81.402

7 -51.510 -15.112 109.795 93.714 51.662 84.026

8 -49.688 -16.271 109.066 92.370 49.746 86.336

9 -47.432 -17.690 108.984 91.188 47.445 88.244

10 -44.772 -19.312 109.552 90.242 44.772 89.659

11 -41.774 -21.034 110.626 89.543 41.775 90.612

12 -38.464 -22.665 111.647 88.720 38.476 91.635

13 -34.821 -24.170 112.549 87.671 34.854 92.837

14 -30.824 -25.532 113.329 86.315 30.895 94.293

15 -26.542 -26.546 113.443 83.815 26.709 96.917

16 -22.324 -27.005 112.498 79.167 22.751 101.723

17 -18.630 -26.882 110.572 71.942 19.634 109.095

18 -15.867 -26.233 107.829 62.790 17.905 118.383

19 -12.626 -25.553 105.180 51.206 16.288 129.945

20 -8.149 -25.108 103.260 34.894 14.347 145.953

21 -2.819 -24.889 102.251 12.683 12.944 167.629

22 2.819 -24.889 102.251 -12.683 12.944 192.371

23 8.149 -25.108 103.260 -34.894 14.347 214.047

24 12.626 -25.553 105.180 -51.206 16.288 230.055

25 15.867 -26.233 107.829 -62.790 17.905 241.617

26 18.630 -26.882 110.572 -71.942 19.634 250.905

27 22.324 -27.005 112.498 -79.167 22.751 258.277

28 26.542 -26.546 113.443 -83.815 26.709 263.083

29 30.824 -25.532 113.329 -86.315 30.895 265.707

30 34.821 -24.170 112.549 -87.671 34.854 267.163

31 38.464 -22.665 111.647 -88.720 38.476 268.365

32 41.774 -21.034 110.626 -89.543 41.775 269.388

33 44.772 -19.312 109.552 -90.242 44.772 270.341

34 47.432 -17.690 108.984 -91.188 47.445 271.756

35 49.688 -16.271 109.066 -92.370 49.746 273.664

36 51.510 -15.112 109.795 -93.714 51.662 275.974

37 52.891 -14.259 111.135 -95.175 53.202 278.598

38 53.836 -13.742 113.023 -96.723 54.382 281.443

39 54.352 -13.581 115.373 -98.339 55.215 284.409

40 54.462 -13.766 118.067 -100.006 55.721 287.394

41 54.462 -13.962 120.765 -101.667 56.191 290.360

42 54.462 -14.039 123.366 -103.300 56.737 293.316

72

Figure 6.6: Scenario 2 simulation results

Point 1 Point 6

Point 15 Point 21

Point 22 Point 28

Point 37 Point 42

73

Figure 6.7: Maximum velocity of joint rotation scenario 2

Observations:

 Smooth velocity profiles can be observed.

 Significant variation between joint 4, 6 and other joints can be observed.

Maximum velocity is 47.56 deg/sec in joint 4 increased from 32.18 deg/sec and

the maximum velocity of joint 1 is 10.57 deg/sec from 7.196 deg/sec. Joint 2,

3 and 5 velocities are varied below joint 1 maximum velocity. Maximum

velocity difference between those joints is 36.99 deg/sec increased from 24.984

deg/sec.

Scenario 3

It is realized that the after point 14 up to 30, there is a significant variance in velocities

of joint 4 and joint 6 [Figure 6.8]. This variance can be reduced by reducing the

distance between points within that area. Therefore, point to point distance between

that area has been reduced up to 5mm.

74

Figure 6.8: Point identification of the velocity variance begins

Parameters:

Point to point distance : 5 and 10mm

Number of points : 57

Point to point time duration : 1 Second [Figure 6.9]

Figure 6.9: Point allocation scenario 3

Point 14

75

Scenario 3 results

1. Joint angles can be derived by running the algorithms developed [Appendix

D].

2. Simulation verifies that the resulted joint angles values are accurate and set in

order [Figure 6.10].

3. Maximum velocity of joint movement is generated and mapped in order to

analyze the robot movement [Figure 6.11].

76

Figure 6.10: Scenario 3 simulation results

Point 1

Point 20 Point 27

Point 8

Point 33 Point 40

Point 52 Point 57

77

Figure 6.11: Maximum velocity of joint rotation scenario 3

Observations

 Smooth velocity profiles can be observed.

 Sudden changes of the joint 1 and 5 profile can be observed.

 Variation between joint 4, 6 and other joints is reduced than scenario 2.

Maximum velocity is 23.78 deg/sec in joint 4 decreased from 47.56 deg/sec

and the maximum velocity of joint 1 is 7.492 deg/sec decreased from 10.57

deg/sec. Joint 2, 3 and 5 velocities are varied below joint 1 maximum velocity.

Maximum velocity difference between those joints is 16.288 deg/sec decreased

from 36.99 deg/sec deg/sec.

Scenario 4

It is realized that the variance of maximum velocities in joint 4 and joint 6 has been

reduced and velocities in joint 1 and joint 5 between position 14 to 15 and 44 to 45 are

subjected to sudden changes which make robot arm to sudden movement. This incident

can be occurred as the point to point distance changes from 10mm to 5mm between

78

those point locations. This effect can be minimized by allocating points which are

located its point to point distances from 10mm to 5mm gradually.

Parameters:

Point to point distance : 10mm (point 1 to 13 and 44 to 56)

 5mm (point 17 to 40)

Number of points : 56

Point to point time duration : 1 Second [Figure 6.12]

Figure 6.12: Point allocation scenario 4

Gradually
increase/decrease

point to point
distance

Point 13

Point 17 Point 40
Point 44

79

Scenario 4 results

1. Joint angles can be derived by running the algorithms developed [Appendix

E].

2. Simulation verifies that the resulted joint angles values are accurate and set in

order [Figure 6.13].

3. Maximum velocity of joint movement is generated and mapped in order to

analyze the robot movement [Figure 6.14].

80

Figure 6.13: Scenario 4 simulation results

Point 1 Point 7

Point 16 Point 26

Point 33 Point 43

Point 52 Point 56

81

Figure 6.14: Maximum velocity of joint rotation scenario 4

Observations:

 Smooth velocity profiles can be observed.

 Sudden changes of the joint 1 and 5 has been improved. Maximum velocity is

23.6 deg/sec in joint 4 and the maximum velocity of joint 1 is 6.831 deg/sec

decreased from 7.492 deg/sec. Joint 2, 3 and 5 velocities are varied below

joint 1 maximum velocity. Maximum velocity difference between those joints

is 16.769 deg/sec nearly same to scenario 3 results.

Total cycle time is 55 seconds which is below than target cycle time 60 seconds.

Maximum velocity variation between joints has been minimized up to 16.769 deg/sec

which is a significant improvement from the results of initial simulation and scenarios.

From the above simulations, it is clear that trajectory planning for the robot arm

moving along the path can be optimized by realizing the joint speed variations and

allocating task points with proper evaluation in order to increase the productivity. This

method is introduced as an offline programming technique where programmer can

generate the robot programs with optimum output in a different environment

separately and the robot operation is not needed to stop for programming.

82

6.2 Conclusion

SolidWorks features with computer aided design capabilities were used to create the

robot cell and generate programs for robot operation with significant accuracy. Path

planning of a robot movement can be done efficiently using Solidworks design features

and proposed method proves its capability to create the robot working cell virtually.

Developed design models can be used frequently for different type of robot cells unless

the robot, tool and work piece are not changed.

The proposed method for finding inverse kinematic solutions of the Denso VP 6242

robot manipulator can be used in many working areas in the robot cell and

implemented for other types of robot manipulators available in the industry.

Various point clouds with different point to point distances were tested and simulated

in Denso Wincaps III software. Optimized point cloud allocation along the robot

moving path, was derived gradually by simulating various point to point distances

while maintaining smooth robot joint movement. Total cycle time is reduced to 55

seconds which is below required maximum cycle time (60 seconds). Maximum

velocity difference between joint 1 and joint 4 has been reduced to 16.769 deg/sec

from 24.984 deg/sec which is a significant improvement from the results of initial

simulation and scenarios.

Mapping maximum velocity of joint variation between robot moving from one point

to another, is very effective to understand overall behavior of the robot motion along

the whole path. Simulation 3 Result demonstrates possible changes which are not

suitable for better robot operation can be identified and user can improve the path

planning according to its outcome needed. Simulation 4 result validates the possibility

of arranging robot smooth movement by allocating proper task point cloud.

Simulations validate that the point cloud allocation along the robot moving path can

be optimized by running several simulations with various point to point distances.

83

6.3 Future works

Computer Aided Design software and tools are still developing gradually with the

development of current manufacturing industries and its requirements hence the

efficiency of its utilization can be further improved. Developed inverse kinematic

model can be further developed for other types of robot manipulators and can be used

for other types of robotic applications.

84

BIBLIOGRAPHY

[1]"Automobile｜Search by industry｜usage｜industrial robots｜DENSO WAVE",

Denso-wave.com, 2018. [Online]. Available: https://www.denso-

wave.com/en/robot/katsuyou/automobile.html. [Accessed: 01- Oct- 2018].

[2]"RC8A controller｜Robot controller｜products｜industrial robots｜DENSO

WAVE", Denso-wave.com, 2018. [Online]. Available: https://www.denso-

wave.com/en/robot/product/controller/rc8a.html. [Accessed: 02- Oct- 2018].

[3]P. Neto, J. Pires and A. Moreira, "CAD-based off-line robot programming", 2010

IEEE Conference on Robotics, Automation and Mechatronics, 2010.

[4]"Robot Offline Programming - Delfoi", Delfoi.com, 2018. [Online]. Available:

https://www.delfoi.com/web/solutions/robotiikka/en_GB/offline/. [Accessed: 02-

Oct- 2018].

[5]L. Ferreira, Y. Figueira, I. Iglesias and M. Souto, "Offline CAD-based Robot

Programming and Welding Parametrization of a Flexible and Adaptive Robotic Cell

Using Enriched CAD/CAM System for Shipbuilding", Procedia Manufacturing, vol.

11, pp. 215-223, 2017.

[6]"FreeCAD: Your Own 3D Parametric Modeler", Freecadweb.org, 2018. [Online].

Available: https://www.freecadweb.org/. [Accessed: 02- Oct- 2018].

[7]A. Khan, C. Xiangming, Z. Xingxing and W. Quan, "Closed form inverse

kinematics solution for 6-DOF underwater manipulator", 2015 International

Conference on Fluid Power and Mechatronics (FPM), 2015.

[8]M. Jabbar Hayawi, "Analytical Inverse kinematics Algorithm Of A 5-DOF Robot

Arm", Journal of College of Education for Pure Science, vol. 1, no. 4, pp. 92-104,

2011.

[9]S. Macfarlane and E. Croft, "Jerk-bounded manipulator trajectory planning: design

for real-time applications", IEEE Transactions on Robotics and Automation, vol. 19,

no. 1, pp. 42-52, 2003.

85

[10]J. Craig, Introduction to robotics. Upper Saddle River, NJ: Pearson Education,

2005.

[11]"VP-6242", Densorobotics.com, 2018. [Online]. Available:

https://densorobotics.com/content/user_manuals/19/005929.html. [Accessed: 05-

Oct- 2018].

[12]"ABB Arc Welding Robots", RobotWorx, 2018. [Online]. Available:

https://www.robots.com/applications/arc-welding/brands/abb. [Accessed: 23- Oct-

2018].

[13]"Arc Welding Faults - Examples of Speed, Arc Length, and Current Problems",

Mig-welding.co.uk, 2018. [Online]. Available: https://www.mig-welding.co.uk/arc-

welding-faults.htm. [Accessed: 23- Oct- 2018].

[14]M. sources, "Manual welding power sources | Panasonic Industry Europe",

Eu.industrial.panasonic.com, 2018. [Online]. Available:

https://eu.industrial.panasonic.com/products/robot-welding-system-solutions/power-

sources/manual. [Accessed: 23- Oct- 2018].

[15]"Aristo® RT - Arc welding torch / air-cooled / robotic by ESAB | DirectIndustry",

Directindustry.com, 2018. [Online]. Available:

http://www.directindustry.com/prod/esab/product-18224-1722887.html. [Accessed:

23- Oct- 2018].

[16]S. Kucuk and Z. Bingul, "Robot Kinematics: Forward and Inverse

Kinematics", Industrial Robotics: Theory, Modelling and Control, 2006. Available:

10.5772/5015.

 [17]J. Denavit and R. Hartenberg, "A Kinematic Notation for Lower-pair Mechanisms

Based on Matrices", Journal of Applied Mechanics, vol. 22, pp. 215-221, 1955.

[18]"3D CAD Design Software", Solidworks.com, 2018. [Online]. Available:

https://www.solidworks.com/. [Accessed: 23- Oct- 2018].

[19]"MATLAB - MathWorks", Mathworks.com, 2018. [Online]. Available:

https://www.mathworks.com/products/matlab.html. [Accessed: 23- Oct- 2018].

[20]"WINCAPSⅢ｜Software｜products｜industrial robots｜DENSO WAVE",

Denso-wave.com, 2018. [Online]. Available: https://www.denso-

wave.com/en/robot/product/software/wincaps3.html. [Accessed: 23- Oct- 2018].

86

APPENDICES

Appendix A

 Algorithms for inverse kinematic solution of 6 DOF robot manipulator

and trajectory planning in Matlab

 Machine head cover dimensions

 Robotic cell layout

Appendix B - Dimensions and the configuration of the Denso VP 6242

Appendix C - Scenario 2 joint angles calculation results

Appendix D - Scenario 3 joint angles calculation results

87

Appendix A

Algorithms for inverse kinematic solution of 6 DOF robot manipulator and

trajectory planning in Matlab

88

The main program

clear all;
clc;

syms c1 s1 d3 c23 s23 s2 c2 al be t l
syms m n p
syms s1 s2 s3 s4 s5 s6 c1 c2 c3 c4 c5 c6;
global tt;

%position read

C = xlsread('C:\Users\pcadmin\Desktop\MSc\research

matlab\simulation3.xlsx','Sheet1');
tam = size(C);

Pa = [];
for i = 1 : tam

 T6EF = [1 0 0 10;0 1 0 0;0 0 1 130;0 0 0 1];

 X(i,1) = C(i,1);%X value
 Y(i,2) = C(i,2);%Y value
 Z(i,3) = C(i,3);%Z value

 al = C(i,6); %angle arond Z axis
 be = C(i,5);%angle around Y axis
 ga = C(i,4);%angle around X axis

 %Eular angle Z,Y,X
 Rz = [cosd(al) -sind(al) 0;
 sind(al) cosd(al) 0;
 0 0 1;];

 Ry = [cosd(be) 0 sind(be);
 0 1 0;
 -sind(be) 0 cosd(be);];

 Rx = [1 0 0;
 0 cosd(ga) -sind(ga);
 0 sind(ga) cosd(ga);];
 %Rotation Matrix
 ARB = Rz*Ry*Rx;

TT(:, :, i) = [A_R_B(1,1) A_R_B(1,2) A_R_B(1,3) X(i,1); A_R_B(2,1)

A_R_B(2,2) A_R_B(2,3) Y(i,2); A_R_B(3,1) A_R_B(3,2) A_R_B(3,3)

Z(i,3);

0 0 0 1];
T6EFT = ((T6EF)^(-1));
T(:, :, i) = TT(:, :, i)* T6EFT;
%Pa position
x = T(1,4,i)- (70)*T(1,3,i);%Pa x position
y = T(2,4,i)- (70)*T(2,3,i);%Pa y position

89

z = T(3,4,i)- (70)*T(3,3,i);%Pa z position

distance = (x^2 + y^2 + z^2)^(1/2);
if distance > 420
 disp('error');
 pause;
end

%Calculating theta 1
theta1 = atan2d(y,x);

if theta1 == 180
 theta1 = 0;
end

if (90<theta1) && (theta1<180)
 theta1 = -(180 - theta1);
end

if (-180>theta1) && (theta1>-90)
 theta1 = 180 + theta1;
end
%}

%Calculating theta 2 and theta 3
c1 = cosd(theta1);
s1 = sind(theta1);

l = (x*c1) + (y*s1);
m = (-l/663) + (14*z/3315);
n = ((-14*l)/3315) - (z/663);
p = (196/221) + (m^2) + (n^2);

a_ = ((-140*m) - (392*n))/221;
b_ = ((140*n) - (392*m))/221;

c = 1 - p;

theta2 = atan2(a_,b_)+ atan2(((a_^2 + b_^2 - c^2))^(1/2),c);
theta2 = (theta2*180)/pi;

if theta2 ==360
 theta2 = 0;
end

if (180<theta2) && (theta2<360)
theta2 = 360 - theta2;
end

%Theta 3

90

e = -210.00;
f = -75.00;
g = l+(210*(sind(theta2)));
h = ((e^2 + f^2 - g^2))^(1/2);

if isreal(h) == 1
 theta_23_1 = atan2(e,f)+ atan2(h,g);
 theta_23_1 = (theta_23_1*180)/pi;

 theta_23_2 = atan2(e,f)- atan2(h,g);
 theta_23_2 = (theta_23_2*180)/pi;

 if (theta_23_2>-360) && (theta_23_2<-180)
 theta_23_2 = 360 + theta_23_2;
 end

 theta_3_1 = - theta2 + theta_23_1;

 theta_3_2 = - theta2 + theta_23_2;

else
 theta_3_1 = 0 - theta2;

 theta_3_2 = 0 - theta2;
end

theta2_ = atan2(a,b)- atan2((a_^2 + b_^2 - c^2)^(1/2),c);
theta2_ = (theta2_*180)/pi;

if (theta2_ > -360) && (theta2_ < -180)
 theta2_ = 360 + theta2_;
end

e = -210.00;
f = -75.00;
g_ = l+(210*(sind(theta2_)));
h_ = (e^2 + f^2 - g_^2)^(1/2);

if isreal(h_) == 1
 theta_23_3 = atan2(e,f)+ atan2(h_,g_);
 theta_23_3 = (theta_23_3*180)/pi;

 theta_23_4 = atan2(e,f)- atan2(h_,g_);
 theta_23_4 = (theta_23_3*180)/pi;

 theta_3_3 = - theta2_ + theta_23_3;

 theta_3_4 = - theta2_ + theta_23_4;

else
 theta_3_3 = 0 - theta2_;

 theta_3_4 = 0 - theta2_;

91

end

%calculating theta 4,5,6 - four solutions

[theta_4_1 theta_5_1 theta_6_1] =

theta456calcalternative(theta1,theta2,theta_3_1,T(:,:,i))

[Orientation1 position1] = forwardkinamatic(theta1, theta2,

theta_3_1, theta_4_1, theta_5_1, theta_6_1,T(:,:,i))

[theta_4_2 theta_5_2 theta_6_2] =

theta456calcalternative(theta1,theta2,theta_3_2,T(:,:,i))

[Orientation2 position2] = forwardkinamatic(theta1, theta2,

theta_3_2, theta_4_2, theta_5_2, theta_6_2,T(:,:,i))

[theta_4_3 theta_5_3 theta_6_3] =

theta456calcalternative(theta1,theta2_,theta_3_3,T(:,:,i))

[Orientation3 position3] = forwardkinamatic(theta1, theta2_,

theta_3_3, theta_4_3, theta_5_3, theta_6_3,T(:,:,i))

[theta_4_4 theta_5_4 theta_6_4] =

theta456calcalternative(theta1,theta2_,theta_3_4,T(:,:,i))

[Orientation4 position4] = forwardkinamatic(theta1, theta2_,

theta_3_4, theta_4_4, theta_5_4, theta_6_4,T(:,:,i))

%four solutions in table
[table(:,1,i)] =

[position1;theta1;theta2;theta_3_1;theta_4_1;theta_5_1;theta_6_1];
[table(:,2,i)] =

[position2;theta1;theta2;theta_3_2;theta_4_2;theta_5_2;theta_6_2];
[table(:,3,i)] =

[position3;theta1;theta2_;theta_3_3;theta_4_3;theta_5_3;theta_6_3];
[table(:,4,i)] =

[position4;theta1;theta2_;theta_3_4;theta_4_4;theta_5_4;theta_6_4];

for k = 1:4

 dx(i,k)= table(1,k,i)-T(1,4,i);
 dy(i,k)= table(2,k,i)-T(2,4,i);
 dz(i,k)= table(3,k,i)-T(3,4,i);

if (abs(dx(i,k))>0) && (abs(dx(i,k))< 0.001)
 dx(i,k)= 0;
else
 dx(i,k)= dx(i,k);
end

92

if (abs(dy(i,k))>0) && (abs(dy(i,k))< 0.001)
 dy(i,k)= 0;
else
 dy(i,k)= dy(i,k);
end

if (abs(dz(i,k))>0) && (abs(dz(i,k))< 0.001)
 dz(i,k)= 0;
else
 dz(i,k)= dz(i,k);
end

end
end;

%Selecting correct solution
tt(1,1:6)=[0 0 0 0 0 0];

for o = 1:tam
for j = 1:4
if dx(o,j)== 0 && dy(o,j) == 0 && dz(o,j) == 0
 tt(o,1) = table(4,j,o);
 tt(o,2) = table(5,j,o);
 tt(o,3) = table(6,j,o);
 tt(o,4) = table(7,j,o);
 tt(o,5) = table(8,j,o);
 tt(o,6) = table(9,j,o);

end
end
end;

for aa = 1:tam
 for bb = 1:6
 if (abs(tt(aa,bb))>0) && (abs(tt(aa,bb))< 0.001)

 tt(aa,bb)=0;
 else
 tt(aa,bb) = tt(aa,bb);
 end
 end
end;

for ii = 1:tam
 if Y(ii,2)<0
 tt(ii,4) = 180+tt(ii,4);
 else
 tt(ii,4) = -180+tt(ii,4);
 end

 if tt(ii,4) > 270

93

 tt(ii,4) = tt(ii,4) - 360;
 end

 if tt(ii,4) < -270
 tt(ii,4) = tt(ii,4) + 360;
 end

 tt(ii,5) = -tt(ii,5);

 tt(ii,6) = -180+tt(ii,6);

end

for i = 1:tam
 if 90<tt(i,4) && tt(i,4)<180
 tt(i,6) = tt(i,6);
 else if 0<tt(i,4) && tt(i,4)<90
 tt(i,6) = -90 - (tt(i,6)+90);
 else if 0>tt(i,4) && tt(i,4)>-90
 tt(i,6) = -90 - (tt(i,6)+90);
 else if -90>tt(i,4) && tt(i,4)>-180
 tt(i,6) = 90 + (270 + tt(i,6));
 end
 end
 end
 end
end

for i= 1:tam
 tt(i,6) = 180 + tt(i,6);
end

tttable =

array2table(tt,'VariableNames',{'J1','J2','J3','J4','J5','J6'});

%Denso simulation 1
Densot(:,1) = tt(:,1);
Densot(:,2) = -tt(:,2);
Densot(:,3) = -tt(:,3);
Densot(:,4) = tt(:,4);
Densot(:,5) = -tt(:,5);
Densot(:,6) = tt(:,6);

Densottable =

array2table(Densot,'VariableNames',{'J1','J2','J3','J4','J5','J6'});

for i = 1:tam

[jtable vtable atable qtable] = trajectory(i,1);%line number,time

vsize = size(vtable);

 for q = 2:7
 vmax(i,q-1) = max(abs(vtable(:,q)))
 end

94

end

vmaxtable =

array2table(vmax(2:tam,:),'VariableNames',{'J1','J2','J3','J4','J5',

'J6'});

figure;
plot(2:tam,vmax(2:tam,1:6))
ylabel('Maximum velocity(deg/sec)');xlabel('Line

number');set(gca,'XTick',[1:1:tam]);
legend('joint 1','joint 2','joint 3','joint 4','joint 5','joint 6')
%maxx = max(abs(vtable(:,3)));

for ii = 1:tam
 for jj=1:6
 if vmax(ii,1)>250
 vmaxd(ii,1)=vmax(ii,1)-250;
 else
 vmaxd(ii,1)= 0;
 end
 if vmax(ii,2)>187
 vmaxd(ii,2)=vmax(ii,2)-187;
 else
 vmaxd(ii,2)= 0;
 end
 if vmax(ii,3)>250
 vmaxd(ii,3)=vmax(ii,3)-250;
 else
 vmaxd(ii,3)= 0;
 end
 if vmax(ii,4)>300
 vmaxd(ii,4)=vmax(ii,4)-300;
 else
 vmaxd(ii,4)= 0;
 end
 if vmax(ii,5)>300
 vmaxd(ii,5)=vmax(ii,5)-300;
 else
 vmaxd(ii,5)= 0;
 end
 if vmax(ii,6)>300
 vmaxd(ii,6)=vmax(ii,6)-300;
 else
 vmaxd(ii,6)= 0;
 end
 end
end

for ii=1:tam

 vd(ii,1) = max(vmaxd(ii,:));
 for jj=1:6
 if vd(ii,1)== vmaxd(ii,jj)

95

 vd(ii,2) = jj;
 end
 if vd(ii,1) == 0
 vd(ii,2) = 0;
 end

 end
end

%Displaying velocity max values in same vmax table
for i = 1:tam
 if vmax(i,1)>250
 vmax(i,7)=vmax(i,1);
 end
 if vmax(i,2)>187
 vmax(i,8)=vmax(i,2);
 end
 if vmax(i,3)>250
 vmax(i,9)=vmax(i,3);
 end
 if vmax(i,4)>300
 vmax(i,10)=vmax(i,4);
 end
 if vmax(i,5)>300
 vmax(i,11)=vmax(i,5);
 end
 if vmax(i,6)>300
 vmax(i,12)=vmax(i,6);
 end
end

96

Sub functions 1

function [Orientation position] =

forwardkinamatic(theta_1,theta_2,theta_3,theta_4,theta_5,theta_6,T)

format short g
al_0=0;al_1=90,al_2=0;al_3=90;al_4=-90;al_5=90;
a_0=0;a_1=0;a_2=210;a_3=75;a_4=0;a_5=0;
d_1=0;d_2=0;d_3=0;d_4=210;d_5=0;d_6=70;
t_1=theta_1;
t_2=90+theta_2;
t_3=90+theta_3;
t_4=theta_4;
t_5=theta_5;
t_6=theta_6;
T01 = [cosd(t_1), -sind(t_1), 0, a_0

;
sind(t_1)*cosd(al_0), cosd(t_1)*cosd(al_0), -sind(al_0), -

sind(al_0)*d_1;
sind(t_1)*sind(al_0), cosd(t_1)*sind(al_0), cosd(al_0),

cosd(al_0)*d_1 ;
0, 0, 0, 1

;]

T12 = [cosd(t_2), -sind(t_2), 0, a_1

;
sind(t2)*cosd(al_1), cosd(t_2)*cosd(al_1), -sind(al_1), -

sind(al_1)*d_2;
sind(t_2)*sind(al_1), cosd(t_2)*sind(al_1), cosd(al_1),

cosd(al_1)*d_2 ;
0, 0, 0, 1

;]

T23 = [cosd(t_3), -sind(t_3), 0,

a_2 ;
sind(t_3)*cosd(al_2), cosd(t_3)*cosd(al_2), -sind(al_2), -

sind(al2)*d_3;
sind(t_3)*sind(al_2), cosd(t_3)*sind(al_2), cosd(al_2),

cosd(al_2)*d_3 ;
0, 0, 0, 1

;]

T34 = [cosd(t_4), -sind(t_4), 0,

a_3 ;
sind(t_4)*cosd(al_3), cosd(t_4)*cosd(al_3), -sind(al_3), -

sind(al3)*d_4;
sind(t_4)*sind(al_3), cosd(t_4)*sind(al_3), cosd(al_3),

cosd(al_3)*d_4 ;
0, 0, 0, 1

;]

T45 = [cosd(t_5), -sind(t_5), 0,

a_4 ;

97

sind(t_5)*cosd(al4), cosd(t_5)*cosd(al_4), -sind(al_4), -

sind(al_4)*d_5;
sind(t_5)*sind(al_4), cosd(t_5)*sind(al_4), cosd(al_4),

cosd(al_4)*d_5 ;
 0, 0, 0,

1 ;]

T56 = [cosd(t_6), -sind(t_6), 0,

a_5 ;
sind(t_6)*cosd(al_5), cosd(t_6)*cosd(al_5), -sind(al_5), -

sind(al_5)*d_6;
sind(t_6)*sind(al_5), cosd(t_6)*sind(al_5), cosd(al_5),

cosd(al_5)*d_6 ;
 0, 0, 0,

1 ;]

T_06 = T01 * T12 * T23 * T34 * T45 * T56 ;

Orientation = T_06(1:3,1:3)

position = T_06(1:3,4)

end

98

Sub function 2

function [theta4 theta5 theta6 R6_3, T4_0] =

theta456calc(theta_1,theta_2,theta_3,T)

%DH parameters
al_0=0;al_1=90,al_2=0;al_3=90;al_4=-90;al_5=90;
a_0=0;a_1=0;a_2=210;a_3=75;a_4=0;a_5=0;
d_1=0;d_2=0;d_3=0;d_4=210;d_5=0;d_6=70;
t_1=theta_1;t_2=90+theta_2;t_3=90+theta_3;

T1_0 = [cosd(t_1), -sind(t_1), 0,

a_0 ;
 sind(t_1)*cosd(al_0), cosd(t_1)*cosd(al_0), -sind(al_0),

-sind(al_0)*d_1;
 sind(t_1)*sind(al_0), cosd(t_1)*sind(al_0), cosd(al_0),

cosd(al_0)*d_1 ;
 0, 0, 0, 1

;]

T2_1 = [cosd(t_2), -sind(t_2), 0,

a_1 ;
 sind(t_2)*cosd(al_1), cosd(t_2)*cosd(al_1), -sind(al_1),

-sind(al_1)*d_2;
 sind(t_2)*sind(al_1), cosd(t_2)*sind(al_1), cosd(al_1),

cosd(al_1)*d_2 ;
 0, 0, 0, 1

;]

T3_2 = [cosd(t_3), -sind(t_3), 0,

a_2 ;
 sind(t_3)*cosd(al_2), cosd(t_3)*cosd(al_2), -sind(al_2),

-sind(al_2)*d_3;
 sind(t_3)*sind(al_2), cosd(t_3)*sind(al_2), cosd(al_2),

cosd(al2)*d_3 ;
 0, 0, 0, 1

;]

%Calculating theta4
T3_0 = T1_0*T2_1*T3_2;

R03 = [T3_0(1,1:3);
 T3_0(2,1:3);
 T3_0(3,1:3);];

R03T = transpose(R03);

R06 = [T(1,1:3);
 T(2,1:3);
 T(3,1:3);];

R6_3 = R03T*R06;

99

theta4 = atan2d(R6_3(3,3),R6_3(1,3));

if theta4 == 180
 theta4 = 0;
end

%

%Calculating theta 5
T_4 = theta4;
T4_3 = [cosd(t_4), -sind(t_4), 0,

a_3 ;
 sind(t_4)*cosd(al_3), cosd(t_4)*cosd(al_3), -sind(al_3),

-sind(al_3)*d_4;
 sind(t_4)*sind(al_3), cosd(t_4)*sind(al_3), cosd(al_3),

cosd(al_3)*d_4 ;
 0, 0, 0, 1

;]

T4_0 = T3_0 * T4_3;

T4_0T = transpose(T4_0);
T46 = T4_0T * T;
theta5 = asind(T46(1,3));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Calculating theta 6
t_4 = theta4;
t_5 = theta5;

T4_3 = [cosd(t_4), -sind(t_4), 0,

a_3 ;
 sind(t_4)*cosd(al_3), cosd(t_4)*cosd(al_3), -sind(al_3),

-sind(al_3)*d_4;
 sind(t_4)*sind(al_3), cosd(t_4)*sind(al_3), cosd(al_3),

cosd(al_3)*d_4 ;
 0, 0, 0, 1

;]

T5_4 = [cosd(t_5), -sind(t_5), 0,

a_4 ;
 sind(t_5)*cosd(al_4), cosd(t_5)*cosd(al_4), -sind(al_4),

-sind(al_4)*d_5;
 sind(t_5)*sind(al_4), cosd(t_5)*sind(al_4), cosd(al_4),

cosd(al_4)*d_5 ;
 0, 0, 0, 1

;]

T5_0 = T3_0*T4_3*T5_4;

100

R05 = [T5_0(1,1:3);
 T5_0(2,1:3);
 T5_0(3,1:3);];

R5_0T = transpose(R05);

R6_0 = [T(1,1:3);
 T(2,1:3);
 T(3,1:3);];

R6_5 = R5_0T*R6_0;

%Calculating theta6
theta6 = asind(-R6_5(1,2));

end

101

Sub function 3

function time = timecalc(line,joint)

global tt;

syms a1 a2 a3 a4 a5 v T dj ji
eqn = a1+(2*a2*T)+(3*a3*(T^2))+(4*a4*(T^3))+(5*a5*(T^4))-v == 0;
solt = solve(eqn,T);

initial_time=0;
final_time=2;
timestep=.05;
x=initial_time:timestep:final_time;%time 0 to 20 seconds

t = size(x,2);

if joint == 1
 v_max = 250;
else
 if joint == 2
 v_max = 187;
 else
 if joint == 3
 v_max = 250;
 else
 if joint == 4
 v_max = 300;
 else
 if joint == 5
 v_max = 300;
 else
 if joint == 6
 v_max = 300;
 end
 end
 end
 end
 end
end

if line == 1

 jointi=[51.84,12.298,-119.428,-103.03,-53.81,111.40];%home

jointf=[t_t(line,1),t_t(line,2),t_t(line,3),t_t(line,4),t_t(line,5),

t_t(line,6)];
 else
 jointi=[t_t(line-1,1),t_t(line-1,2),t_t(line-1,3),t_t(line-

1,4),t_t(line-1,5),t_t(line-1,6)];

102

jointf=[t_t(line,1),t_t(line,2),t_t(line,3),t_t(line,4),t_t(line,5),

t_t(line,6)];
end

ji = jointi(joint);
jf = jointf(joint);
dj = jf - ji;
j_vi=0; % Initial Angular velocity is assumed as zero
j_vf=0; % Final Angular velocity is assumed as zero
j_ai=0;% Initial acceleration is assumed as zero
j_af=0; % Final acceleration is assumed as zero

%Coefficients calculation

a0=ji;
a1=j_vi;
a2=j_ai/2;
a3=[20*(dj)-(8*j_vf+12*j_vi)*T-(3*j_af-j_ai)*T.^2]/(2*T.^3);
a4=[30*(-dj)+(14*j_vf+16*j_vi)*T+(3*j_af-2*j_ai)*T.^2]/(2*T.^4);
a5=[12*(dj)-6*(j_vf+j_vi)*T-(j_af-j_ai)*T.^2]/(2*T.^5);
Coefficients_J1=[a0 a1 a2 a3 a4 a5]

vmaximum = (15*dj)/(8*T);

t_max = (15*dj)/(v_max*8);
time = abs(t_max);
end

103

sub function 4

function [jtable vtable atable qtable] = trajectory(line,time)

global tt;
initial_time=0;
final_time=time;
timestep=.05;
x=initial_time:timestep:final_time;%time 0 to 20 seconds

t = size(x,2);

jtable(t,7)=0;%joint table
vtable(t,7)=0;%velociy table
atable(t,7)=0;%angular table
qtable(t,7)=0;%jerk table
jtable(:,1)=x;%table with time
vtable(:,1)=x;%table with time
atable(:,1)=x;%table with time
qtable(:,1)=x;%table with time
c = jtable(1:t,1);%time from 0 to 10seconds
t1 = size(c,1);

%joint parameters

 if line == 1
 %jointi=[0,-5.43,-22.0404,0,27.4438,0];%home position

[50,0,500,0,0,0]
 jointi=[51.84,12.298,-119.428,-103.03,-53.81,111.40];%home

position [230,140,215,0,-90,180]

jointf=[t_t(line,1),t_t(line,2),t_t(line,3),t_t(line,4),t_t(line,5),

t_t(line,6)];
 else
 jointi=[t_t(line-1,1),t_t(line-1,2),t_t(line-1,3),t_t(line-

1,4),t_t(line-1,5),t_t(line-1,6)];

jointf=[t_t(line,1),t_t(line,2),t_t(line,3),t_t(line,4),t_t(line,5),

t_t(line,6)];
 end
%Joint boundary conditions
for k=1:6

ji=jointi(k); %Initial position
jf=jointf(k); % Final position
j_vi=0; % Initial Angular velocity is assumed as zero
j_vf=0; % Final Angular velocity is assumed as zero
j_ai=0;% Initial acceleration is assumed as zero
j_af=0; % Final acceleration is assumed as zero

% Assume arm comes to the end position position with time

104

t_i=0;%initial time
t_f=x(1,t);%final time
T=t_f-t_i;%time difference

%Coefficients calculation
for i = 1:t

a0=ji;
a1=j_vi;
a2=j_ai/2;
a3=[20*(jf-ji)-(8*j_vf+12*j_vi)*T-(3*j_af-j_ai)*T.^2]/(2*T.^3);
a4=[30*(ji-jf)+(14*j_vf+16*j_vi)*T+(3*j_af-2*j_ai)*T.^2]/(2*T.^4);
a5=[12*(jf-ji)-6*(j_vf+j_vi)*T-(j_af-j_ai)*T.^2]/(2*T.^5);
Coefficients_J1=[a0 a1 a2 a3 a4 a5]

jtable(i,k+1)=

a0+(a1*x(1,i))+(a2*(x(1,i))^2)+(a3*(x(1,i))^3)+(a4*(x(1,i))^4)+(a5*(

x(1,i))^5);
vtable(i,k+1)=

a1+(2*a2*x(1,i))+(3*a3*(x(1,i)^2))+(4*a4*(x(1,i)^3))+(5*a5*(x(1,i)^4

));
atable(i,k+1)=

(2*a2)+(6*a3*x(1,i))+(12*a4*(x(1,i)^2))+(20*a5*(x(1,i)^3));
qtable(i,k+1)= 6*a3+(24*a4*x(1,i))+(60*a5*(x(1,i)^2))

end

end

105

Appendix B

Dimensions and the configuration of the Denso VP 6242

Machine head cover dimensions

Robotic cell layout

106

Dimensions and the configuration of the Denso VP 6242

107

108

Appendix C

Scenario 1 joint angles calculation results

109

Line No:
Joint

J1 J2 J3 J4 J5 J6

1 -54.462 -14.039 123.366 103.300 56.737 66.684

2 -54.429 -14.039 121.631 102.197 56.323 68.703

3 -54.453 -13.914 119.798 101.065 56.002 70.724

4 -54.470 -13.745 117.926 99.923 55.707 72.751

5 -54.407 -13.613 116.081 98.784 55.368 74.789

6 -54.190 -13.603 114.346 97.660 54.911 76.832

7 -53.764 -13.775 112.812 96.567 54.283 78.845

8 -53.134 -14.117 111.504 95.507 53.489 80.795

9 -52.304 -14.614 110.438 94.484 52.533 82.655

10 -51.275 -15.257 109.635 93.502 51.409 84.396

11 -50.038 -16.041 109.120 92.577 50.108 85.986

12 -48.589 -16.964 108.933 91.736 48.619 87.375

13 -46.931 -18.016 109.105 91.018 46.940 88.510

14 -45.093 -19.149 109.564 90.413 45.094 89.414

15 -43.105 -20.308 110.193 89.878 43.105 90.168

16 -40.972 -21.454 110.890 89.351 40.975 90.860

17 -38.691 -22.560 111.579 88.775 38.702 91.570

18 -36.255 -23.612 112.226 88.110 36.278 92.344

19 -33.657 -24.596 112.800 87.305 33.700 93.238

20 -30.893 -25.493 113.259 86.273 30.966 94.345

21 -27.979 -26.248 113.465 84.778 28.106 95.916

22 -25.007 -26.782 113.242 82.459 25.240 98.326

23 -22.142 -27.031 112.488 78.986 22.580 101.903

24 -19.588 -26.979 111.218 74.246 20.385 106.749

25 -17.526 -26.639 109.486 68.480 18.887 112.624

26 -15.656 -26.161 107.570 61.941 17.806 119.242

27 -13.467 -25.696 105.746 54.188 16.689 126.990

28 -10.733 -25.320 104.201 44.505 15.408 136.543

29 -7.465 -25.062 103.059 32.213 14.106 148.572

30 -3.822 -24.912 102.360 17.088 13.112 163.333

31 0.016 -24.867 102.136 -0.073 12.731 180.071

32 3.851 -24.919 102.379 -17.226 13.109 196.803

33 7.499 -25.064 103.068 -32.348 14.118 211.559

34 10.786 -25.313 104.189 -44.640 15.447 223.586

35 13.488 -25.696 105.752 -54.246 16.702 233.067

36 15.532 -26.204 107.656 -61.860 17.678 240.693

37 17.442 -26.672 109.553 -68.471 18.797 247.378

38 19.650 -26.963 111.196 -74.283 20.447 253.284

39 22.213 -27.010 112.458 -79.003 22.651 258.109

110

40 25.062 -26.767 113.229 -82.482 25.295 261.696

41 28.012 -26.257 113.515 -84.862 28.135 264.178

42 30.914 -25.515 113.350 -86.390 30.983 265.791

43 33.676 -24.606 112.851 -87.369 33.717 266.838

44 36.272 -23.601 112.206 -88.101 36.296 267.644

45 38.707 -22.545 111.549 -88.757 38.718 268.407

46 40.987 -21.444 110.877 -89.348 40.990 269.136

47 43.119 -20.294 110.170 -89.867 43.119 269.817

48 45.108 -19.125 109.505 -90.379 45.110 270.536

49 46.944 -17.993 109.045 -90.983 46.953 271.440

50 48.590 -16.962 108.926 -91.732 48.620 272.619

51 50.031 -16.051 109.141 -92.587 50.101 274.028

52 51.270 -15.264 109.650 -93.510 51.404 275.615

53 52.306 -14.614 110.441 -94.486 52.534 277.349

54 53.135 -14.116 111.505 -95.509 53.491 279.208

55 53.763 -13.777 112.817 -96.569 54.283 281.159

56 54.191 -13.602 114.349 -97.662 54.913 283.172

57 54.417 -13.602 116.073 -98.783 55.378 285.214

58 54.474 -13.740 117.923 -99.923 55.712 287.251

59 54.447 -13.922 119.805 -101.067 55.995 289.276

60 54.415 -14.055 121.645 -102.202 56.310 291.297

61 54.462 -14.039 123.366 -103.300 56.737 293.316

111

Appendix D

Scenario 3 joint angles calculation results

112

Line No:
Joint

J1 J2 J3 J4 J5 J6

1 -54.462 -14.039 123.366 103.300 56.737 66.684

2 -54.462 -13.962 120.765 101.667 56.191 69.640

3 -54.462 -13.766 118.067 100.006 55.721 72.607

4 -54.352 -13.581 115.373 98.339 55.215 75.591

5 -53.836 -13.742 113.023 96.723 54.382 78.557

6 -52.891 -14.259 111.134 95.175 53.202 81.402

7 -51.510 -15.112 109.794 93.714 51.662 84.026

8 -49.688 -16.271 109.066 92.369 49.746 86.336

9 -47.431 -17.691 108.984 91.188 47.445 88.244

10 -44.772 -19.312 109.552 90.242 44.772 89.659

11 -41.773 -21.034 110.626 89.543 41.775 90.612

12 -38.464 -22.665 111.647 88.719 38.475 91.636

13 -34.820 -24.170 112.549 87.671 34.853 92.837

14 -30.824 -25.532 113.329 86.315 30.895 94.293

15 -28.701 -26.103 113.519 85.293 28.807 95.368

16 -26.541 -26.546 113.443 83.815 26.709 96.917

17 -24.396 -26.849 113.100 81.797 24.665 99.013

18 -22.323 -27.005 112.498 79.166 22.751 101.724

19 -20.382 -27.015 111.650 75.873 21.047 105.092

20 -18.630 -26.882 110.572 71.941 19.634 109.096

21 -17.116 -26.616 109.288 67.500 18.576 113.605

22 -15.867 -26.233 107.829 62.789 17.904 118.384

23 -14.418 -25.864 106.427 57.472 17.176 123.725

24 -12.628 -25.553 105.178 51.208 16.290 129.943

25 -10.523 -25.302 104.116 43.756 15.311 137.278

26 -8.149 -25.108 103.260 34.895 14.347 145.952

27 -5.560 -24.971 102.633 24.493 13.515 156.108

28 -2.819 -24.889 102.251 12.682 12.944 167.630

29 0.000 -24.862 102.123 0.000 12.739 180.000

30 2.818 -24.889 102.251 -12.681 12.944 192.369

113

31 5.560 -24.971 102.633 -24.492 13.514 203.891

32 8.149 -25.108 103.260 -34.895 14.347 214.048

33 10.522 -25.302 104.115 -43.755 15.311 222.722

34 12.627 -25.553 105.179 -51.207 16.289 230.056

35 14.418 -25.864 106.427 -57.471 17.177 236.275

36 15.867 -26.233 107.829 -62.789 17.904 241.616

37 17.118 -26.616 109.287 -67.501 18.578 246.397

38 18.630 -26.882 110.572 -71.941 19.634 250.905

39 20.382 -27.015 111.650 -75.874 21.047 254.909

40 22.324 -27.005 112.498 -79.166 22.751 258.276

41 24.396 -26.849 113.100 -81.798 24.665 260.987

42 26.541 -26.546 113.443 -83.815 26.709 263.083

43 28.701 -26.103 113.520 -85.293 28.807 264.632

44 30.824 -25.532 113.329 -86.315 30.895 265.707

45 34.821 -24.170 112.549 -87.671 34.853 267.163

46 38.464 -22.665 111.647 -88.719 38.475 268.365

47 41.773 -21.034 110.626 -89.543 41.775 269.388

48 44.772 -19.312 109.552 -90.242 44.773 270.341

49 47.432 -17.690 108.984 -91.188 47.445 271.756

50 49.688 -16.271 109.066 -92.369 49.746 273.664

51 51.510 -15.112 109.795 -93.714 51.662 275.974

52 52.891 -14.259 111.135 -95.175 53.202 278.598

53 53.836 -13.742 113.023 -96.723 54.382 281.443

54 54.352 -13.581 115.373 -98.339 55.215 284.409

55 54.462 -13.766 118.067 -100.006 55.721 287.394

56 54.462 -13.962 120.765 -101.667 56.191 290.360

57 54.462 -14.039 123.366 -103.300 56.737 293.316

114

Appendix E

Scenario 4 joint angles calculation results

115

Line No:
Joint

J1 J2 J3 J4 J5 J6

1 -54.462 -14.039 123.366 103.300 56.737 66.684

2 -54.462 -13.962 120.765 101.667 56.191 69.640

3 -54.462 -13.766 118.067 100.006 55.721 72.606

4 -54.352 -13.581 115.373 98.339 55.215 75.591

5 -53.836 -13.742 113.023 96.723 54.382 78.557

6 -52.891 -14.259 111.134 95.175 53.202 81.402

7 -51.510 -15.112 109.795 93.714 51.662 84.026

8 -49.688 -16.271 109.066 92.369 49.746 86.336

9 -47.431 -17.691 108.984 91.188 47.444 88.244

10 -44.772 -19.312 109.552 90.242 44.773 89.659

11 -41.774 -21.034 110.626 89.543 41.775 90.612

12 -38.464 -22.665 111.647 88.720 38.475 91.635

13 -34.821 -24.170 112.549 87.671 34.854 92.837

14 -31.197 -25.419 113.275 86.464 31.264 94.134

15 -27.754 -26.315 113.521 84.707 27.884 95.983

16 -25.135 -26.760 113.249 82.564 25.363 98.219

17 -22.947 -26.973 112.709 80.041 23.319 100.825

18 -20.991 -27.028 111.950 77.010 21.570 103.931

19 -19.202 -26.943 110.962 73.344 20.078 107.669

20 -17.623 -26.727 109.770 69.127 18.906 111.952

21 -16.326 -26.382 108.382 64.585 18.133 116.564

22 -15.025 -26.001 106.958 59.649 17.483 121.546

23 -13.397 -25.672 105.666 53.889 16.667 127.289

24 -11.451 -25.401 104.542 47.078 15.731 134.014

25 -9.226 -25.186 103.610 38.989 14.764 141.948

26 -6.769 -25.027 102.891 29.447 13.871 151.273

27 -4.135 -24.921 102.401 18.442 13.174 162.011

28 -1.391 -24.869 102.154 6.295 12.789 173.860

29 1.390 -24.869 102.154 -6.293 12.789 186.138

30 4.134 -24.921 102.401 -18.441 13.174 197.987

116

31 6.768 -25.027 102.891 -29.446 13.871 208.725

32 9.226 -25.186 103.610 -38.988 14.763 218.051

33 11.451 -25.401 104.543 -47.077 15.731 225.985

34 13.397 -25.672 105.666 -53.889 16.667 232.711

35 15.024 -26.001 106.959 -59.647 17.482 238.452

36 16.330 -26.382 108.380 -64.588 18.136 243.438

37 17.623 -26.727 109.770 -69.127 18.906 248.048

38 19.202 -26.943 110.962 -73.344 20.078 252.331

39 20.991 -27.028 111.950 -77.010 21.570 256.069

40 22.947 -26.973 112.709 -80.041 23.319 259.175

41 25.133 -26.760 113.249 -82.562 25.362 261.779

42 27.752 -26.315 113.520 -84.705 27.882 264.014

43 31.197 -25.418 113.272 -86.460 31.263 265.861

44 34.821 -24.170 112.549 -87.671 34.854 267.163

45 38.464 -22.665 111.647 -88.720 38.475 268.365

46 41.774 -21.034 110.626 -89.543 41.775 269.388

47 44.772 -19.312 109.552 -90.242 44.773 270.341

48 47.432 -17.690 108.984 -91.188 47.445 271.756

49 49.688 -16.271 109.066 -92.370 49.746 273.664

50 51.510 -15.112 109.795 -93.714 51.662 275.974

51 52.891 -14.259 111.135 -95.175 53.202 278.598

52 53.836 -13.742 113.023 -96.723 54.382 281.443

53 54.352 -13.581 115.373 -98.339 55.215 284.409

54 54.462 -13.766 118.067 -100.006 55.721 287.394

55 54.462 -13.962 120.765 -101.667 56.191 290.360

56 54.462 -14.039 123.366 -103.300 56.737 293.316

