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Abstract 

Prevalence of the Infrastructure-as-a-Service (IaaS) clouds has enabled organizations to 

utilize compute services on demand via elastic scaling of their applications. Data stream 

processing is one such area which is benefited by elastic scaling. The main drawback of 

using these IaaS clouds is the security risks on sensitive data in the aspect of data stream 

processing. It will be a great solution if we can preserve the privacy of data of data-sensitive 

applications, while using them in IaaS clouds with minimized security risks. 

The aim of this research is to implement elastic scaling mechanism in a private/public cloud 

environment by preserving the privacy of the data in the aspect of stream processing. To 

enable the privacy preserving on data, we use the concept of Homomorphic Encryption (HE) 

which can perform computations on encrypted data. We designed and implemented several 

functions which support Homomorphic Encryption using a well-known library HElib. We 

extended existing Elastic Switching Mechanism (ESM) to support newly implemented HE 

based functions. This Homomorphic Encryption based Elastic Switching Mechanism 

(HomoESM) operates between the boundaries of a private and a public cloud while 

preserving data security. 

Using two real-world data stream processing scenarios, which include an email data set and a 

web server access log processor data set (EDGAR), we derive four benchmark applications. 

Several experiments on those benchmarks indicate that, the proposed approach for 

Homomorphic Encryption based equal operation provides significant results which are 10% 

and 17% improvement of average latency when compared to private Stream Processor (SP) 

only case for the scenarios of Email Filter benchmark and EDGAR Filter benchmark 

respectively. The HE operations which consume more computations such as greater-than and 

less-than comparison operations, add and subtract operations, also provide beneficial results 

but not much as equal operation’s results. Therefore, this HomoESM performance directly 

depends on the complexity of HE computations. In this work we use data batching technique 

in our HomoESM implementation by creating a composite event using several plain events 

in order to address Single-Instruction-Multiple-Data (SIMD) support given by HElib. This 

approach is the key advancement in our HomoESM which enables to realize the elastic 

stream processing with HomoESM. Mainly our work addresses the feasibility and limitations 

of using HE operations under the aspect of data stream processing in a private/public cloud 

environment. 

 

Keywords: Cloud computing, Elastic data stream processing, Homomorphic Encryption, 

IaaS, System sizing and capacity planning. 
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1  INTRODUCTION 

This chapter gives basic background to stream processing, cloud computing, 

performance and quality of service concerns of stream processing and privacy 

concerns of cloud-based data stream processing system. Then it describes the 

problem and the motivation behind this work. Finally, it summarizes our 

contributions of the work. 

1.1 Background 

Stream processing is a real-time processing of data continuously, concurrently, and 

in a record-by-record fashion. Stream processing treats data not as static tables or 

files, but as a continuous infinite stream of data integrated from both live and 

historical sources. Streams are actually sequences of data that flow between 

operators in a streams processing application. Stream processing conducts online 

analytical processing on high-velocity and high-volume data streams with minimal 

latency. The main reason for that stream processing is so fast is because it analyzes 

the data before it stores in disk. Stream processing has applications in diverse areas 

such as health informatics [1], telecommunications [23], electric grids [12], 

transportation [14], [16] and useful for tasks like fraud detection, logistics decisions 

and real-time traffic controlling systems. These applications have been implemented 

on stream processing engines and should satisfy several performance and quality of 

service metrics. 

Most of the initial stream processors were ran on isolated computers or clusters 

which are private clouds. After that people came up with distributed stream 

processors and there are now several distributed stream processing 

engines/frameworks also available publicly such as Apache Storm [34], Apache 

Spark [35] and Apache Flink [36]. As a result of further evolvement, distributed 

stream processors touch the cloud infrastructure as well. The rise of cloud computing 

era has resulted in the ability of on demand provisioning of hardware and software 

resources. There are three main types of cloud computing: Infrastructure as a service 
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(IaaS), Platform as a service (PaaS) and Software as a service (SaaS). Under stream 

processing we are interested in IaaS, as stream processors can elastically scale their 

infrastructure on demand. IaaS provide several benefits other than infrastructure: 

Good reliability, High network speed, High performance, Global scale, Good 

productivity and Low cost. Public cloud services are sold on demand, typically by 

the minute or hour, though long-term commitments are available for many services. 

Organizations only pay for the Central Processing Unit (CPU), memory, storage or 

bandwidth they consume. This has resulted in stream processors which can run as 

managed cloud services [3], [9], [15] as well as hybrid cloud services such as Striim 

[22]. A hybrid cloud is a combination of public cloud services and an on-premises 

private cloud, with orchestration and automation between the two. Organizations can 

run mission-critical workloads or sensitive applications on the private cloud and use 

the public cloud to handle workload bursts or spikes on demand. The goal of a hybrid 

cloud is to create a unified, automated, scalable environment that takes advantage of 

all that a public cloud infrastructure can provide, while still maintaining control over 

mission-critical data. Generally, IaaS providers, supply a virtual server instance and 

storage, as well as APIs that enable users to migrate workloads to a VM (Virtual 

Machine). Users have an allocated storage capacity and can start, stop, access and 

configure the VM and storage as desired. IaaS providers offer small, medium, large, 

extra-large and memory-optimized or compute-optimized instances, in addition to 

customized instances, for various workload needs. 

Resource limitation becomes a key issue when operating only in a private cloud. 

Such systems often face resource limitations during their operation due to 

unexpected loads [2], [5] and hit with low quality of service. Depending on the 

requirements, systems should fulfill good quality of service and good performance 

metrics such as higher throughput, low latency and higher availability. For an 

example, if fraud detection system fails to respond with low latency, system will not 

be able to stop fraudulent transactions in real-time. Therefore, people came up with 

several approaches which could solve such issues. Elastically scaling into an external 

cluster [29], load shedding and approximate query processing [33] are some of the 

examples. Out of these, elastic scaling has become a key choice because approaches 
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such as load shedding, approximate computing have to compromise accuracy which 

is not accepted by certain categories of applications. 

Data security and data privacy remain primary concerns for organizations when they 

use public cloud as infrastructure. The problem of privacy-preserving data mining 

has become more important in recent years because of the increasing ability to store 

personal data about users, and the increasing sophistication of data mining 

algorithms to leverage this information. This has led to concerns that the personal 

data may be misused for a variety of purposes. In order to alleviate these concerns, a 

number of techniques have recently been proposed in order to perform the data 

mining tasks in a privacy-preserving way. Public cloud service providers share their 

underlying hardware infrastructure between numerous consumers, as public cloud is 

a multi-tenant environment. This environment demands rich isolation between 

logical compute resources. At the same time, access to public cloud storage and 

compute resources is guarded by account login credentials. Many organizations 

bound by complex regulatory obligations and governance standards are still hesitant 

to place data or workloads in the public cloud for fear of outages, loss or theft. There 

are several reported cloud data breaches and most recent one is Equifax Data Breach 

[37] which lasts from mid-May through July 2017. The hackers have accessed 

people’s names, Social Security numbers, birth dates, addresses and driver’s license 

numbers. They also stole credit card numbers for about 209,000 people and dispute 

documents with personal identifying information for about 182,000 people. 

However, this resistance is fading, as logical isolation has proven reliable, and the 

addition of data encryption and various identity and access management tools has 

improved security within the public cloud.  

1.2 Motivation 

There are many applications which require privacy preserving of data and followings 

are some motivational scenarios. 

1. Applications which use medical databases: 

Need to secure patients’ health information. 
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2. CCTV (Closed Circuit TV) security analytic applications: 

CCTV video streams are passing into these systems from homes/shops to 

identify thefts while those streams need to be secured. 

3. Applications which uses fingerprint databases: 

Using leaked fingerprints, a third party can do miscellaneous robberies and 

require security on fingerprint data. 

Multiple works have recently been conducted on privacy preserving data stream 

mining. Privacy of patient health information has been serious issue in recent times 

[21]. FHE (Fully Homomorphic Encryption) has been introduced as a solution [8]. 

FHE is an advanced encryption technique that allows data to be stored and processed 

in encrypted form. This provides cloud service providers the opportunity for hosting 

and processing data without even knowing what the data is. However, current FHE 

techniques are computationally expensive needing excessive space for keys and 

cypher texts. However, it has been shown with some experiments done with HElib 

[11] (an FHE library) that it is practical to implement some basic applications such as 

streaming sensor data to the cloud and comparing the values to a threshold. 

1.3 Problem Statement 

Current elastic scaling mechanisms for stream processing do not consider, preserving 

the privacy of data which sent to public cloud, for scaling purposes. 

1.4 Objectives 

The objectives of our research are as follows. 

1. Explore privacy preserving data stream processing techniques and select 

suitable technology for elastic scaling mechanism. 

2. Implement selected technology on elastic scaling mechanism in a 

private/public cloud scenario by preserving privacy. 

3. Evaluation of the proposed approaches. 
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1.5 Contributions 

We design and implement a Privacy Preserving Elastic Switching Mechanism 

(HomoESM) over private/public cloud system. Homomorphic encryption scheme has 

been used on top of this switching mechanism for preserving privacy of the data sent 

from private cloud to public cloud. We use two real world data stream processing 

scenarios called Email-Processor [27], [28] and HTTP Log Processor (EDGAR) [6] 

during the evaluation of the proposed approach. We derive four benchmark 

applications using these scenarios. Using multiple experiments on real-world system 

setup with the stream processing benchmarks we demonstrate the effectiveness of 

our approach for elastic switching-based privacy preserving stream processing. We 

observe that Homomorphic encryption based equal operation provides significant 

results which are 10% to 17% improvement of average latency in the case of Email 

Filter benchmark and EDGAR Filter benchmark respectively. HE (Homomorphic 

Encryption) operations which consume more computations such as greater-than and 

less-than comparison operations, add and subtract operations, also provide beneficial 

results but not much as equal operation’s results. Here we use data batching 

technique in our HomoESM implementation by creating a composite event using 

several plain events in order to address SIMD support given by HElib. This approach 

is the key advancement in our HomoESM which enables single evaluation at 

homomorphic level corresponds to all the events embedded in composite event. To 

the best of our knowledge this is the first work done on elastic scaling of stream 

processing using privacy preserving data analytics. 

Main contributions of our research are as follows. 

1. Privacy Preserving Elastic Switching Mechanism (HomoESM) 

We design and develop a mechanism for conducting elastic scaling of stream 

processing queries over private/public cloud in a privacy preserving manner. 
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2. Development of Homomorphic Operations 

We developed and optimized several homomorphic evaluation schemes such as 

equality, less-than/greater-than comparisons and addition/subtraction operations. 

1.6 Organization of the Thesis 

Chapter 2 contains the literature survey with several related works done on elastic 

scaling and homomorphic evaluations. In addition to that, it will describe other FHE 

libraries which we failed to use under data stream processing. Chapter 3 gives an 

overview of the stream processing software and the benchmarks used in this study. 

Chapter 4 elaborates implementation details and it provides the details of the system 

design and implementation of the HomoESM. Chapter 5 depicts evaluation details 

including the setup of the experiments and the analysis of the results. Chapter 6 

contains the conclusion and presents potential future improvements for the system. 
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2  LITERATURE REVIEW 

There have been multiple previous works on elastic scaling of event processing 

systems in cloud environments. 

2.1 Stream Processing 

Kleiminger et al. studied on implementing a distributed stream processor system 

based on MapReduce on top of a cloud IaaS to allow it to scale up/down elastically 

[18]. The main use case of their work was to implement financial algorithms on their 

framework. They explored how a local stream processor can be deployed in cloud 

infrastructure to scale to keep up with the expected latency constraints. They mainly 

talk about two load balancing strategies to achieve this. First one is always-on (load 

balanced between local and cloud) and second one is adaptive load balancing (move 

to cloud when the capacity is not enough in local node). 

Stormy is a system developed to evaluate the “stream processing as service” concept 

[19]. The idea was to build a distributed stream processing service using techniques 

used in cloud data storage systems. Stormy is built with scalability, elasticity and 

multi-tenancy in mind to fit in the cloud environment. They have used DHTs 

(Distributed Hash Tables) to build their solution. They have used DHTs to distribute 

the queries among multiple nodes and to route events from one query to another. 

Stormy intent to build a public streaming service where users can add new streams 

on demand; that is, register and share queries, and instantly run their stream for as 

long as they want. One of the main limitations in Stormy is it assumes that a query 

can be completely executed on one node. Stormy is unable to deal with streams for 

which the incoming event rate exceeds the capacity of a node which is an issue. 

Data stream compression has been studied in the field of data mining. Cuzzocrea et 

al. has conducted a research on a lossy compression method for efficient OLAP [4] 

over data streams. Their compression method exploits semantics of the reference 

application and drives the compression process by means of the “degree of 

interestingness”. The goal of this work was to develop a methodology and required 

data structures to enable summarization of the incoming data stream in order to 
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finally make the usage of advanced analysis/mining tools over data streams more 

effective and efficient. However, the proposed methodology trades off accuracy and 

precision for the reduced size.  

Jeffery et al. has tried to address shortcomings of RFID (Radio Frequency 

Identification) data streams by cleaning the data streams using smoothing filters, they 

have proposed a middleware layer between the sensors and the application which 

process data streams. This middleware is responsible for making physical device 

issues transparent to the higher-level application by correcting them at the 

middleware. The layer/middleware is referred to as MDI (Metaphysical Data 

Independence) in their work [17]. 

Work done in [17] is utilized in [7] to clean and compress data generated by RFID 

tags deployed in a book store. In this work the data stream is compressed by 

removing redundant data. They have taken application and deployment semantics 

into account to develop an efficient data compression method for that specific 

domain. The MDI layer presented in [17] is customized by adding application 

specific compression algorithms and they claim that results in better performance 

than employing the generic method suggested in [17]. Yanming Nie et al. have done 

a research on inference and compression over RFID data streams [3], [20]. They 

have developed online compression method. The compression of the data stream is 

mainly achieved by identifying and discarding redundant data. 

2.2 Elastic Scaling 

Cloud computing allows for realizing an elastic stream computing service, by 

dynamically adjusting used resources to the current conditions. Waldemar et al. 

discussed how elastic computing of data streams can be achieved on top of Cloud 

computing [13]. Features particularly interesting for elastic stream processing in the 

Cloud includes handling of stream imperfections, guaranteed data safety and 

delivery, and automatic partitioning and scaling of applications. Load shedding is a 

well-studied mechanism for reducing the system load by dropping certain events 

from the stream. Deferred processing of data that cannot be immediately handled are 
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stored for later processing. The assumption of deferred processing is that the 

overload is limited in time. They mentioned that the most obvious form of elasticity 

is to scale with the input data rate and the complexity of operations (acquiring new 

resources when needed and releasing resources when possible). However, most 

operators in stream computing are stateful and cannot be easily split up or migrated 

(e.g., window queries need to store the past sequence of events). 

Cervino et al. tries to solve the problem of providing a resource provisioning 

mechanism to overcome inherent deficiencies of cloud infrastructure [2]. They have 

conducted some experiments on Amazon EC2 [42] to investigate the problems that 

might affect badly on a stream processing system. They have come up with an 

algorithm to scale up/down the number of VMs (EC2 instances) based solely on 

input stream rate. The goal is to keep the system with a given latency and throughput 

for varying loads by adaptively provisioning VMs for streaming system to scale 

up/down. In contrast to [19] Cervino et al.’s work is focused on running a big query 

efficiently which is decomposed to smaller quarries which can run on different VMs. 

However, none of the above-mentioned works have investigated on reducing the 

amount of data sent to public clouds in such elastic scheduling scenarios. 

2.3 Homomorphic Encryption 

Dai et al. have implemented homomorphic encryption library [40], [44] on GPU 

(Graphic Processing Unit) to accelerate computations in homomorphic level. As 

GPUs are more compute-intensive, they show that 51 times speedup on 

homomorphic sorting algorithm when compared to previous implementation. 

Initially we tried this library for our homomorphic encryption and computation wise 

it gives better speed up, but when encrypt a Java String field, it length goes more 

than 400K. As we need to send these encrypted values through network we faced 

several bandwidth problems. 

2.4 WSO2 Stream Processor 

WSO2 SP (Stream Processor) is a lightweight, easy-to-use, stream processing 

engine. In our work we are using Siddhi library which is a component of the WSO2 
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Stream Processor. It is available as open source software under the Apache Software 

License v2.0 [26]. WSO2 SP lets users provide queries using an SQL like query 

language in order to get notifications on interesting real-time events, where it will 

listen to incoming data streams and generate new events when the conditions given 

in those queries are met by correlating the incoming data streams. 

WSO2 SP uses a SQL like Event Query language to describe queries. For example, 

the following query detects the number of taxis dropped-off in each cell in the last 15 

minutes [16]. 

from Trip #window.time (15 min ) 

select count (medallion) as count group by cellId 

insert into OutputStream 

Listing 1. Query example 

When WSO2 SP receives a query, it builds a graph of processors to represent the 

query where each processor is an operator like filter, join and pattern. Input events 

are injected to the graph, where they propagate through the graph and generate 

results at the leaf nodes. Processing can be done using a single thread or using 

multiple threads, where in the latter case we use LMAX Disruptor [24] to exchange 

events between threads. More details of the WSO2 SP are available on [26]. 

2.5 Elastic Switching Mechanism 

The Elastic Switching Mechanism (ESM) [29] is designed to operate SP engines 

between private and public cloud environments as shown in Figure 2.1 [29]. Basic 

idea is to have on-demand public SP engine according to the input load. This kind of 

a mechanism able to maintain good QoS (Quality of Service) metrics as it can 

automatically scale for additional loads. ESM will route data between private and 

public stream processing engines with taken care of a QoS parameter configured by 

user. QoS measurements need to be taken at receiver component of ESM end, and 

publisher component will check for QoS level to take the decision of routing data to 

public stream processing engine. Current implementation will look for a pre-

configured latency value as the QoS parameter. 
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Figure 2.1: The approach for elastic compressed complex event processing. System operation with single 

query switched to public cloud with data switching. (a) The private cloud only mode of operation. (b) The 

hybrid cloud mode of operation with data switching and compression 

2.6 Homomorphic Encryption and Implementations 

In this section we will give introduction to homomorphic encryption and describe 

two main homomorphic encryption libraries. 

2.6.1 Homomorphic encryption 

Homomorphic encryption is a form of encryption that allows computation on cipher 

texts, generating an encrypted result which, when decrypted, matches the result of 

the operations as if they had been performed on the plaintext [39]. The purpose of 

homomorphic encryption is to allow computation on encrypted data. Therefore, 

Homomorphic encryptions allow complex mathematical operations to be performed 

on encrypted data without compromising the encryption. 

In mathematics, homomorphic describes the transformation of one data set into 

another while preserving relationships between elements in both sets. The term is 

derived from the Greek words for same structure, as the data in a homomorphic 
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encryption scheme retains the same structure, identical mathematical operations, 

whether they are performed on encrypted or decrypted data will yield equivalent 

results.  

Homomorphic encryption is expected to play an important part in cloud computing, 

allowing organizations to store encrypted data in a public cloud and take advantage 

of the cloud provider’s analytic services.  

There are two main homomorphic encryptions: Partially homomorphic encryption 

and Fully homomorphic encryption (FHE). FHE supports arbitrary computation on 

cipher texts and is far more powerful while partially homomorphic encryption 

supports limited computations. Fully homomorphic cryptosystems have great 

practical implications in the outsourcing of private computations in the context of 

cloud computing. 

To understand homomorphic encryption in a nutshell, consider a secret (s) and 

operation (f). If following condition in Eq. (2.1) is satisfying, ‘encrypt’ and ‘decrypt’ 

functions are said to be homomorphic encryption and decryption. Furthermore 

‘f’function is a homomorphic function. 

decrypt(f(encrypt(s))) = f(s)      (2.1) 

2.6.2 Homomorphic encryption library implementations 

There are several implementations of homomorphic encryption. cuHE (CUDA 

Homomorphic Encryption Library) [40] is a GPU-accelerated library for 

homomorphic encryption (HE) schemes and homomorphic algorithms defined over 

polynomial rings. cuHE yields an astonishing performance while providing a simple 

interface that greatly enhances programmer productivity. It features both algebraic 

techniques for homomorphic evaluation of circuits and highly optimized code for 

single-GPU or multi-GPU machines. 

Another popular implementation of homomorphic encryption is HElib [11]. This 

library is open source on github [10] and written in C++. Unlike some earlier HE 

schemes, HElib uses a SIMD-like optimization known as cipher text packing. As a 
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result, each individual cipher text element with which you can perform a 

computation (addition or multiplication) is conceptually a vector of encrypted 

plaintext integrals. 

Thus, this scheme is particularly effective with problems that can benefit from some 

level of parallel computation. The size of this vector decides according to the settings 

which we given when initialize the HElib. HElib supports multi-threaded 

environment and we need to enable that feature while we are installing it. It provides 

low-level routines such as set, add, multiply, and shift. 

In our case we used HElib as our homomorphic encryption library because the length 

of the encrypted text is around 30,000 while cuHE’s encrypted text length get almost 

400,000. Therefore, we have a 10 times advantage on network bandwidth when we 

send encrypted data into public SP. 
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3  OVERVIEW OF BENCHMARKS 

In this section we provide short introductions to the derived benchmarks from the 

EmailProcessor and the EDGAR data sets which used for our experiments. These 

data sets consist of data fields which support our newly implemented HE functions. 

3.1 Email Filter Benchmark 

EmailProcessor is an application benchmark originally designed by Nabi et al. [27]. 

The benchmark is designed around the canonical Enron email dataset which is 

described in [28]. The data set consisted of 517,417 emails with a mean body size of 

1.8KB, the largest being 1.92MB. The dataset we used had undergone an offline 

cleaning and staging phase where all the emails were serialized and stored within a 

single file with the help of Apache Avro. In our benchmark implementation [30], 

[38] the data injector read emails from the Avro file and de-serialized them. 

The EmailFilter benchmark is a modified version of EmailProcessor benchmark 

which used the same dataset which EmailProcessor used. The difference is that, the 

EmailFilter benchmark only focus on filter operation and we need to evaluate equal 

comparison on string type fields. Hence, we formatted the toAddresses and 

ccAddresses fields to have only single email address which will contain only the first 

email of the list, to support HElib [10] evaluations and sent to Q1 for publishing 

(Figure 3.1). The criterion for filtering out Emails was to filter emails sent by 

“lynn.blair@enron.com” to “richard.hanagriff@enron.com”. The filtering logic 

which used has shown in Listing 2. 

NOT ( 

(f romAddress is equal to ‘lynn.blair@enron.com’) AND  

( 

(toAddresses is equal to ‘richard.hanagriff@enron.com’) OR  

(ccAddresses is equal to ‘richard.hanagriff@enron.com’) 

) 

) 
Listing 2. Email filter logic 
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Above logic which contains set of equal operations and gate operations happens at 

private stream processing engine using following stream and query definitions as 

shown in Listing 3. 

define stream inputEmailsStream (iij_timestamp long, fromAddress string, 

toAddresses string, ccAddresses string, bccAddresses string, subject string, body 

string);  

 

@info(name = 'query3') from inputEmailsStream [(str:equals(fromAddress, 

'lynn.blair@enron.com') and (str:equals(toAddresses, 

'richard.hanagriff@enron.com') or str:equals(ccAddresses, 

'richard.hanagriff@enron.com'))) == false] select iij_timestamp, fromAddress, 

toAddresses as toAdds, ccAddresses as ccAdds, bccAddresses as bccAdds, subject as 

updatedSubject, body as bodyObfuscated insert into outputEmailsStream; 
 

Listing 3. Email filter private VM stream processor engine definitions 

 

 
Figure 3.1: Flow diagram of Email Filter benchmarkFigure 

In experiments we have fired events at 45,000 TPS (Transactions per Second) and 

the data rate variation is shown in Figure 3.2. 

3.2 EDGAR Filter Benchmark 

We developed another benchmark based on a HTTP log data set published by 

Division of Economic and Risk Analysis (DERA) [6]. The data provides details of 

usage of publicly accessible EDGAR company filings in a simple but extensive 
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manner [6]. 

 

Figure 3.2: Email Processor – Histogram of input data rate 

Each record in the data set consists of 15 different fields and each event we sent 

through the publisher had 16 fields as the benchmark application will inject the field 

iij_timestamp in order to track the time of event generation. Out of these fields we 

modified ‘noagent’ field by adding lengthy string of 1024 characters to the existing 

value, in order to increase the packet size. 

Most of the EDGAR log events are same in size and it does not have any data rate 

variation inherently. Therefore, we introduced varying data rate by publishing events 

by varying TPS according to a custom defined function as in Figure 3.3. 

 

Figure 3.3: EDGAR – Histogram of input data rate 
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The EDGAR filter benchmark was developed with the aim of implementing filtering 

support. The basic criterion is to filter out EDGAR logs, which satisfy set of equal 

conditions as shown in Listing 4. 

NOT ( 

(extension equals ‘v16003sv1.htm’) AND  

(code equals ‘200.0’) AND  

(date equals ‘2016-10-01’) 

)  
Listing 4. EDGAR filter logic 

Above logic which contains set of equal operations and gate operations happens at 

private SP using following stream and query definitions as shown in Listing 5. 

define stream inputEdgarStream (iij_timestamp long, ip string, date string, time 

string, zone string, cik string, accession string, extension string, code string, size 

string, idx string, norefer string, noagent string, find string, crawler string, browser 

string);  

 

@info(name = 'query5') from inputEdgarStream [(str:equals(date, '2016-10-01') and 

str:equals(extension, 'v16003sv1.htm') and str:equals(code, '200.0')) == false] select 

iij_timestamp, ip, date, time, zone, cik, accession, extension, code, size, idx, norefer, 

noagent, find, crawler, browser insert into outputEdgarStream; 
 

Listing 5. EDGAR filter private VM stream processor engine definitions 

 

 
Figure 3.4: Flow diagram of EDGAR Filter benchmark 
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3.3 EDGAR Comparison Benchmark 

EDGAR Comparison benchmark allows us to evaluate the performance of 

Homomorphic Comparison operation. Here also we used the same TPS varying 

function as previous case (Sec. 3.2) in order to have data variation with the time. In 

EDGAR Comparison benchmark we have changed input format to an Integer, for 

‘zone’ and ‘find’ fields in order to do comparison operations. As in EDGAR filter 

benchmark, here also we add lengthy string of 1024 characters to the existing value 

of ‘noagent’ field, in order to increase the packet size. The basic criterion is to filter 

out EDGAR logs, which satisfy following conditions.  

  NOT ( 

(zone equals 0) AND (find > 0) AND (find < 3) 

) 
Listing 6. EDGAR comparison logic 

Above comparison operations and gate operations happens at private SP using 

following stream and query definitions as shown in Listing 7. 

define stream inputEdgarStream(iij_timestamp long, ip string, date string, time 

string, zone int, cik string, accession string, extension string, code string, size string, 

idx string, norefer string, noagent string , find int, crawler string, browser string);  

@info(name='query5') from inputEdgarStream[((zone==0) and (find>0) and 

(find<3)) == false] select iij_timestamp, ip, date, time, zone, cik, accession, 

extension, code, size, idx, norefer, noagent, find, crawler, browser insert into 

outputEdgarStream; 

Listing 7. EDGAR comparison private VM stream processor engine definitions 

 

The architecture of EDGAR Comparison benchmark has shown in Figure 3.5. 
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Figure 3.5: Flow diagram of EDGAR Comparison benchmark 

3.4 EDGAR Add/Subtract Benchmark 

EDGAR add/subtract benchmark allows us to evaluate the performance of 

Homomorphic add/subtract operations. Here also we used the same TPS varying 

function as previous case (Sec. 3.2) in order to have data variation with the time. In 

EDGAR add/subtract benchmark we have changed the input format to an Integer, for 

‘code’, ‘idx’, ‘norefer’ and ‘find’ fields in order to support add/subtract operations. 

As in EDGAR filter benchmark, here also we add lengthy string of 1024 characters 

to the existing value of ‘noagent’ field, in order to increase the packet size. The basic 

modifying logic we are following for this benchmark as follows for above mentioned 

four fields. 

code = code-100 

idx = idx+30 

norefer = norefer+20 

find = find-10 
 

Listing 8. EDGAR add/subtract logics 

define stream inputEdgarStream (iij_timestamp long, ip string, date string, time 

string, zone string, cik string, accession string, extension string, code int, size string, 

idx int, norefer int, noagent string, find int, crawler string, browser string);  

@info(name = 'query5') from inputEdgarStream select iij_timestamp, ip, date, time, 

zone, cik, accession, extension, code-100 as code, size, idx+30 as idx, norefer+20 as 

norefer, noagent, find-10 as find, crawler, browser insert into outputEdgarStream; 

Listing 9. EDGAR add/subtract private VM stream processor engine definitions 
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Above add/subtract operations happen at private stream processing engine using 

following stream and query definitions as shown in Listing 9. 

The architecture of EDGAR add/subtract benchmark has shown in Figure 3.6. 

 

 
Figure 3.6: Flow diagram of EDGAR Add/Subtract benchmark 
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4  SYSTEM DESIGN AND IMPLEMENTATION 

This chapter starts with describing the architecture of newly implemented 

HomoESM and its elastic scaling mechanism. Then it reveals how the encryption 

happens at publisher. After that it describes the different evaluation methodologies 

applied in public stream processing engine for four different benchmarks. Finally, it 

depicts how the decryption happens at receiver. 

4.1 Architecture of HomoESM 

In order to implement the privacy preserving streaming analytics functionality we 

incorporated Homomorphic encryption technique for ESM. The updated version of 

the ESM is known as HomoESM (Figure 4.1). The components highlighted in dark 

blue color correspond to newly added components which help to run privacy 

preserving stream processing. 

 

Figure 4.1: The system architecture of Homomorphic Encryption based ESM (HomoESM) 
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HomoESM also uses same switching functions which used by existing ESM [29]. 

ESM need to take decisions on following three main scenarios: 

1. When to start public VM -  

Average latency measured for the last period at receiver (Lt-1) should be 

greater than VM startup threshold latency (Ls) and tolerance period (τ) need 

to be elapsed. 

2. When to stop public VM – 

Anyway, VMs are not stopping in between the charging period mentioned by 

cloud service provider. The stopping decision will be taken at the end of 

charging period if following two conditions are satisfied. 

i. Data send to public VM within the last period (Dt-1) should be less 

than threshold amount of data send to public VM for a period (Ds) 

ii. Average latency measured for the last period at receiver (Lt-1) should 

be less than private cloud threshold latency (Lp) 

3. When to send data to public VM - 

i. Public VM should up and running 

ii. VM Startup threshold latency (Ls) should be greater than Data 

switching threshold latency (Ld). Note that this condition is always 

true, and it is maintained by ESM initial configurations. 

iii. Average latency measured for the last period at receiver (Lt-1) should 

be greater than Data switching threshold latency (Ld). 

Following two equations [29] will summarize above conditions. 

∅𝑉𝑀(𝑡) =  {
1,               𝐿𝑡−1  ≥   𝐿𝑠,   𝜏 ℎ𝑎𝑠 𝑒𝑙𝑎𝑝𝑠𝑒𝑑.
0, 𝐷(𝑡−1) <  𝐷𝑠 , 𝐿𝑡−1 < 𝐿𝑝   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒}                               (4.1) 

∅𝑑𝑎𝑡𝑎(𝑡) = {
1, ∅𝑉𝑀(𝑡 − 1) = 1, 𝐿𝑡−1 ≥ 𝐿𝑑 , 𝐿𝑠 > 𝐿𝑑

0,                                               𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}                               (4.2) 

In next sub sections we describe main components of HomoESM as shown in Figure 

4.2. 
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Figure 4.2: Main components of Homomorphic Encryption based ESM (HomoESM) 

4.2 Encryption at Publisher 

Java objects are created for each incoming event from data reader and put into the 

Plain Event Queue. ‘Event publisher’ thread picks those Java objects from the queue 

according to the configured frequency. Then it evaluates whether the picked event 

needs to be sent to private or public SP engine, according to the configured load 

transfer percentage and threshold values. If the event needs to send to private SP, it 

will mark the time and delegate the event into a thread pool which handles sending to 

private SP. If the event needs to send to public SP, it will mark the time and put into 

the public publishing queue, which is processed by Encrypt-Master asynchronously. 

‘Encrypt Master’ (Figure 4.3) thread periodically checks on the public publishing 

queue which has the events required to be sent to public, put by ‘Event Publisher’. If 

that queue size is greater than or equal to composite event size, it will create a list of 

events equal to the size of composite event size. After that it delegates the encryption 

and composite event creation part of the list to ‘Composite Event Encode Worker’ 

pool. 

Firing events to public VM is done in asynchronously by ‘Composite Event Encode 

Worker’ which gets triggered by the 'Encrypt Master'. Decision of how much amount 

send to public SP has taken according to the percentage we configure initially. But 

anyway, public SP publishing flow has max limit of TPS (1500 TPS for EDGAR 

filter benchmark, 500TPS for EDGAR comparison benchmark, 500TPS for EDGAR 
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add/subtract benchmark, 1000TPS for Email Filter benchmark) and if event publisher 

receives more than max TPS, it will be routed again into private SP VM and it will 

not drop any events in middle. 

 

Figure 4.3: Composition and Encryption of events which need to send to public SP engine. Here red color 

bar depicts delegating composition and encryption to ‘Composite Event Encode Worker’ from ‘Encrypt Master’  

When firing events into public SP VM, to gain more throughput, we combine 

multiple plain events into a single composite event. In order to fully utilize the HElib 
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encrypting array we have selected different composite event sizes according to max 

field length for each benchmark as follows: 

10 for Email filter benchmark 

23 for EDGAR filter benchmark 

168 for EDGAR comparison benchmark 

168 for EDGAR add/subtract benchmark 

There we combine the fields which will not be used for evaluations (Email filter 

benchmark - iij_timestamp, bccAddresses, subject, body; EDGAR equal benchmark 

- iij timestamp, ip, time, zone, cik, accession, size, idx, norefer, noagent, find, 

crawler, browser; EDGAR comparison benchmark - iij_timestamp, ip, date, time, 

cik, accession, extension, code, size, idx, norefer, noagent, crawler, browser; 

EDGAR add/subtract benchmark - iij_timestamp, ip, date, time, zone, cik, accession, 

extension, size, noagent, crawler, browser), with pre-defined separator and output 

value is a String value in composite event. For the fields which will be used for 

evaluations (Email filter benchmark - fromAddress, toAddresses, ccAddresses; 

EDGAR equal benchmark - date, extension, code; EDGAR comparison benchmark - 

zone, find; EDGAR add/subtract benchmark - code, idx, norefer, find) we do 

following transformation and encryption. 

First, we convert the String value into an integer buffer according to its max length 

with necessary 0 padding by using ASCII value of each char. Max length will be 

varying according to the benchmark. Following are the max length for used 

benchmarks: 

40 for Email filter benchmark 

20 for EDGAR equal benchmark 

1 for EDGAR comparison benchmark 

1 for EDGAR add/subtract benchmark  

Next, we combine 10 for Email filter benchmark, 23 for EDGAR equal benchmark, 

168 for EDGAR comparison benchmark, 168 for EDGAR add/subtract benchmark 

integer buffers (according to benchmark’s composite event size) into a single integer 

buffer and encrypt using HElib. Encrypted value will be a String with around 30K 

chars and composite event having those encrypted fields at the end. After that it will 

put composite event into the encrypted queue, which is processed by ‘Encrypted 

Events Publisher’ thread. 
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Private publishing pool threads directly send events to private SP server. For public 

SP, ‘Encrypted Events Publisher’ thread periodically checks for encrypted events in 

the encrypted queue which is put by ‘Composite Event Encode Worker’ after 

completing the composite event creation including encryption. If there are encrypted 

events, it will pick those at once and send to public SP server. 

As a summary the Encryptor module batches events into composite events and 

encrypts each composite event in hormomorphic manner. The encrypted events are 

sent to the public cloud where Homomorphic CEP (Complex Event Processor) 

Engine module conducts the evaluation homomorphically. At the Homomorphic 

CEP engine which supports homomorphic evaluations, initially we convert constant 

operand into an integer buffer with size 40 for Email filter benchmark, 20 for 

EDGAR equal benchmark, 1 for EDGAR comparison benchmark, 1 for EDGAR 

add/subtract benchmark with necessary 0 padding. Then replicate the int buffer 10 

times for Email filter benchmark, 23 times for EDGAR equal benchmark, 168 for 

EDGAR comparison benchmark, 168 for EDGAR add/subtract benchmark and 

encrypt using HElib [10]. Finally, the encrypted value and the relevant field in 

composite event was used for HElib’s addition/subtraction/comparison operations 

homomorphically. The result was replaced with the relevant field(s) in composite 

event and send to Receiver without any decryption. 

4.3 Homomorphic Evaluation at Public Stream Processing Engine 

In this section we will discuss how the evaluation done at public stream processing 

engine in a homomorphic manner for our derived benchmarks. Mainly we have 

mentioned the details on how we evaluate events as a composite event (mini-batch) 
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with homomorphic support for each benchmark. 

 

Figure 4.4: Direct event publishing into private SP engine vs Encrypted composite event publishing into 

public SP engine 

4.3.1 Email filter benchmark 

At public SP server which supports homomorphic evaluations, we initially convert 

all three operands as follows to support composite event with size 10. First, we 

convert each operand which needs to be evaluating homomorphically into an integer 

array with size 40 using ASCII encoding and necessary 0 padding. After that it will 

make a 478-length integer array by replicating 10 times 40-length integer array and 

necessary 0 padding. Then all three 478 length integer arrays will be encrypting 

using HElib. Then encrypted value and the relevant field in composite event will be 

used for HElib equal operations homomorphically. The result will be put into the 
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same field in composite event and send to statistics collector without any decryption. 

Relevant public VM SP stream and query definitions are listed in Listing 10. 

 

define stream inputHEEmailsStream (iij_timestamp string, fromAddress string, 

toAddresses string, ccAddresses string, bccAddresses string, subject string, body 

string);  

 

@info(name = 'query4') from inputHEEmailsStream select iij_timestamp, 

he:equalStr(fromAddress, 'lynn.blair@enron.com') as fromAddress, 

he:equalStr(toAddresses, 'richard.hanagriff@enron.com') as toAdds, 

he:equalStr(ccAddresses, 'richard.hanagriff@enron.com') as ccAdds, bccAddresses 

as bccAdds, subject as updatedSubject, body as bodyObfuscated insert into 

outputHEEmailsStream; 
Listing 10. Email filter public VM stream processor engine definitions 

4.3.2 EDGAR filter benchmark 

At public SP server which supports homomorphic evaluations, we initially convert 

all three operands as follows to support composite event with size 23. We use 

composite event size as 23 in order to fully utilize 478-length integer array with the 

maximum operand size 20. First, we convert each operand which needs to be 

evaluating homomorphically into an integer array with size 20 using ASCII encoding 

and necessary 0 padding. After that it will make a 478-length integer array by 

replicating 23 times 20-length integer array and necessary 0 padding. Then all three 

478 length integer arrays will be encrypting using HElib. Please note that this 478-

number forced from HElib according to its pre-defined settings. Then encrypted 

value and the relevant field in composite event will be used for HElib equal 

operations homomorphically. The result will be put into the same field in composite 

event and send to statistics collector without any decryption. Relevant public VM SP 

stream and query definitions are listed in Listing 11. 

4.3.3 EDGAR comparison benchmark 

Since we are doing only bit wise operations, HElib message space should be limited 

to 2, in order to use only ‘0’s and ‘1’s. Therefore, maximum length for encrypting 

field when we used message space as 2 is 168, and we used composite event size as 
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168 when sending to public SP. Here each ‘zone’ and ‘find’ fields should be an 

Integer which can represent in two-bit numbers. 

 

define stream inputHEEdgarStream (iij_timestamp string, ip string, date string, time 

string, zone string, cik string, accession string, extension string, code string, size 

string, idx string, norefer string, noagent string, find string, crawler string, browser 

string);  

@info(name = 'query6') from inputHEEdgarStream select iij_timestamp, ip, 

he:equal(date, '2016-10-01') as date, time, zone, cik, accession, he:equal(extension, 

'v16003sv1.htm') as extension, he:equal(code, '200') as code, size, idx, norefer, 

noagent, find, crawler, browser insert into outputHEEdgarStream; 
Listing 11. EDGAR filter public VM stream processor engine definitions 

First bits of zone field in 168 events will be combined and assign to the new field 

‘zoneBit1’ after encryption. Similarly, second bit of zone field in 168 events will be 

combined and assigned to the new field ‘zoneBit2’ after encryption. Same 

computation is applied to ‘find’ field as well. At public SP server which supports 

homomorphic evaluations, we initially convert all three operands as follows to 

support composite event with size 168. First, we convert constant operand with two 

bit Integer, into two Integer buffers with size 168, representing each bit in each 

buffer and then encrypt using HElib. Finally, the encrypted value and the relevant 

field in composite event will be used for HElib comparison operations 

homomorphically. The result will be put as another new field in composite event for 

each comparison and send to statistics collector without any decryption. Relevant 

public VM SP stream and query definitions are listed in Listing 12. 

define stream inputHEEdgarStream(iij_timestamp string, ip string, date string, time 

string, zoneBit1 string, zoneBit2 string, cik string, accession string, extension string, 

code string, size string, idx string, norefer string, noagent string, findBit1 string, 

findBit2 string, crawler string, browser string); 

 

@info(name='query6') from inputHEEdgarStream select iij_timestamp, ip, date, 

time, he:equal(zoneBit1, zoneBit2, '00') as zone, cik, accession, extension, code, size, 

idx, norefer, noagent, he:lessThan(findBit1, findBit2, '00') as findLessThanSatisfied, 

he:greaterThan(findBit1, findBit2, '11') as findGreaterThanSatisfied, crawler, 

browser insert into outputHEEdgarStream; 

 
Listing 12. EDGAR comparison public VM stream processor engine definitions 
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4.3.4 EDGAR add/subtract benchmark 

These addition and subtraction HE operations’ supported message space range is 

from 0 to 1201. This range also decides at HElib initialization according to the 

settings. According to Shaih[] if operands are small we can go with limited range 

support. If we need to support full range addition/subtraction operations, we need to 

come-up with at least 32-bit full adder circuits using HElib. Please note that, here we 

are not going to address that. Therefore, all operands and results should lie between 

the range. In EDGAR, selected fields anyway within the range and used operands 

and results are also within the range. Here also our composite event size would be 

478 as equivalent to EDGAR filter benchmark. When creating composite event, each 

field correspond to a single slot and we combine above mentioned four fields 

separately and encrypt using HElib and assign to the respective field. Other non-

operational fields will be combine using a defined separator. 

At public Siddhi server which supports homomorphic evaluations, we initially 

replicate all four operands into 478 times and create four integer arrays separately as 

composite event size is 478. Then we encrypt those four integer arrays and keep in 

memory. In evaluation at public stream processing engine, the encrypted value and 

the relevant field in composite event will be used for HElib add/subtract operations 

homomorphically. The result will be put into the same field in composite event for 

each add/subtract operation and send to statistics collector without any decryption. 

Relevant public VM stream processing engine stream and query definitions are listed 

in Listing 13. 

define stream inputHEEdgarStream (iij_timestamp string, ip string, date string, time 

string, zone string, cik string, accession string, extension string, code string, size 

string, idx string, norefer string, noagent string, find string, crawler string, browser 

string);  

@info(name = 'query6') from inputHEEdgarStream select iij_timestamp, ip, date, 

time, zone, cik, accession, extension, he:subtract(code, 100L) as code, size, 

he:add(idx, 30L) as idx, he:add(norefer, 20L) as norefer, noagent, he:subtract(find, 

10L) as find, crawler, browser insert into outputHEEdgarStream; 
 

Listing 13. EDGAR add/subtract public VM stream processor engine definitions 
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4.4 Decryption at Receiver 

‘Event Receiver’ thread triggers when there is an event which is received from a SP 

engine. First it checks whether the event is from public SP which uses Homomorphic 

encryption. If so it delegates composite event into ‘Composite Event Decode 

Worker’ to handle decomposition and decryptions. If event is from private SP it will 

directly put into profiler to read payload data and calculate the latency without any 

post processing. 

After receiving a composite event from ‘Event Receiver’, ‘Composite Event Decode 

Worker’ handles all decomposition and decryptions of the composite event. It first 

split non- operational fields in the composite event by the pre-defined separator. 

Secondly it performs decryption on operational fields using HElib API and split 

decrypted fields into fixed-length strings depends on composite event size and create 

plain events using split fields. Then it checks for each operational field in the plain 

event, whether it contains zeros for equality and ‘0’ OR ‘1’ for comparison outputs. 

After that, it performs filtering logic according to the relevant benchmark (Listing 

14, 15, 16). Please note that there is no condition checking on addition/subtraction 

outputs as those are not fall into filtering. Finally, it calculates latency of all decoded 

events which satisfy the filtering logic. 

 

NOT ( 

(fromAddress contains all 0s) AND  

(toAddresses contains all 0s) AND  

(ccAddresses contains all 0s) 

) 
Listing 14. Email equal benchmark’s logic at receiver to determine whether the events need to be filtered 

out. 

 

NOT ( 

(date contains all 0s) AND  

(extension contains all 0s) AND  

(code contains all 0s) 

) 
Listing 15. EDGAR equal benchmark’s logic at receiver to determine whether the events need to be 

filtered out. 
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Figure 4.5: Event flow at receiver with necessary decryption. Here red color bar depicts delegating 

decomposition and decryption to ‘Composite Event Decode Worker’ from ‘Event Receiver’ 

Note that we implemented the Homomorphic comparison of values following the 

work by Togan et al. [25]. For two, single bit numbers with x and y, Togan et al. 

show that 4.3 and 4.4 equations will satisfy greater-than and equal operations 

respectively. 
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NOT ( 

(zone equals 1) AND  

(findLessThanSatisfied equals 1) AND  

(findGreaterThanSatisfied equals 1) 

) 

Listing 16. EDGAR comparison benchmark’s logic at receiver to determine whether the events need to be 

filtered out. 

    𝑥 >  𝑦 ↔  𝑥𝑦 +  𝑥 =  1              (4.3) 

    𝑥 =  𝑦 ↔  𝑥 +  𝑦 +  1 =  1            (4.4) 

Listing 17. 1-bit gate circuit equations for comparison operations 

Togan et al. has come up with comparison functions for n-bit numbers using divide 

and conquer methodology. In our case we derived 2-bit number comparisons as 

follows. x1x0 and y1y0 are the two numbers with 2-bits. Here every ‘+’ operation is 

for XOR gate operation and every ‘.’ operator is for AND gate operation. 

𝑥1𝑥0 >  𝑦1𝑦0 ↔ (𝑥1 >  𝑦1)(𝑥1 =  𝑦1)(𝑥0 >  𝑦0)  =  1 

  ↔ (𝑥1. 𝑦1 +  𝑥1) +  (𝑥1 +  𝑦1 +  1)(𝑥0. 𝑦0 +  𝑥0) =  1 

  ↔  𝑥1. 𝑦1 +  𝑥1 +  𝑥1. 𝑥0. 𝑦0 +  𝑥1. 𝑥0 + 𝑦1. 𝑥0. 𝑦0 +  𝑦1. 𝑥0 +

                                    𝑥0. 𝑦0 +  𝑥0 =  1 

x1x0 == y1y0    ↔  (𝑥0 +  𝑦0 +  1). (𝑥1 +  𝑦1 +  1)  =  1 

  ↔ 𝑥0. 𝑥1 +  𝑥0. 𝑦1 +  𝑥0 +  𝑦0. 𝑥1 +  𝑦0. 𝑦1 +  𝑦0 +  1 =  1 

𝑥1𝑥0 <  𝑦1𝑦0 ↔  (𝑥1𝑥0 >  𝑦1𝑦0) + (𝑥1𝑥0 ==  𝑦1𝑦0)  +  1 =  1  

  ↔ (𝑥1. 𝑦1 +  𝑥1 +  𝑥1. 𝑥0. 𝑦0 +  𝑥1. 𝑥0 +  𝑦1. 𝑥0. 𝑦0 + 

𝑦1. 𝑥0 +  𝑥0. 𝑦0 +  𝑥0)  + (𝑥0. 𝑥1 +  𝑥0. 𝑦1 + 

                                        𝑥0 +  𝑦0. 𝑥1 +  𝑦0. 𝑦1 +  𝑦0 +  1)  +  1 =  1 

Listing 18. Derivation of 2-bit gate circuit equations for comparison operations 
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Reason that we build up comparison functions for two-bit numbers is just to apply 

the concept of homomorphic encryption and evaluation into CEP engine. Even for 2-

bit number comparisons, there are number of XOR and AND gate evaluations need 

to be applied as above. 
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5  EVALUATION 

Initially this chapter describes the private/public cloud setup which we use for our 

experiments. Then it demonstrates our experimental results against above discussed 

benchmarks. Finally, it will discuss on overall results, limitations and failed attempts 

within our work. 

5.1 Overview of Setup 

We conducted the experiments using three VMs in Amazon Elastic Compute Cloud 

(Amazon EC2) [42]. In order to simulate private/public cloud environment we had to 

purchase two VMs from two different regions for private and public SP engines 

separately. In these experiments two VMs hosted in North Virginia, USA were used 

as private cloud while the VM used as public cloud was located in Ohio, USA. 

Initially we tried two VMs between US east and west coast for two SP engines, but 

network speed is around 180Mbits/sec which is very low for our experiments 

measured by the network speed measurement tool, iPerf [43]. Out of the two VMs in 

North Virginia, one was a m4.4xlarge instance which had 16 cores, 64GB RAM 

while the other one was a m4.xlarge instance which had 4 cores, 16GB RAM. Event 

publisher and Statistics collector deployed in m4.4xlarge VM while private CEP 

Engine deployed in m4.xlarge VM. Here we have to use high performance VM 

instance type m4.4xlarge, because composite event composing, and decomposing 

require more CPU for publisher and statistics collector. The stream processor engine 

running in the public cloud was deployed on the VM running in Ohio which was a 

m4.xlarge instance. All the VMs were running on Ubuntu 16.04.2 LTS. Using iPerf 

[43] we observed that network speed between the two VMs in North Virginia was 

around 730Mbits/sec while the network speed between North Virginia and Ohio was 

500Mbits/sec. Figure 5.1 shows the test setup which described above. 

5.2 Email Filter Benchmark 

In the first round we used Email Filter benchmark. The results of this experiment are 

shown in Figure 5.2. The curve in the blue color (dashed line) indicates the private 

only deployment. The red color curve indicates the deployment with switching to 
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public cloud. It can be observed a clear reduction of average latency when switched 

to the public cloud in this setup compared to the private only deployment. 

 

Figure 5.1: Amazon EC2 VM arrangement which used for evaluation 

With homomorphic elastic scaling an overall average latency reduction of 2.14 

seconds per event can be observed. This is 10.24% improvement compared to the 

private cloud only deployment. Note that we have marked the times where VM 

start/VM stop operations have been invoked to start/stop the VM in the public cloud. 

 
Figure 5.2: Average latency of elastic scaling of the Email Filter benchmark with securing the event stream 

sent to public cloud via homomorphic encryption 
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5.3  EDGAR Filter Benchmark 

In the second round we used EDGAR Filter benchmark for evaluation of our 

technique. The results are shown in Figure 5.3. It can be observed significant 

performance gain in terms of latency when switching to public cloud with the 

EDGAR benchmark. A notable fact is that EDGAR data set had relatively smaller 

message size. The average message size of the EDGAR benchmark was 1.1 KB. The 

HomoESM mechanism was able to reduce the delay with considerable improvement 

of 17%. 

 
Figure 5.3: Average latency of elastic scaling of the EDGAR Filter benchmark with securing the event 

stream sent to public cloud via homomorphic encryption 

5.4 EDGAR Comparison Benchmark 

Next, we evaluated the homomorphic comparison operation. Here we have used a 

slightly modified version of the EDGAR Filter benchmark to facilitate comparison 

operation in a homomorphic manner. The results are shown in Figure 5.4. We could 

see only slight improvement of latency with EDGAR comparison benchmark. The 

improvement of the average latency was around 449 ms which is 3% improvement 

compared to the private only deployment. Compared to previous EDGAR Filter 

benchmark test which uses only homomorphic equal operation, less-than and greater-

than homomorphic operations consume more XOR and AND gate operations within 

HElib. Due to that, evaluation complexity in public SP engine is higher and it cannot 

process the events in much speed when compared to previous case. Due to that, 

latency wise advantage is not much visible here. Therefore, ultimately the portion of 

events send to public SP is lesser than other cases. That is why we could not see 

much advantage (only 3%) on latency curves for both private and public SP case 

compared to private SP only case.  
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Figure 5.4: Average latency of elastic scaling of the EDGAR Comparison benchmark with securing the 

event stream sent to public cloud via homomorphic encryption 

5.5 EDGAR Add/Subtract Benchmark 

Further we evaluated homomorphic addition and subtraction operations. Here we 

used previously described EDGAR add/subtract benchmark. The results are shown in 

Figure 5.5. Here also we could see slight improvement in latency with EDGAR 

add/subtract benchmark similar to EDGAR comparison benchmark. Results show 

that there is only 3% improvement in latency compared to the private only 

deployment. 

 

Figure 5.5: Average latency of elastic scaling of the EDGAR Add/Subtract benchmark with securing the 

event stream sent to public cloud via homomorphic encryption 

5.6 Multiple VM Test for Email Filter Benchmark 

In order to test the advantage of using multiple VMs, we performed Email Filter 

benchmark test again with 2 and 4 public VMs. But as we expected there is no 

improvement with respect to latency. Then we further investigate on the scenario and 

we have identified this is because when we use single public VM at current routing 
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load percentage (1.5%), the public VM is still not overloaded. Due to that, even 

though we increase the number of public VMs, our expected advantage cannot be 

achieved. From the other hand we cannot increase routing load percentage more than 

1.5%, due to higher CPU utilization in event-publisher VM instance. Therefore, we 

have ended up with similar latency curves for all cases with single, two and four 

public VMs as shown in Figure 5.6. 

 

 
Figure 5.6: Average latency of elastic scaling of the Email Filter benchmark with securing the event stream 

sent to multiple public clouds via homomorphic encryption 

5.7 Discussion 

According to the above experiments we can see better results only in Email Filter 

and EDGAR Filter benchmarks. These benchmarks’ evaluations undergo only with 

single homomorphic XOR gate computations per composite event. Therefore, the 

complexity of computation at public SP engine is low, compared to EDGAR 

comparison and Add/Subtract benchmarks. 

Apart from above EDGAR comparison and Add/Subtract benchmark experiments 

have limitations. EDGAR comparison benchmark experiment performs only on two-

bit numbers. This is due to the increment of circuit complexity in HElib, with the 

increment of no. of bits. EDGAR Add/Subtract benchmark also supports the range 

from 0 to 1201, which is the message space of HElib according to our selected 

settings. If we want to have support for larger numbers like 32-bit integers, we need 

to come up with HElib circuitry and that will take longer time.  

In multi VM experiment; there is a critical resource limitation at event 

publisher/statistics collector VM. When we routed 1.5% load into public VM, CPU 
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utilization is almost reach to 100%. This is due to higher CPU consumption when 

performing composition and decomposition by event publisher and statistics 

collector respectively. Figure 5.7 shows a Java Flight Recorder (JFR) output for 

event publisher when sending data to public SP engine. 

 
Figure 5.7: CPU utilization at event-publisher/statistics-collector VM when sending data to public SP 

engine 

In order to reduce the average latency, we tried to change the algorithm of switching 

functions for VM start/stop and Data send/stop functions. Previously it used only 

static threshold value to take decisions. Here we came up with dynamic threshold as 

in Eq. (5.1) which can address the changing trend in latency. 

 Dynamic threshold = Latency threshold - (W * dy/dx)            (5.1) 

If ‘Current latency’ is greater than ‘Dynamic threshold’ ESM will take decision to 

start VM or start data send. Even though above algorithm triggers VM start/stop and 

Data send/stop quickly when there is an increment or decrement in latency, the 

overall max load which we can send to public SP VM has limitation due to above 

discussed high CPU consumption. Therefore, this approach did not make any 

difference in terms of latency. 
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6  CONCLUSION AND FUTURE WORK 

Privacy has become an utmost important barrier which hinders leveraging IaaS for 

running stream processing applications. In this research we introduce a mechanism 

called HomoESM which conducts privacy preserving elastic data stream processing. 

We evaluated our approach by using derived benchmarks based on two data sets 

called Email Filter and EDGAR. We observed significant improvements on overall 

latency of 10% and 17% for Email Processor and EDGAR datasets with using 

HomoESM on equality operation. We also implemented comparison and 

add/subtract operations in HomoESM which resulted in 3% improvement in average 

latency. Comparison and add/subtract operations in HomoESM are limited up to 2-

bit numbers. The reason for the limitation is the complexity of the computations on 

higher bit numbers for comparison and add/subtract operations. There is another 

limitation on CPU when performing composition and decomposition at event 

publisher and statistics collector due to split and append computations. 

In this work we use data batching technique in our HomoESM implementation by 

creating a composite event using several plain events in order to address SIMD 

support given by HElib. This approach is the key advancement in our HomoESM 

which enables to realize the elastic stream processing with HomoESM. To the best of 

our knowledge this is the first work done on elastic scaling of stream processing 

using privacy preserving stream data analytics. 

In future we plan to extend this work to handle more complicated streaming 

operations such as length/time windows, event pattern matching and 

multiplication/division. Moreover, we can enhance HomoESM by evaluating new 

Homomorphic encryption libraries which leverage latest hardware like GPUs or 

improving current algorithms in homomorphic supported functions. We also plan to 

experiment with multiple query-based tuning for privacy preserving elastic scaling.  

In addition to above if we can reduce CPU consumption at event publisher and 

statistics collector when performing composition and decomposition, we will be able 

to route more load to public SP engine and achieve good latency reduction. 
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